
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 1002–1017

July 9-14, 2023 ©2023 Association for Computational Linguistics

FC-KBQA: A Fine-to-Coarse Composition Framework for Knowledge
Base Question Answering

Lingxi Zhang1, Jing Zhang1∗, Yanling Wang1, Shulin Cao2, Xinmei Huang1,
Cuiping Li1, Hong Chen1, Juanzi Li2

1School of Information, Renmin University of China, Beijing, China
2Department of Computer Science and Technology, Tsinghua University, Beijing, China

{zhanglingxi, zhang-jing, wangyanling,huangxinmei, licuiping, chong}@ruc.edu.cn
{caosl19}@mails.tsinghua.edu.cn, {lijuanzi}@tsinghua.edu.cn

Abstract

The generalization problem on KBQA has
drawn considerable attention. Existing research
suffers from the generalization issue brought
by the entanglement in the coarse-grained mod-
eling of the logical expression, or inexecutabil-
ity issues due to the fine-grained modeling
of disconnected classes and relations in real
KBs. We propose a Fine-to-Coarse Compo-
sition framework for KBQA (FC-KBQA) to
both ensure the generalization ability and exe-
cutability of the logical expression. The main
idea of FC-KBQA is to extract relevant fine-
grained knowledge components from KB and
reformulate them into middle-grained knowl-
edge pairs for generating the final logical ex-
pressions. FC-KBQA derives new state-of-the-
art performance on GrailQA and WebQSP, and
runs 4 times faster than the baseline. Our code
is now available at GitHub https://github.
com/RUCKBReasoning/FC-KBQA.

1 Introduction

Question answering over knowledge bases (KBQA)
aims to provide a user-friendly way to access large-
scale knowledge bases (KBs) by natural language
questions. Existing KBQA methods (Zhang et al.,
2023) can be roughly categorized into retrieval-
based and semantic-parsing (SP) based methods.
The former (Feng et al., 2021; He et al., 2021a;
Zhang et al., 2022) directly scores the relevance
between the question and answer candidates, thus it
is difficult to resolve the complex questions. On the
contrary, some KBQA approaches, such as (Das
et al., 2021; Kapanipathi et al., 2021; Qiu et al.,
2020; Sun et al., 2020), are based on semantic pars-
ing (denoted as SP-based), which can address com-
plex questions and achieve promising results on
i.i.d. datasets. SP-based methods first translate the
questions into logical expressions such as SPARQL
and then execute them against KB to yield answers.

∗Corresponding author.

Figure 1: Illustration of generalization tasks in KBQA.
Each question is paired with a logical expression that
consists of different components. Components involved
in the training data are colored in non-green color, while
unseen components are colored in green.

Figure 2: Results of the pilot study. The coarse-grained
method directly matches the question with the logical
expression (i.e., the composition of components), while
the fine-grained method matches the question with each
component candidate and then composes them to derive
the logical expression. The exact match accuracy of
logical expressions on compositional generalization test
data and zero-shot generalization test data is shown on
the right of the figure.

As illustrated in Figure 1, a logical expression con-
sists of multiple components such as classes and
relations. Most existing SP-based approaches fail
with logical expressions that contain unseen compo-
sitions of components (called compositional gener-
alization) or unseen components (called zero-shot
generalization).

To address the above problem, GrailQA-
Rank (Gu et al., 2021) proposes a BERT-based
rank model to match the given question with each
logical expression candidate, which leverages the
generalization abilities of the pre-trained language
models. On top of that, RNG-KBQA (Ye et al.,

1002

https://github.com/RUCKBReasoning/FC-KBQA
https://github.com/RUCKBReasoning/FC-KBQA


2022) further uses a pre-trained generation model,
which takes top-5 ranked logical expressions as the
additional input beyond the question to generate
the target logical expression. Behind these main-
stream models, a logical expression is viewed as an
inseparable unit during modeling. Actually, logical
expressions are coarse-grained because they can
be decomposed into relatively fine-grained com-
ponents including relations, classes, entities, and
logical skeletons (See examples in Figure 3). Such
coarse-grained modeling entangles representations
of fine-grained components, thereby overfitting
the seen compositions during the training process,
which weakens the model’s compositional general-
ization ability. Meanwhile, even though pre-trained
language models can deal with zero-shot compo-
nents to some extent, compositional overfit reduces
their ability to identify individual unseen compo-
nents with zero-shot generalization.

To demonstrate the above idea, we perform a
pilot study (Cf. the detailed settings in Section 4.1)
with two preliminary experiments: one calculates
the similarity score between a question and each
coarse-grained logical expression to obtain the
most relevant one, and the other searches the most
relevant fine-grained components to form the final
logical expression of a question. We observe that
the fine-grained modeling derives more accurate
logical expressions on both the compositional
task and zero-shot task (Cf. Figure 2). It could
be explained that fine-grained modeling focuses ex-
clusively on each component, avoiding overfitting
of seen compositions in the training data. Although
some studies attempt to leverage fine-grained com-
ponents, they only consider partial fine-grained
components such as relations, classes, and entities
(Chen et al., 2021), or suffer from inexecutability
due to disconnected fine-grained components in
real KBs (Shu et al., 2022).

Thus, to both ensure the generalization ability
and executability of logical expressions, we pro-
pose a Fine-to-Coarse composition framework for
KBQA (FC-KBQA), which contains three sub-
modules. The overview of our model is shown
in Figure 4. The first module is fine-grained com-
ponent detection, which detects all kinds of fine-
grained component candidates from Freebase by
their semantic similarities with the question. Such
component detection guarantees the generalization
ability in both compositional and zero-shot tasks.
The second module is the middle-grained compo-

nent constraint, which efficiently prunes and com-
poses the fine-grained component candidates by en-
suring the components’ connectivity in the KB. The
final module is the coarse-grained component com-
position, which employs a seq-to-seq generation
model to generate the executable coarse-grained
logical expression. In addition to encode the fine-
grained components, the middle-grained compo-
nents are also encoded to enhance the model’s rea-
soning capacity, so as to improve the executability
of the generated logical expression. In contrast
to previous work (Cao et al., 2022b; Chen et al.,
2021; Shu et al., 2022) that only uses the knowl-
edge constraints to guide the decoding process, we
emphasize injecting them into the encoding pro-
cess, because the encoder which learns bidirec-
tional context could better suit natural language
understanding (Du et al., 2022).

We conduct extensive experiments on widely
used GrailQA, WebQSP, and CWQ datasets.
GrailQA (Gu et al., 2021) is a KBQA bench-
mark focusing on generalization problems. FC-
KBQA derives new state-of-the-art performance
on GrailQA-Dev (+7.6% F1 gain and +7.0% EM
gain respectively). Meanwhile, FC-KBQA also
obtains good performance on WebQSP and CWQ.
Moreover, FC-KBQA runs 4 times faster than the
state-of-the-art baseline RNG-KBQA. The abla-
tion studies demonstrate the effect of our middle-
grained encoding strategy.

Contributions. (1) We conduct a pilot study to
reveal an intriguing phenomenon — a fine-grained
understanding of the logical expression helps en-
hance the generalization ability of SP-based KBQA
methods, which is rarely discussed before. (2) We
propose a fine-to-coarse composition framework
FC-KBQA to address the generalization problem,
which takes advantage of the idea of fine-grained
modeling. (3) We devise a middle-grained compo-
nent constraint that is injected into both the encoder
and the decoder to guide the seq-to-seq model
in producing executable logical expressions. (4)
FC-KBQA not only maintains efficiency but also
achieves significant improvement on GrailQA.

2 Related Work

Coarse-Grained SP-based Methods. Many ef-
forts are paid to solve generalization problems on
SP-based KBQA. Some approaches, such as (Lan
and Jiang, 2020; Gu et al., 2021), use a rank-based
model that takes advantage of a coarse-level match

1003



between the question and the logical expressions or
query graphs. They first enumerate numerous query
graph candidates based on KBs and then they rank
them according to how relevant they are to the ques-
tion. Another line of approaches, in addition to the
rank-based ones, makes use of a generation model.
KQAPro (Cao et al., 2022a) leverages BART to
directly convert questions into logical expressions.
Additionally, RNG-KBQA (Ye et al., 2022) further
injects top-k ranked logical expressions as an ad-
ditional input to the question. CBR-KBQA (Das
et al., 2021) injects analogous questions and their
corresponding logical expressions from the training
data to increase the generalization. All of the afore-
mentioned methods are pure coarse-level frame-
works that treat each coarse-grained logical expres-
sion as a separate unit.

Fine-Grained SP-based Methods. Many re-
searchers have been motivated to address the gen-
eralization issue by the notion of utilizing decom-
posed components, such as class, relation, and log-
ical skeleton. Some approaches (Wang et al., 2020;
Zhao et al., 2022; Li et al., 2023) retrieve the rele-
vant schema item such as relation and column as
additional fine-grained input information, while an-
other line of approaches (Dong and Lapata, 2018)
extracts the skeleton of logical expression as the de-
coder guide. Such methods primarily concentrate
on the grammar of logical expression and often
ignore the knowledge constraint, which is essen-
tial in large-scale KB. They usually focus on KBs
or DBs that contain a small number of relations
where a logical expression can be easy to be exe-
cutable. Program Transfer (Cao et al., 2022b), Re-
Track (Chen et al., 2021), and TIARA (Shu et al.,
2022) simply apply KB constraints to control the
generation of the decoding process. As opposed
to them, we make use of middle-grained KB con-
straints during both the encoding and the decoding
processes to help the model better adapt to KB and
ensure executability.

3 Problem Definition

Knowledge Base (KB). A KB is comprised by
ontology {(C × R × C)} and relational facts
{(E ×R× (E ∪C))}, where R,C, and E denote
relation set, class set, and entity set respectively.
Notably, we consider literal as a special type of en-
tity. Specifically, an ontology triple (cd, r, cr) con-
sists of a relation r ∈ R, a domain class cd which
denotes the class of the subject entities, and a range

class cr which denotes the class of the object enti-
ties. Each class has multiple entities, thus an ontol-
ogy triplet can be instantiated as several relational
facts. For example, both (e1, r, e2) and (e3, r, e4)
correspond to (cd, r, cr), where e1, e3 ∈ cd and
e2, e4 ∈ cr. Figure 3 illustrates a KB subgraph.

SP-based KBQA. Given a natural question q,
KBQA models aim to find a set of entities denoted
by A ⊆ E from KB as the answers to q. Instead
of directly predicting A, SP-based KBQA models
translate q to an executable logical expression de-
noted by s such as SPARQL, lambda-DCS (Liang
et al., 2013), query graph (Lan and Jiang, 2020),
and s-expression (Gu et al., 2021).

We select s-expression as our used logical ex-
pression since it could provide a good trade-off
on compactness, compositionality, and readabil-
ity (Gu et al., 2021). The logical skeleton of an
s-expression can be derived by removing all the
relations, classes, and entities in the expression
and only keeping function operators and parenthe-
ses. Specifically, we replace relations, classes, enti-
ties, literals with special tokens “<rel>”, “<class>”,
“<entity>”, “<literal>” respectively. Figure 3 shows
an executable logical expression on the KB and
its corresponding logical skeleton. We unitedly
name the relations, classes, entities, and logical
skeleton in an s-expression as the fine-grained
component, while the complete s-expression is
the coarse-grained logical expression.

4 Approach

4.1 Pilot Study

As analyzed in Section 1, considering the logical
expression as a unit will lead to entangled represen-
tations of fine-grained components and thus weak-
ens generalization ability. Here we study the ne-
cessity of fine-grained modeling by testing how
coarse-grained and fine-grained matching methods
perform when selecting a question’s logical expres-
sion from the corresponding candidate pool.

Dataset. To simplify the experiment, we extract a
toy dataset that only involves 1-hop logical expres-
sions from GrailQA. Then, for the relation r and
the class c in such logical expressions, we study
the compositional generalization where the compo-
sition (r, c) is unseen or zero-shot generalization
where the individual r or c is unseen in the training
data. For each question with its ground-truth logi-
cal expression, we select 100 logical expressions

1004



Figure 3: Illustration of a KB subgraph and an exe-
cutable logical expression, where the ovals denote the
entities, the rectangles denote the classes, the solid lines
denote the relations, and the dashed lines connect the
entities and their classes. The upper part of the subgraph
illustrates examples of ontology triplets, while the bot-
tom illustrates relational facts.

that share the same domain as the ground truth as
the coarse-grained expression candidates. For fair
comparison, we separate all of the relations, classes,
and logical skeletons from the coarse-grained can-
didates as the fine-grained component candidates.

Methods. We aim to find the target logical expres-
sion of a given question by a ranking model trained
with a contrastive loss (Chen et al., 2020), which
is also used by RNG-KBQA (Ye et al., 2022). The
coarse-grained method concatenates a question and
a candidate logical expression to feed into BERT,
then the output embedding of [CLS] is fed into a
linear layer to compute the similarity score. The
fine-grained method follows the above pipeline, but
the input is the concatenation of a question and a
fine-grained candidate component, then scores each
logical expression candidate by summing up the
normalized question-component similarity scores.
For both methods, we compute accuracy by evalu-
ating whether the ground-truth logical expression
owns the highest score in the candidate pool.

Observation — Fine-grained modeling can bet-
ter solve the generalization problems on KBQA.
The matching accuracy is reported in Figure 2.
The fine-grained method outperforms the coarse-
grained method in both composition generaliza-
tion and zero-shot generalization tasks. A possi-
ble explanation is the fine-grained matching fo-

cuses solely on each component and is simple to
learn, which better capture the semantic informa-
tion of each component and also well adaptable to
express the various compositions of components.
The coarse-grained matching, on the other hand, at-
tempts to describe all of the components as a whole
composition, limiting the ability to express unseen
compositions and components. Inspired by this, we
propose FC-KBQA in the next section.

4.2 Model Overview
We propose a fine-to-coarse composition frame-
work FC-KBQA bridged by a middle-grained KB
constraint. Figure 4 illustrates the overall frame-
work, which contains three parts:

Fine-grained Component Detection. Given a
question, we extract relation candidates and class
candidates from the whole KB based on seman-
tic similarity. Simultaneously, we adopt an entity
linker to detect mentioned entities and use a seq-to-
seq model to generate logical skeletons.

Middle-grained Component Constraint. Based
on the detected components, we devise an efficient
way to check the connectivity of component pairs
on the KB, including class-relation pairs, relation-
relation pairs, and relation-entity pairs. We only
keep the executable component pairs to guarantee
the executability of final logical expression.

Coarse-grained Component Composition. Fi-
nally, a seq-to-seq model takes the concatenation
of the question and the reformulated components
as input to generate the logical expression. In par-
ticular, the middel-grained components are injected
into both the encoder and the decoder to ensure the
executability of the final logical expressions.

4.3 Fine-grained Component Detection

Relation and Class Extraction. Taking the re-
lation extractor as the example, given a question
q, we aim to extract relations in q. First, we apply
BM25 (Robertson et al., 2009) to recall the relation
candidates from the KB based on the surface over-
laps between relations’ names and q. Then we ap-
ply BERT (Devlin et al., 2019) as the cross-encoder
to measure the semantic similarity between q and
each relation candidate r. We describe r using the
relation domain, the relation name, and the rela-
tion range and let the BERT input be “[CLS] q [D]
domain(r) [N] name(r) [R] range(r) [SEP]”, where
[CLS], [SEP], [D], [N], and [R] are the special to-
kens. To better distinguish the spurious relations,

1005



Figure 4: Overview of FC-KBQA. In the step of fine-grained component detection, we perform class extraction,
relation extraction, entity linking, and logical skeleton parsing to obtain the most relevant components of the
question. Then we utilize the KB-based constraint to obtain middle-grained component pairs that are connected in
the KB. Finally, a T5-based seq-to-seq model encodes the reformulated fine-grained and middle-grained candidates
(reformulation unit), and employs a controllable decoder with dynamic vocabulary (control unit) to generate the
executable target logical expression.

we sample the relations that share the same domain
as the ground-truth relation as the negatives for
training. The trained model is used to retrieve the
set of top-k relations, denoted by Rq.

The class extractor works in the same way as
the relation extractor. We represent the class using
its name and domain, and use other classes in the
same domain as negatives. Cq represents the set of
the top-k relevant classes.

Entity Linking. A common paradigm of finding
topic entities in KBQA methods is to first leverage
a NER tool (Finkel et al., 2005) to detect mentions
and then apply an entity disambiguation model to
link them to entities in KB. However, some noun-
phrase mentions such as “rich media” are hard to
be detected by the NER tool, and some ambiguous
entities could not be distinguished by the pure en-
tity names. To address both issues, we equip the
NER tool1 with a trie tree-based mention detec-
tion method and propose a relation-aware pruning
method to filter the mentions.

Specifically, we build a trie tree (Fredkin, 1960)
with the surface names of all entities in the KB.
Then we can search noun phrase mentions in the
question efficiently and link them to the KB by

1We follow GrailQA which utilizes an open BERT-NER
tool on GitHub (https://github.com/kamalkraj/BERT-NER).

BLINK (Wu et al., 2020) to obtain the correspond-
ing entities Eq. After that, we propose a relation
awared pruning strategy to prune Eq by removing
the entities that could not link to any relations in Rq.
Finally, following GrailQA (Gu et al., 2021), we
choose the entity with the highest popularity. We
define regular expressions to extract literals such
as digits and years appearing in q.

Logical Skeleton Parsing. Logical skeleton pars-
ing aims to transform a given question q into a
logical skeleton l. Because the logical skeleton is
domain-independent, the parsing process could be
generalized across domains. We adopt T5 (Raffel
et al., 2020), a state-of-the-art generation model to
parse logical skeletons. Since many entity names
contain tokens such as “and” and “of” that may
cause the logical skeleton to be incorrectly deter-
mined, we mask each mention m ∈ Mq with the
special token “<entity0>”, “<entity1>”, ..., in order
of appearance. For example, we change “Thomas
was the designer of what ship?” to “<entity0>
was the designer of what ship?”. We notice that a
common error is parsing out logical skeleton with
wrong relation numbers, for example “<rel>” in-
stead of “<rel><rel>”. Instead of increasing beam
numbers, we manually add grammar rules, such
as add “<rel><rel>” as the second candidate when

1006



“<rel>” is T5’s top-1 prediction. The set of the
top-2 logical skeleton candidates is denoted as Lq.

4.4 Middle-grained Component Constrain

After deriving the candidate components according
to Section 4.3, the KB-based constraint is required
to guarantee the composed logical expression is
executable. A straightforward idea is to fill the
logical skeleton with candidate relations, classes,
and entities, and execute them one by one to check
executability. However, such enumeration is ineffi-
cient, since all combinations of candidate compo-
nents should be considered. Therefore, we incor-
porate the middle-grained component pairs which
are connected in KB. Such pairs can be produced
efficiently to keep the model’s efficiency.

The middle-grained component pairs include
class-relation pairs, relation-relation pairs, and
relation-entity pairs. For each class c ∈ Cq and
each relation r ∈ Rq, if r is connected with
the domain class c, we add (c, r) into the class-
relation pair set Pc−r. For example in Figure 3,
the class “railway.railway” is linked with the re-
lation “rail.railway.terminuses”, so the pair (rail-
way.railway, rail.railway.terminuses) is executable
and will be added into Pc−r. If the range class
of r is c, we add the pair of c and the reverse
relation of r. We construct executable relation-
relation pair set Pr−r by checking each relation
pair (r1 ∈ Rq, r2 ∈ Rq). If r2’s domain class
does not match r1’s range class, we directly re-
move this pair to maintain efficiency, otherwise,
we reformulate (r1, r2) to a logical expression and
execute on KB to check its connectivity. For each
relation-entity pair (r, e), we first check whether
the logical skeleton candidates contain the <entity>
placeholder or not. If not, we leave Pr−e empty;
otherwise we directly take the result of the relation-
pruning strategy for entities in Section 4.3.

4.5 Coarse-grained Component Composition

We apply a generation model based on T5 to com-
pose all the above fine-grained and middle-grained
component candidates and output an executable
logical expression by a controlled decoder.

Encoding Process. Before feeding the fine-
grained and middle-grained component candidates
into the generator, we sort the middle-grained can-
didates according to their similarity scores to the
question. By doing this, the order can reveal the
pattern of which pair is more likely to appear in the

ground-truth logical expression. In intuition, such
a pattern will help to generate more accurate log-
ical expressions. To accomplish this, we take the
logits of the fine-grained component detection in
section 4.3 as the similarity score between the ques-
tion and each class/relation component, and then
calculate the similarity score between the question
and a middle-grained component pair by summing
the scores of contained single components. The
encoding of such middle-grained component im-
proves the generator’s reasoning capacity in terms
of capturing the knowledge constraints.

We use “;” to separate each element (a compo-
nent or a component pair). To explicitly inform
the model the type of each component, we place
“[REL]”, “[CL]”, “[ENT]”, and “[LF]” before
each relation, class, entity, and logical skeleton
respectively. For example, we organize the input
of encoder as “query;[CL]c1[REL]r1;[REL]r1
[REL]r2;[CL]c2[REL]r3;[ENT]e1;[LF]l1;[LF]l2”.

Decoding Process. The middle-grained compo-
nents are also used to produce a dynamic vocab-
ulary to constrain the decoding process. The gen-
erated token yt is confined to the tokens involved
in the dynamic vocabulary at each step t. We ini-
tialize the dynamic vocabulary with the union of
tokens from the detected entities, tokens from the
detected classes in Pc−r, i.e., usually the answer
type, and the keywords such as “JOIN” in logical
skeleton. Then we update the dynamic vocabulary
by the relations paired with r in Pr−r if the last
generated component is r or by the relations paired
with c in Pc−r if it is c.

5 Experiment

5.1 Experimental Settings

Dataset. We evaluate our method on GrailQA (Gu
et al., 2021), WebQSP (Yih et al., 2016), and
CWQ (Talmor and Berant, 2018), all of which are
based on Freebase. GrailQA focuses on generaliza-
tion problems which involved up to 4-hop logical
expressions and complex operations. WebQSP is
an i.i.d. benchmark that required 2-hop reasoning.
Although CWQ is not designed to solve generaliza-
tion problem, we can still separate out the zero-shot
test set with all the unseen relations and classes,
yielding 576/3519 zero-shot/all test set.

Evaluation Metrics. To measure the accuracy of
logical expression, we use the well-adopted exact
match (EM) which measures the exact equivalence

1007



Table 1: Results of overall evaluation on GrailQA-LeaderBoard (%).

Overall I.I.D. Compositional Zero-Shot
EM F1 EM F1 EM F1 EM F1

GrailQA-Rank (Gu et al., 2021) 50.6 58.0 59.9 67.0 45.5 53.9 48.6 55.7
GrailQA-Trans (Gu et al., 2021) 33.3 36.8 51.8 53.9 31.0 36.0 25.7 29.3

ReTrack (Chen et al., 2021) 58.1 65.3 84.4 87.5 61.5 70.9 44.6 52.5
RNG-KBQA (Ye et al., 2022) 68.8 74.4 86.2 89.0 63.8 71.2 63.0 69.2

FC-KBQA(Ours) 73.2 78.7 88.5 91.2 70.0 76.7 67.6 74.0

between the query graph of the predicted and the
gold logical expression. We also calculate the F1
score based on the predicted and gold answers.

Baselines. On GrailQA, we mainly compare
with the published works on the leaderboard, in-
cluding GrailQA-Rank (Gu et al., 2021), GrailQA-
Trans (Gu et al., 2021), Retrack (Chen et al., 2021),
RNG-KBQA (Ye et al., 2022). They are all SP-
based models that target generalization problems
in KBQA. On WebQSP and CWQ, we compare
our method with the retrieval-based models in-
cluding GraphNet (Pu et al., 2018),PullNet (Sun
et al., 2019) and NSM (He et al., 2021b), and the
SP-based models including QGG (Lan and Jiang,
2020), RNG-KBQA (Ye et al., 2022), and PI Trans-
fer (Cao et al., 2022b). We evaluate F1 for the
retrieval-based models, while evaluate both F1 and
EM for the SP-based methods. We compare all the
baselines that have the results on the two datasets
or publish the codes that can be executed.

5.2 Overall Evaluation

Performance. In Table 1 and Table 2, we eval-
uate the performance of FC-KBQA on different
datasets. For the baselines, we directly take their
results reported in the original papers. To be noted,
on the extracted zero-shot test set of CWQ, the re-
sults for some models remain empty because their
full codes are not released. As shown in Table 1,
our model outperforms all the baselines, especially
on the compositional and zero-shot test tasks. Com-
pared with RNG-KBQA, the state-of-the-art pub-
lished model, we have an absolute gain of 4.3% and
4.4% in terms of F1 score and EM respectively. We
also outperform on the extracted zero-shot CWQ
test set by 11.3% in terms of F1, as for an unseen
complex question, parsing out correct knowledge
components and logical skeletons is much easier
than directly parsing the coarse-grained logical ex-
pression correctly. Since the fine-grained module
solely focuses on each component and thus leads

Table 2: F1 Evaluation on WebQSP and CWQ (%).

WebQSP CWQ
Overall Overall Zero-Shot

GraphNet 66.4 32.8 22.3
PullNet 68.1 47.2 -
NSM 74.3 48.8 31.6
QGG 74.0 40.4 28.9
RNG-KBQA 75.6 42.3 33.3
PI Transfer 76.5 58.7 -
Ours 76.9 56.4 53.1

to a higher component accuracy, FC-KBQA also
outperforms on the i.i.d test set of WebQSP. On the
original test set of CWQ, we only under-perform
PI Transfer which leverages a pre-train process on
a large-scale wiki data that is out scope of CWQ.

Efficiency. Both RNG-KBQA and GrailQA-Rank
enumerate all the logical expressions in a 2-hop KB
subgraph (enumeration), so it is time-consuming
for the rank model to score thousands of logical
expressions for each question (candidate selection).
Conversely, our FC-KBQA just retrieves the most
relevant components (candidate selection) and then
enumerates the component pairs based on the fil-
tered candidates (enumeration), which greatly re-
duces the inference time. Besides enumeration and
candidate selection, a seq-to-seq model is used to
generate the final logical expression (final composi-
tion). In the same 24GB GPU and Intel Gold 5218
CPU, the experimental results in Figure 5 show that
our model runs 4 times faster than baselines.

5.3 Ablation Studies

GrailQA does not provide ground truth for the test
set, so we conduct the ablation studies on the public
Grail-Dev to investigate how the fine- and middle-
grained components affect the performance.

As shown in Table 3, we develop four model
variants. (1) -Knowledge removes all the fine-
grained and middle-grained components except
for the logical skeleton. (2) -Knowledge Pairs
replaces the middle-grained components, such as

1008



Table 3: Ablation studies on GrailQA-Dev (%).

Overall I.I.D. Compositional Zero-Shot
EM F1 EM F1 EM F1 EM F1

T5-base 22.7 23.4 61.8 64.1 28.3 29.0 0.3 0.3
RNG-KBQA 71.4 76.8 86.5 88.9 61.6 68.8 69.0 74.8
Enhanced RNG-KBQA 72.8 78.2 86.6 90.2 61.7 69.3 71.5 76.7
FC-KBQA 79.0 83.8 89.0 91.5 70.4 77.3 78.1 83.1

–Knowledge 23.1 24.0 62.1 64.2 29.5 31.0 0.3 0.3
–Knowledge Pairs 53.6 55.6 70.2 72.3 44.0 46.0 50.3 52.2
–Logical Skeleton 78.0 80.8 85.2 86.8 68.5 71.9 79.2 81.8

–Decode Constraint 77.5 83.1 88.3 91.1 67.8 76.3 76.8 82.5

Figure 5: Inference time on GrailQA. “Overall” de-
notes the total inference time of each model. Specially,
GrailQA-Rank has no composition step, we record the
corresponding time as zero.

class-relation pairs and relation-relation pairs with
the corresponding fine-grained candidates, such as
classes and relations. (3) -Logical Skeleton gets
rid of the logical skeleton. (4) -Decode Constraint
deletes the dynamic vocabulary created with the
middle-grained components.

The results show that removing “knowledge” re-
duces model performance by 60% F1 score, and
replacing “knowledge pairs” with pure fine-grained
components also reduces model performance by
28% F1, indicating that encoding the middle-
grained components can significantly improve the
model’s reasoning capacity. To further demonstrate
that encoding such middle-grained components can
also help improve other model’s performance, we
create Enhanced RNG-KBQA by taking the top-10
ranked results from its ranking model and formulat-
ing them into middle-grained component pairs to
be injected into its encoder. The results in Table 3
show that middle-grained reformulation improves
the performance of RNG-KBQA. Middle-grained
component pairs, like coarse-grained logical ex-
pressions, can guarantee connectivity, but they are

more compact and much shorter. As a result, be-
cause PLMs have a maximum input length, the
middle-grained formulation can inject more com-
ponents and is more likely to cover the components
involved in the target logical expression.

Removing “logical skeleton” can result in a 3.0%
F1 drop, indicating that skeleton is useful for guid-
ing the question understanding even though it is
less important than the knowledge.

Removing “decode constraint” in the decoder
can also have an effect on model performance, but
is much weaker than removing “knowledge pairs”
in the encoder, indicating that injecting the knowl-
edge constraints in the encoding process is more
useful than in the decoding process, because the en-
coder learns the bidirectional context, which is bet-
ter suited to natural language understanding. This
is also a significant difference from the existing
knowledge constrained decoding methods.

Both "Knowledge Pairs" and "Decode Con-
straint" are proposed for addressing the in-
executability issue, which guarantee all generated
logical expressions are executable. Removing ei-
ther reduces the accuracy, which indicates that high
executability can improve the model performance.

5.4 Error Analysis

We randomly select 50 error cases on GrailQA and
summarize the error into three main categories:
error entity (60%), error relation and class (35%),
and error logical skeleton (40%). We also analysis
the error cases while our model fails but some
baseline methods can answer successfully resolve
them. A typical mistake is on logical expressions
that involve KB-specific component composition.
For example, in Freebase, “coach” is represented
by the join of “sports.sports_team.coaches”
and “sports.sports_team_coach_tenure.coach”.

1009



Our fine-to-coarse model only predicts the
previous relation but is unable to recall
“sports.sports_team_coach_tenure.coach”, while
some coarse-grained methods are able to memorize
such composition and provide the correct answer.

6 Conclusion

This paper proposes FC-KBQA, a Fine-to-Coarse
composition framework for KBQA. The core idea
behind it is to solve the entanglement issue of main-
stream coarse-grained modeling by the fine-grained
modeling, and further improve the executability
of logical expression by reformulating the fine-
grained knowledge into middle-grained knowledge
pairs. Benefiting from this, FC-KBQA achieves
new state-of-the-art performance and efficiency
on the compositional and zero-shot generalization
KBQA tasks. This fine-to-coarse framework with
middle-grained knowledge injection could be in-
spiring for generalization on other NLP tasks.

7 Limitations

Although our model achieves good performance
in solving the compositional and zero-shot
generalization problems, there is still room
for improvement on the i.i.d datasets. The
fine-grained module in our framework cannot
take advantage of explicit composition infor-
mation when the component compositions in
the testing set and training set significantly
overlapp. For example, in Freebase, "Who is
the coach of FC Barcelona?" is answered by the
join of relation “sports.sports_team.coaches” and
“sports.sports_team_coach_tenure.coach”. Our
fine-grained extractor may fail to recall
“sports.sports_team_coach_tenure.coach” and in-
stead select “base.american_football.football_coac
-h.coach” as the candidate since ‘football coach”
is more relevant to the question than “coach
tenure” in semantics. The only coarse-grained
model, however, can directly memorize the pattern
because such composition appears frequently
in the training data. Therefore, compared to
conventional models that completely memorize
composition patterns, our model may only have
minor advantages.

Another limitation is that we cannot guar-
antee the generalization on other KBs such
as WikiData because gaps between KBs may
bring negative impact. For example, rela-
tions in Freebase are often more specific

(ice_hockey.hockey_player.hockey_position,
soccer.football_player.position_s), while re-
lations in Wikidata are more general (posi-
tion_played_on_team). We consider it as a
direction for our future work.

8 Ethics Statement

This work focuses on the generalization issue of
knowledge base question answering, and the con-
tribution is fully methodological. Hence, there are
no direct negative social impacts of this work. For
experiments, this work uses open datasets that have
been widely used in previous work and are without
sensitive information as we know. The authors of
this work follow the ACL Code of Ethics and the
application of this work have no obvious issue that
may lead to the risk of ethics.

Acknowledgments

This work is supported by National Natural Sci-
ence Foundation of China (62076245, 62072460,
62172424,62276270); Beijing Natural Science
Foundation (4212022).

References
Shulin Cao, Jiaxin Shi, Liangming Pan, Lunyiu Nie,

Yutong Xiang, Lei Hou, Juanzi Li, Bin He, and Han-
wang Zhang. 2022a. Kqa pro: A dataset with explicit
compositional programs for complex question an-
swering over knowledge base. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
6101–6119.

Shulin Cao, Jiaxin Shi, Zijun Yao, Xin Lv, Jifan Yu,
Lei Hou, Juanzi Li, Zhiyuan Liu, and Jinghui Xiao.
2022b. Program transfer for answering complex
questions over knowledge bases. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8128–8140, Dublin, Ireland. Association for
Computational Linguistics.

Shuang Chen, Qian Liu, Zhiwei Yu, Chin-Yew Lin, Jian-
Guang Lou, and Feng Jiang. 2021. ReTraCk: A flexi-
ble and efficient framework for knowledge base ques-
tion answering. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing: System Demon-
strations, pages 325–336, Online. Association for
Computational Linguistics.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for

1010

https://doi.org/10.18653/v1/2022.acl-long.559
https://doi.org/10.18653/v1/2022.acl-long.559
https://doi.org/10.18653/v1/2021.acl-demo.39
https://doi.org/10.18653/v1/2021.acl-demo.39
https://doi.org/10.18653/v1/2021.acl-demo.39


contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya God-
bole, Ethan Perez, Jay Yoon Lee, Lizhen Tan, Lazaros
Polymenakos, and Andrew McCallum. 2021. Case-
based reasoning for natural language queries over
knowledge bases. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 9594–9611.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4171–4186, Minneapolis, Minnesota.
Association for Computational Linguistics.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 731–742, Melbourne, Australia. Association
for Computational Linguistics.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm:
General language model pretraining with autoregres-
sive blank infilling. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 320–335.

Yu Feng, Jing Zhang, Gaole He, Wayne Xin Zhao,
Lemao Liu, Quan Liu, Cuiping Li, and Hong Chen.
2021. A pretraining numerical reasoning model for
ordinal constrained question answering on knowl-
edge base. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 1852–
1861, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Jenny Rose Finkel, Trond Grenager, and Christopher D
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs
sampling. In Proceedings of the 43rd annual meet-
ing of the association for computational linguistics
(ACL’05), pages 363–370.

Edward Fredkin. 1960. Trie memory. Communications
of the ACM, 3(9):490–499.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy
Liang, Xifeng Yan, and Yu Su. 2021. Beyond iid:
three levels of generalization for question answering
on knowledge bases. In Proceedings of the Web
Conference 2021, pages 3477–3488.

Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and
Ji-Rong Wen. 2021a. Improving multi-hop knowl-
edge base question answering by learning intermedi-
ate supervision signals. In Proceedings of the 14th
ACM International Conference on Web Search and
Data Mining, pages 553–561.

Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and
Ji-Rong Wen. 2021b. Improving multi-hop knowl-
edge base question answering by learning intermedi-
ate supervision signals. In WSDM.

Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravis-
hankar, Salim Roukos, Alexander Gray, Ramón Fer-
nandez Astudillo, Maria Chang, Cristina Corne-
lio, Saswati Dana, Achille Fokoue-Nkoutche, et al.
2021. Leveraging abstract meaning representation
for knowledge base question answering. In Findings
of ACL-IJCNLP 2021, pages 3884–3894.

Yunshi Lan and Jing Jiang. 2020. Query graph gen-
eration for answering multi-hop complex questions
from knowledge bases. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 969–974.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023. Resdsql: Decoupling schema linking and
skeleton parsing for text-to-sql. In AAAI.

Percy Liang, Michael I Jordan, and Dan Klein. 2013.
Learning dependency-based compositional seman-
tics. Computational Linguistics, 39(2):389–446.

Mengyang Pu, Yaping Huang, Qingji Guan, and Qi Zou.
2018. Graphnet: Learning image pseudo annotations
for weakly-supervised semantic segmentation. In
Proceedings of the 26th ACM international confer-
ence on Multimedia, pages 483–491.

Yunqi Qiu, Yuanzhuo Wang, Xiaolong Jin, and Kun
Zhang. 2020. Stepwise reasoning for multi-relation
question answering over knowledge graph with weak
supervision. In Proceedings of the 13th International
Conference on Web Search and Data Mining, pages
474–482.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Re-
trieval, 3(4):333–389.

Yiheng Shu, Zhiwei Yu, Yuhan Li, Börje F Karlsson,
Tingting Ma, Yuzhong Qu, and Chin-Yew Lin. 2022.
Tiara: Multi-grained retrieval for robust question an-
swering over large knowledge bases. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, page 8108–8121.

Haitian Sun, Tania Bedrax-Weiss, and William Cohen.
2019. Pullnet: Open domain question answering
with iterative retrieval on knowledge bases and text.
In Proceedings of the 2019 Conference on EMNLP-
IJCNLP, pages 2380–2390.

1011

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/2021.findings-emnlp.159
https://doi.org/10.18653/v1/2021.findings-emnlp.159
https://doi.org/10.18653/v1/2021.findings-emnlp.159


Yawei Sun, Lingling Zhang, Gong Cheng, and Yuzhong
Qu. 2020. Sparqa: skeleton-based semantic parsing
for complex questions over knowledge bases. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 8952–8959.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 641–651, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for text-
to-SQL parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578, Online. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2020. Zero-shot entity
linking with dense entity retrieval. In EMNLP.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou,
and Caiming Xiong. 2022. Rng-kbqa: Generation
augmented iterative ranking for knowledge base ques-
tion answering. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 6032–6043.

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016. The value of
semantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206.

Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie
Tang, Cuiping Li, and Hong Chen. 2022. Subgraph
retrieval enhanced model for multi-hop knowledge
base question answering. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 5773–
5784.

Lingxi Zhang, Jing Zhang, Xirui Ke, Haoyang Li, Xin-
mei Huang, Zhonghui Shao, Shulin Cao, and Xin
Lv. 2023. A survey on complex factual question
answering. AI Open, 4:1–12.

Chen Zhao, Yu Su, Adam Pauls, and Emmanouil An-
tonios Platanios. 2022. Bridging the generalization
gap in text-to-SQL parsing with schema expansion.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5568–5578, Dublin, Ireland.
Association for Computational Linguistics.

A Implementation Detail

KB Environment. To execute the SPARQL, we
build a virtuoso database with the latest official
data dump of Freebase2.

Pilot Study. To simulate the generalization prob-
lems, the training set and test set are drawn from
GrailQA’s training set and test set, respectively. To
build the toy train set, we choose two thousand
cases with only the 1-hop logical expression from
the GrailQA train set. In addition, for the com-
positional test set, we select the 1-hop cases from
the GrailQA test set, which contains seen single
relations and classes but unseen class-relation pairs
beyond the train set. For the zero-shot test set,
we select the 1-hop cases that involve both a class
and a relation that does not appear in the toy train
set. To be noted, as coarse-grained modeling in-
volves the enumeration of logical expressions to
obtain candidates, and the enumeration is nearly
impossible for 2-hop logical expressions due to the
large amount (greater than 2,000,000). So, we sim-
plify the pilot study to only 1-hop questions that
involve the composition of a class and a relation,
which can also support comparing fine-grained and
coarse-grained modeling.

For both the coarse-level and fine-level matching
methods, we apply a BERT-based-uncased model.
Both models are trained for 5 epochs with a batch
size of 8 and a learning rate of 2e-5. To demonstrate
the capacity of the models and make an objective
comparison, we also employ the contractive loss
with a random negative sample for both strategies.

Extraction Model. For both the relation extractor
and class extractor, we also apply the BERT-based-
uncased model. The encoder accepts the concatena-
tion of the question q and relation r or the class c as
the input, and then a linear layer projects the output
[CLS] embedding into a similarity score s(q, r) or
s(q, c). The BERT is fine-tuned by optimizing a
contrastive loss (Chen et al., 2020),

2https://developers.google.com/freebase

1012

https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/https://doi.org/10.1016/j.aiopen.2022.12.003
https://doi.org/https://doi.org/10.1016/j.aiopen.2022.12.003
https://doi.org/10.18653/v1/2022.acl-long.381
https://doi.org/10.18653/v1/2022.acl-long.381


Table 4: Entity linking accuracy (%).

Accuracy
GrailQA 68.0
RNG-KBQA 81.6
Ours 87.2

–Relation-aware Pruning 83.0

L (q, rpos) = −log
es(q,rpos)

es(q,rpos) +
∑

r′∈{rneg} e
s(q,r′ )

where rpos is one of the golden relations extracted
from the target logical expression, and {rneg} is the
set of the negative relations sampled from relation
set which shares the same domain as rpos. We
sample 48 negative candidates for each sample and
fine-tune BERT-base-uncased for 10 epochs with a
batch size of 8 and a learning rate of 2e-5.

Generation Model. We initiate both of our seq-
to-seq models with T5-based provided by the hug-
gingface library (Wolf et al., 2020). For logical
skeleton parsing, we fine-tune for 5 epochs with a
batch size of 4 and a 4-step gradient accumulation.
For the final composition model, we fine-tune for
10 epochs with a batch size of 8 and a 4-step gradi-
ent accumulation. To be noted, both the designed
rules for logical skeleton parsing and vocabulary
constraints in decoding process will not be used in
the training process, and both training object follow
the regular BART.

B Component Detection Models.

Entity Linking. As shown in Figure 4, com-
pared with the entity linking (EL) strategy in RNG-
KBQA, our EL strategy gains 5.6% accuracy im-
provement. The reasons include (1) the trie tree
considers all entities’ surface names, ensuring the
high coverage of entity candidates, (2) the relation-
aware pruning strategy can effectively remove hard
negatives with similar mentions but completely dif-
ferent semantics.

Relation and Class Extraction. Figure 6 depicts
the effects of varying different sizes (k) of relations
and classes. With the increase of k, the relation
or class coverage represented by accuracy begins
to grow slowly and attends to be stable when k
is around 10. Meanwhile, the complexity of com-
position enumeration grows exponentially with k.

Thus, to balance efficiency and performance, we
choose top-10 relations and top-10 classes.

Logical Skeleton Parsing. Table 5 displays the
effectiveness of logical skeleton parsing techniques
for various beam searches. “Raw Question” refers
to directly parsing the raw question into the logical
skeleton, while “+Mask” refers to parsing using
our entity mask strategy. For both the strategies,
in addition to the top-1, top-2, and top-3 beam
search results, we also report the results of Top-
2(R) which add “<rel><rel>” as the top-2 candi-
date if “<rel>” is the top-1 prediction, vice versa.
We can see that our designed entity mask strat-
egy and rule-based beam search can contribute
to the logical skeleton parsing. The rules signifi-
cantly improve the performance as 1-hop relation
and 2-hop relations are quite mix up in KBs. For
example, the semantic-grained one-hop relation
“program producer” could be represented by a 1-
hop relation (“tv.tv_producer.programs_produced”
in domain TV) or a 2-hop relations (“broad-
cast.content.producer” and “radio.radio_subject.p-
rograms_with_this_subject” in domain radio).

C Running Example

We here give a running example of our frame-
work for better understanding. As shown in Fig-
ure 4, given the question “the terminuses of Anto-
nio belongs to what railway?”, we first propose
fine-grained component detection. We retrieve
candidate classes “railway”, “railway_terminus”,
“railway_type”, ... and candidate relations “rail-
way.terminuses”, “railway.branches_to”, “tran-
sit_line.terminuses”,..., and candidate entities “An-
tonio” which is a football player,“Antonio” which
is a city ,..., and logical skeleton candidates. Then,
we apply the middle-grained constrain, for ex-
ample, for class-relation pairs, “railway” is con-
nected to “railway.terminuses” in KB but not
connected to “railway.branches_to”; for relation-
relation pairs,“railway.terminuses” shares matched
domain and range with “railway.branches_to” but
not share with “transit_line.terminuses”; for enti-
ties, the football player “Antonio” does not match
any candidate relations and will be pruned. Fi-
nally, we put question, all connected class-relation
pairs, all connected relation-relation pairs, all enti-
ties that have not been pruned and logical skeleton
candidates into the composition model and gener-
ate logical expression.

1013



Figure 6: Performance of top-k relation and class extraction. Accuracy denotes the coverage of relation or class
candidates. Complexity denotes the number of compositions that should be enumerated.

Table 5: Logical skeleton parsing accuracy (%).

Top-1 Top-2 Top-3 Top-2(R)
Raw Question 83.2 86.1 86.7 94.0

+Mask 85.5 87.4 88.6 95.3

D Case Study

Figure 7 shows some cases that our FC-KBQA
and RNG-KBQA predicted. Example(a) shows a
simple one-hop case, but RNG-KBQA tends to gen-
erate a more complex logical expression because it
frequently occurs in the training set. With sample
cases where the surface name of the gold relation
has a clear overlap with the question, Example(b)
demonstrates how the composition of each com-
ponent causes RNG-KBQA to fail. As seen in ex-
ample(c), the entanglement of knowledge and logi-
cal skeleton causes RNG-KBQA to predict some
straightforward logical operators like "COUNT"
incorrectly. These restrictions can be overcome by
our proposed FC-KBQA.

1014



Figure 7: Case Study on GrailQA.

1015



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section 7

�3 A2. Did you discuss any potential risks of your work?
Section 8

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 5

�3 B1. Did you cite the creators of artifacts you used?
Section 5

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
The datasets we used are all publicly available.

�7 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
The datasets we used are all publicly available, and we only use them for evaluation.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
The datasets we used are all publicly available.

�7 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
The datasets we used are all publicly available.

�7 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
The datasets we used are all publicly available. The readers can refer to the original paper for the
statistics.

C �3 Did you run computational experiments?
Appendix

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

1016

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Appendix

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Appendix

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 4

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

1017


