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Abstract
Chinese Spelling Correction (CSC) is the task
of detecting and correcting misspelled charac-
ters in Chinese texts. As an important step for
various downstream tasks, CSC confronts two
challenges: 1) Character-level errors consist
not only of spelling errors but also of missing
and redundant ones that cause variable length
between input and output texts, for which most
CSC methods could not handle well because of
the consistence length of texts required by their
inherent detection-correction framework. Con-
sequently, the two errors are considered out-
side the scope and left to future work, despite
the fact that they are widely found and bound
to CSC task in Chinese industrial scenario,
such as Automatic Speech Recognition (ASR)
and Optical Character Recognition (OCR). 2)
Most existing CSC methods focus on either
detector or corrector and train different mod-
els for each one, respectively, leading to in-
sufficiency of parameters sharing. To address
these issues, we propose a novel model UMR-
Spell to learn detection and correction parts
together at the same time from a multi-task
learning perspective by using a detection trans-
mission self-attention matrix, and flexibly deal
with both missing, redundant, and spelling er-
rors through re-tagging rules. Furthermore, we
build a new dataset ECMR-2023 containing
five kinds of character-level errors to enrich the
CSC task closer to real-world applications. Ex-
periments on both SIGHAN benchmarks and
ECMR-2023 demonstrate the significant effec-
tiveness of UMRSpell over previous represen-
tative baselines.

1 Introduction

Recent decades have witnessed the comprehensive
development of one important Neural Language
Processing (NLP) task: Chinese Spelling Correc-
tion (CSC), which focus on detecting and correct-
ing spelling errors in texts (Yu and Li, 2014). The
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task shares a long research line originated from
early 1990s (Shih et al., 1992; Chang, 1995), but
remains challenging in Chinese context because
that different from English, many Chinese charac-
ters are phonologically and visually similar while
semantically diverse (Liu et al., 2010). Moreover,
CSC not only plays an essential role for various
downstream tasks such as search engine (Martins
and Silva, 2004; Gao et al., 2010) or automatic es-
say scoring (Burstein and Chodorow, 1999), but
also becomes a necessary part in some widely used
industrial applications such as Automatic Speech
Recognition (ASR) (Sarma and Palmer, 2004; Er-
rattahi et al., 2018) and Optical Character Recogni-
tion (OCR) (Afli et al., 2016; Hládek et al., 2020)
systems.

Early work on CSC includes but not limited to
pipeline strategy (Chen et al., 2013), traditional
language model (Yu and Li, 2014), and sequence-
to-sequence learning (Wang et al., 2019). With
the growth of the deep learning techniques and the
insight for the task itself, the subsequent studies
gradually summarize and focus on two crucial parts
of CSC, defined as detection part and correction
part. Generally, a CSC system derives representa-
tions (pronunciation, pinyin, glyph, shape, strokes,
and so on) for characters from audio and visual
modalities to locate the misspelled ones in its detec-
tion part, and then output the text without spelling
errors in its correction part (Zhang et al., 2020;
Cheng et al., 2020; Bao et al., 2020; Hong et al.,
2019). Currently, since the pre-trained masked lan-
guage models with attention mechanism (Vaswani
et al., 2017; Devlin et al., 2019) achieve impressive
performance in many NLP domains, they are also
introduced into CSC (Zhu et al., 2022; Liu et al.,
2022, 2021).

Despite its development, there are still two weak-
nesses in CSC that bring bottleneck in performance:
Firstly, in real world scenario, especially for ASR
and OCR tasks, there is not only misspelled case
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but also missing and redundant errors happening in
character-level preprocessing. Missing characters
mean a lack of characters needed to be inserted
into the identified position, while redundant char-
acters mean useless or repeated characters needed
to be deleted (Zheng et al., 2021). Most existing
CSC literatures (Zhang et al., 2021, 2020; Cheng
et al., 2020; Zhu et al., 2022; Bao et al., 2020)
consider the issue belonging to another similar but
more complicated task called Chinese Grammati-
cal Error Correction (CGEC) (Zheng et al., 2016;
Zhang et al., 2022; Wang et al., 2022) and leave
them in the future work.1 The key point is that
dealing with such errors might change the length
of the input text, while CSC methods based on
detection-correction framework could not handle
it well due to inconsistency between inputs and
outputs of their correction-part (Zheng et al., 2021).
Secondly, detection-correction framework-based
methods usually concentrate on how to utilize more
useful features in either of two parts and might pre-
train or fine-tune different language models for
each part, respectively, leading to insufficiency of
information sharing between detection and correc-
tion parts.

In this paper, we proposed a novel pre-trained
model, abbreviated as UMRSpell, to Unify de-
tection and correction parts for Chinese Missing,
Redundant, and Spelling correction. UMRSpell
considers each of detection and correction parts
as a sub-task and pre-trains both parts based on
one backbone together. Inspired by a multi-task
idea in multilingual learning (Ouyang et al., 2021),
we modify the Back-Translation Masked Language
Modeling (BTMLM) objective to obtain mutual in-
formation from the concatenated input texts. More-
over, to solve the variable text length issue caused
by missing or redundant errors, we apply several
methods during the training and predication pro-
cesses, such as symmetric concatenation, sequence
re-tagging rules, and post consistence check. Ad-
ditionally, an automatically optimized weighted
parameter λ is used for the loss calculation, in-
stead of manually selection. Finally, we con-
struct the Extended CSC dataset with Missing and
Redundant errors (ECMR-2023) in an unsuper-
vised way with the help of a self-selected phonetic

1Nowadays, CGEC task usually contains more kinds of
grammatical errors in both character and word levels, such as
misused and disordered word, mixing syntax patterns, logical
inconsistency, ambiguity, and so on. It is beyond the scope of
this paper.

and morphological Chinese character similarity dic-
tionary. Our contributions are concluded as fol-
lows:

• We propose UMRSpell model to train detec-
tion and correction parts together through a
special attention mechanism to transmit infor-
mation of detection part to correction one. Dif-
ferent from most previous work, UMRSpell
is adapted to be both detector and corrector in
prediction process.

• UMRSpell model is flexible enough to handle
not only spelling errors in existing CSC task,
but also missing and redundant errors widely
found in real world applications.

• We construct ECMR-2023 dataset containing
five kinds of character errors, in order to com-
pensate for the lack of missing and redundant
samples in the existing CSC tasks.

2 Related Work

Early work on CSC follows the pipeline of er-
ror identification, candidate generation and selec-
tion, or selects candidates in an unsupervised way
from a confusion set. Then methods utilizing tra-
ditional language models or considering sequence-
to-sequence structure are also proposed (Liu et al.,
2010, 2013; Chen et al., 2013; Yu and Li, 2014;
Tseng et al., 2015).

Reviewing the studies in recent years, we further
summarize CSC methods into seven types shown
in Figure 1, mainly depending on which part of
detection-correction framework they primarily fo-
cus on:

Dataset &
Confusion set

Embeddings

Detection
part

Correction
part

Type 1

Type 2

Type 3

Type 4

Type 5

Type 6

Type 7

Figure 1: Focal points of seven types of CSC models in
detection-correction framework.

Inheriting ideas from earlier work, methods of
Type-1 concern dataset and confusion set. Auto-
matic Corpus Generation proposes a hybrid way to
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generate labeled spelling errors (Wang et al., 2018).
Confusionset-guided Pointer Networks utilizes the
confusion set for guiding the character generation
(Wang et al., 2019).

Methods of Type-2 discuss about how to com-
bine embeddings from multi-modal features better
for the subsequent detection or correction models.
MLM-phonetics is pre-trained to provide embed-
dings including pronunciation and pinyin of char-
acters (Zhang et al., 2021). PHMOSpell derives
and integrates pinyin and glyph representations to a
language model by an adaptive gating mechanism
(Huang et al., 2021). REALISE captures and selec-
tively mixing the semantic, phonetic and graphic
information of characters (Xu et al., 2021).

Methods from both Type-3 and Type-4 intro-
duce useful features of characters into general de-
tection process. The difference between them lies
in the order in which they guide and affect cor-
rection models. Being a typical method of Type-
3, Soft-Masked BERT (SMBERT) designs a soft
masking process after detection part, calculating
the weighted sum of the input and [MASK] em-
beddings weighted by the error probabilities to
mask the likely errors in the sequence (Zhang et al.,
2020). Alignment-Agnostic Model adds a modi-
fication logic unit following detection network to
reformulate the sequence to support missing and
redundant cases (Zheng et al., 2021).

As a Type-4 method, SpellGCN builds a graph
over the characters and maps it into a set of inter-
dependent detection classifiers that are applied
to the representations extracted by BERT (Cheng
et al., 2020). Dynamic Connected Networks gener-
ates the candidate characters via a pinyin-enhanced
generator and model the dependencies between
characters through attention mechanism (Wang
et al., 2021). MDCSpell captures features of char-
acters and fuses the hidden states of corrector with
that of detector to minimize the misleading impact
from the misspelled ones (Zhu et al., 2022). The
output length of detector from Type-4 needs to be
consistent with that of corrector, while methods of
Type-3 might avoid this issue by adding a unit to
re-tag the text from detector before corrector.

Methods of Type-5 directly handle complicated
features in their correction part. Chunk-based
Model designed a decoding part and generates all
possible chunk candidates for the partially decoded
correction (Bao et al., 2020). CRASpell forces
correction model to yield similar outputs based on

original contexts and constructed noisy ones (Liu
et al., 2022).

Methods of Type-6 introduce prior knowledge
and feature information into either detection or cor-
rection parts by training large language models.
FASPell consists of a denoising auto-encoder and a
decoder, and fine-tunes the masked language model
in novel ways (Hong et al., 2019). SpellBERT
fuses pinyin and radical features through a rela-
tional graph convolutional network and train them
with a 4-layer BERT (Ji et al., 2021). PLOME is a
task-specific language model that jointly learns se-
mantics and misspelled knowledge according to the
confusion set based on specially designed masking
strategy on BERT (Liu et al., 2021).

Recently, methods focus on the learning strategy,
such as Curriculum Learning (Gan et al., 2021)
and Adversarial Learning (Li et al., 2021), make
progress and are categorized in Type-7.

According to above taxonomy, the proposed
UMRSpell could be regarded as a combination be-
tween Type-3 and Type-6.

3 Methodology

In this section, we first formulate the task, then
dive into the structure of UMRSpell, introducing
its training and prediction processes. Furthermore,
we present how to built ECMR-2023.

3.1 Task Formulation

The Chinese Spelling Correction (CSC) task aims
to detect and correct the errors in the Chinese
language. When given a text sequence X =
{x1, x2, . . . , xn} consisting of n characters, the
model takes X as the input and outputs a target
character sequence Y = {y1, y2, ..., yn} (Cheng
et al., 2020; Zhang et al., 2020; Zhu et al., 2022).
In this work, CSC is regarded as a multi-task learn-
ing that consists of two sequence tagging sub-tasks.
In pre-training and fine-tuning, the original text
Xwrong is concatenated to its masked correct ver-
sion Xmask to form the input whole sequence X for
the model. In prediction process, since there is only
the input text Xtest for test, it is copied and con-
catenates to Xcopy. It could be found that Xwrong

and Xtest are for detection sub-task while Xmask

and Xcopy are for correction sub-task. Thereafter,
the model outputs both the tagging sequence Ytag
of detection part and the text sequence Ytext of cor-
rection part. Note that the length of Ytext could be
different from the original text Xtest.

10240



[PAD][PAD] ![PAD] " # $ [SEP] ! " # $ [PAD][PAD][PAD] ![PAD] " # $ [SEP] ! " # [MASK] $

Transformer Block 1

encoded wrong sequence encoded correct sequence

Detection Classifier Correction Classifier

detection output tags Ytag correction output text Ytext

final loss

UMRSpell (detection part)

detection output tags correction output text

Sequence Re-tagging Rules

UMRSpell (correction part)

wrong text Xwrong masked correct text Xmask input test text Xtest copied text Xcopy

Learning Prediction

detection loss correction loss

[PAD][PAD] [PAD] " #$ [SEP] ! " # $! [MASK]

+

Transformer Block k

half of max_length half of max_length half of max_length half of max_length

concatenation

detection output tags Ytag correction output text Ytext

final detection output Ytag final correction output Ytext

Post Consistence Check

!"#%$ (I want to eat apple)

Embeddings

Figure 2: Overview of UMRSpell. Either pre-training or fine-tuning has the same learning process that is given on
the left, while prediction process is given on the right. It is seen that UMRSpell could be used in both detection and
correction parts during prediction process. Important structures are illustrated in blue squares, while data and loss
are drawn in grey squares.

3.2 Structure of UMRSpell

The overview of UMRSpell is illustrated in Fig-
ure 2. The structure of the proposed model can
be found on the left of the figure as well as the
learning process, while the prediction process is
demonstrated on the right. Keypoints of improve-
ment are described in the following parts.

Symmetric Concatenation Strategy Before
token-, segment-, and position-embeddings, the
strategy fills input characters from the middle to
the sides, ensuring that the sequences of either
detection part or correction part keeps the same
length, i.e., half of the maximum input length for
the model, in order to make the subsequent atten-
tion matrix easy to impart weights of tokens from
both Xwrong and Xmask. Accordingly, the whole
input sequence X can be expanded as [[PAD], . . .,
[PAD],[CLS], Xwrong, [SEP], Xmask, [PAD], . . .,
[PAD]] instead of traditional [[CLS], Xwrong, [SEP],
Xmask, [PAD], . . ., [PAD]]. Correspondingly, the
input sequence X in prediction process can be ex-
panded as [[PAD], . . ., [PAD],[CLS], Xtest, [SEP],
Xcopy, [PAD], . . ., [PAD]].

Detection Transmission Self-attention Inspired
by self-attention matrix used in BTMLM (Ouyang

et al., 2021), we adopt the detection transmission
self-attention matrix to learn mutual information
between two parts, Xwrong and Xmask, so as to
ensure the coherence between detection and cor-
rection parts. As shown in Figure 3, the detection-
oriented Xwrong is attended by itself, while the
correction-oriented Xmask is attended by both it-
self and the detection part, implying that informa-
tion of detection part is transmitted to correction
part.

我
要
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果

[SEP]
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果
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Figure 3: Self-attention mask matrix used in UMRSpell.

Detection and Correction Classifiers Two fully
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connected networks are built following encoders
to do the sequence labelling classification in token-
level for detection part and correction part, re-
spectively. As shown on the left of Figure 2, the
encoded tensor is split into two parts with equal
length that perform detection and correction inde-
pendently:

Pd(y|Xe_wrong) = Softmax(Wdhd + bd) (1)

Pc(y|Xe_mask) = Softmax(Wchc + bc) (2)

where, Wd ∈ Rn×768 and Wc ∈ Rn×768 are
weighted matrices, hd ∈ R768×1 and hc ∈ R768×1

are hidden tensors, bd ∈ Rn×1 and bc ∈ Rn×1 are
bias tensors, Pd and Pc are predicted results, for
detection and correction parts, respectively. In addi-
tion, Xe_wrong and Xe_mask represent the encoded
wrong sequence and masked correct sequence from
transformer encoders, respectively. In detector, n
represents the number of labels, while in corrector,
n represents the number of words in the vocabulary.
As a result, the detection classifier outputs the pre-
dicted tags Ytag for the input wrong text Xwrong,
while the correction classifier outputs the predicted
text Ytext compared with the input masked text
Xmask.

Sequence Re-tagging Rules During the predic-
tion process, rules are designed to retag the orig-
inal input text (actually it is the copied version
Xcopy) on consideration to the output tags from
UMRSpell (detection part). Following the previous
work (Zheng et al., 2021), we give the following
re-tagging rules: 1) misspell: use [MASK] token
to replace the error tokens in Xcopy, and turn the
tag of error tokens from “O” to “S” in Xtest; 2)
missing error: insert [MASK] token in the missing
places in Xcopy, and turn the tag of neighbor tokens
before and after the missing place from “O” to “M”
in Xtest; 3) redundant error: delete the redundant
tokens in Xcopy, and turn the tag of all redundant
tokens from “O” to “R” in Xtest

2.
Post Consistence Check If the final correction

output text Ytext from UMRSpell (correction part)
is the same to the input one, implying that there
is no correction happening, but the final detection
output tags Ytag reports errors, the detected error
tags would be neglected.

2“M”: missing error, “R”: redundant error, “S”: misspell,
“O”: no error.

3.3 Learning and Prediction for UMRSpell
During the pre-training, UMRSpell is driven by op-
timizing objectives of both detection and correction
classifiers together:

Ld = CELoss(Ytag, Ỹtag) (3)

Lc = CELoss(Ytext, Ỹtext) (4)

where, Y is the input and Ỹ is the target. Ld and
Lc are the losses of detection and correction parts,
respectively. CELoss(·) means cross entropy loss,
the criterion3 for it can be described as:

loss = −
C∑

c=1

yclog
exp(xc)∑C
i=1 exp(xi)

(5)

where x is the input, y is the target, and C is the
number of classes. The overall objective L is de-
fined as:

L = λLd + (1− λ)Lc (6)

where, λ ∈ [0, 1] is a coefficient to balance the
detection and correction losses. Instead of manual
coordination, λ is involved in gradient updating,
and automatically optimizes itself with the whole
network by taking use of AdamW (Loshchilov and
Hutter, 2018):

λ =





0.9 1 < λ
AdamW (λ) if 0 < λ < 1
0.1 λ < 0

(7)

Correspondingly, UMRSpell takes the same opera-
tions in its fine-tuning.

After learning, UMRSpell can be used as both
detector and corrector in prediction process as
shown in Figure 2. As a detector, UMRSpell out-
puts the detected tags for Sequence Re-tagging
Rules unit and abandons the output corrected text.
As a corrector, UMRSpell accepts an input text
concatenated by both the original input and the re-
tagged texts, and then makes the prediction for both
detection and correction parts. With this approach,
the corrector could handle the newly-tagged input
that having different length with the output of de-
tector.

3.4 Construction for ECMR-2023
To further investigate the effectiveness of UMR-
Spell in dealing with missing and redundant errors,
a new dataset ECMR-2023 is constructed.

3torch.nn.CrossEntropyLoss of PyTorch is used:
https://pytorch.org/docs/stable/index.html
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Corpus Source Selection All 100,000 correct
sentences from the publicly available competition
dataset CTC-20214 are used as the original text.
CTC-2021 is one of the most influential Chinese
NLP competitions that is hosted by Chinese Associ-
ation for Artificial Intelligence. It selects web texts
written by native Chinese writers on the Internet as
proofreading data. Further information can be seen
in (Zhao et al., 2022).

Annotation Scheme Five character-level errors
are tagged in texts (num of err

total err × 100%): phonetic
misspell (27.56%), visual misspell (13.56%), other
misspell (39.77%), missing error (6.37%), and re-
dundant error (12.74%). The first three are spelling
errors. According to (Liu et al., 2010), about
83% of errors are phonological and 48% are vi-
sual. However, we find that in real industrial pro-
cess, missing and redundant errors are often deeply
bound to the task, e.g., in customer service con-
versation scenarios. Therefore, we coordinate the
proportion of five errors based on the probability
of encountering them in practical applications.

Generalization Specially, we consider the fol-
lowing case: a synonym containing several wrong
characters might replace the expected correct word
because of a slip of the tongue during a conversa-
tion. Hence, we utilize word2vec of HanLP5 to
build other misspell samples following the steps:
1) Randomly select 1∼3 notional word from the
current text; 2) Replace it with its closest neighbor
in tensor space; 3) Proportionally choose one from
the rest four error types to handle one token of the
neighbor. With this approach, the whole dataset
becomes more general.

Annotation Workflow We design an automatic
process in Algorithm 1 to generate samples. Fur-
thermore, a dictionary D containing Chinese sim-
ilar phonetic and morphological characters inte-
grated from (Ming, 2021) is used.

Quality Control Three experts manually check
the generated dataset by randomly selecting 500,
100, 50 sentences for each errors in training, eval-
uation, and test sets, respectively. A sample will
pass only if all inspectors agree. The inspection
is repeated 5 times and completed only if the av-
erage pass rate reaches 98% or more. Detailed
information of the final built ECMR-2023 is given
in Table 1.

4Open source: https://github.com/destwang/CTC2021
5Official website: https://hanlp.hankcs.com/docs/index.html

Algorithm 1: Paired detection and correc-
tion samples generation algorithm

Input: original correct text Xtrue,
dictionary D, proportion of error
types p, ratio k_p = 0.1 ∈ [0, 1],
maximum number of selected tokens
k_max = 3 ∈ [1,max_seq_len]

Output: wrong text Xwrong, masked
correct text Xmask

1 Tokenize Xtrue into Xtoken;
2 Segment Xtrue into Xword;
3 Calculate

k = min(len(Xword) · k_p, k_max)
4 Select k tokens to be the erroneous ones,

randomly from Xtoken to form the list L;
5 foreach token in L do
6 Select an action flag from five kinds of

errors following a proportion p;
7 Update Xtoken via

replacing/deleting/inserting operation
with D according to flag;

8 end
9 Generate Xwrong and Xmask from Xtoken.

Number of # Train Dev. Test
Phonetic misspell 31,212 3,093 1,068
Visual misspell 15,323 1,559 525
Other misspell 45,061 4,480 1,512
Missing error 7,292 646 246
Redundant error 14,464 1,432 456
Characters 1,538,694 151,730 19,130
Sentences 30,000 3,000 1,000

Table 1: Statistics of ECMR-2023, including the number
of 5 kinds of errors, Chinese characters, and sentences.

4 Experiments

4.1 Settings

Datasets Dataset from (Wang et al., 2018) is used
to pre-train UMRSpell, which has 271K sentences
with 382K errors.6 Both SIGHAN 13 (Wu et al.,
2013), SIGHAN 14 (Yu et al., 2014), SIGHAN 15
(Tseng et al., 2015) benchmarks and ECMR-2023
are used to fine-tune and evaluate all participated
models.

Evaluation Metrics To make more comprehen-
sive evaluation, both of the sentence-level and
character-level precision, recall, and F1-score are
reported as the evaluation metrics as in (Cheng

6Open source: https://github.com/wdimmy/Automatic-
Corpus-Generation
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Data Methods
Sentence-level Character-level

Detection Correction Detection Correction
R (%) P (%) F1 (%) R (%) P (%) F1 (%) R (%) P (%) F1 (%) R (%) P (%) F1 (%)

SI
G

H
A

N
13

BERT 71.7 77.6 74.5 47.4 51.3 49.3 82.0 67.9 74.3 76.1 63.1 69.0
SpellGCN 47.074.4 56.980.1 51.177.2 67.272.7 74.478.3 70.675.4 −88.9 −82.6 −85.7 −88.4 −98.4 −93.1

ChunkM 75.7 61.2 67.7 67.2 74.3 70.6 − − − − − −
FASPell 63.2 76.2 69.1 60.5 73.1 66.2 − − − − − −
PLOME − − − − − − 89.3 85.0 87.1 89.1 98.7 93.7
Ours(p) 66.8 75.6 70.9 63.1 71.4 67.0 76.9 84.0 80.3 95.4 95.7 95.3
Ours(p&f) 73.6 83.0 78.0 71.0 80.0 75.2 81.0 89.2 84.9 96.4 96.7 96.4

SI
G

H
A

N
14

BERT 60.6 72.0 65.8 41.8 49.7 45.4 62.5 75.0 68.2 59.3 71.1 64.7
SpellGCN 54.569.5 58.365.1 56.2867.2 47.667.2 51.063.1 49.365.3 −78.6 −83.6 −81.0 −76.4 −97.2 −85.5

ChunkM 54.8 78.7 64.6 51.0 77.4 61.5 − − − − − −
FASPell 53.5 61.0 57.0 52.0 59.4 55.4 − − − − − −
PLOME − − − − − − 79.8 88.5 83.9 78.8 98.8 87.7
Ours(p) 57.0 66.1 61.2 52.2 60.6 56.0 66.1 85.3 74.5 91.9 94.2 92.5
Ours(p&f) 56.6 69.0 62.2 57.2 63.9 60.4 62.3 88.6 73.2 92.6 95.0 93.3

SI
G

H
A

N
15

BERT 68.4 84.1 75.4 54.2 66.0 59.7 65.5 83.4 73.4 62.8 79.9 70.3
SMBERT 73.2 73.7 73.5 66.2 66.7 66.4 − − − − − −
SpellGCN 64.080.7 71.074.8 67.377.7 54.1877.7 60.172.1 57.075.9 −87.7 −88.9 −88.3 −83.9 −95.7 −89.4

ChunkM 62.0 88.1 72.8 57.6 87.3 69.4 − − − − − −
FASPell 60.0 67.6 63.5 59.1 66.6 62.6 − − − − − −
PLOME 81.5 77.4 79.4 79.3 75.3 77.2 87.4 94.5 90.8 84.3 97.2 90.3
Ours(p) 67.7 76.1 71.7 60.2 67.8 63.8 71.2 90.6 79.8 91.2 93.4 91.5
Ours(p&f) 72.2 77.2 75.0 64.8 69.3 67.0 75.1 92.4 83.0 91.6 92.8 91.5

Table 2: Performance of UMRSpell (Ours) and baseline models on SIGHAN series datasets, where R, P, F1 means
recall, precision, F1-score, respectively. p and f behind UMRSpell means pre-trained and fine-tuned, respectively.
Results of UMRSpell and BERT are from our implementation. Considering the fairness, BERT is first trained on
(Wang et al., 2018) and then fine-tuned on the current dataset. Subscripts and main body of SpellGCN is from the
original paper (Cheng et al., 2020) and its reproduced report (Bao et al., 2020), respectively.

et al., 2020; Liu et al., 2021). These metrics are pro-
vided for both detection and correction sub-tasks.

Hyper-parameter Settings We use BERTbase

as the transformer encoder and keep the same set-
tings with the original one (Devlin et al., 2019).
We set the maximum sentence length to 128, batch
size to 32 and the learning rate to 6e-5. These pa-
rameters are set based on experience because of the
large cost of pre-training (on a single Tesla V100
(8×16G) server for nearly 12 hours). Better per-
formance could be achieved if parameter tuning
technique (e.g., grid search) is employed. More-
over, instead of training UMRSpell from scratch,
we adopt the parameters of Chinese BERT released
by Google7 to initialize the Transformer blocks.
For all experiments, we run our model five times
and report the averages.

Baseline Models Correspond to 2 Related
Work in this paper, representative baselines from
highly-relative types are compared with UMRSpell,
including: Soft-masked BERT (SMBERT) (Zhang
et al., 2020) of Type-3, SpellGCN (Cheng et al.,
2020) of Type-4, Chunk-based Model (ChunkM)
(Bao et al., 2020) of Type-5, FASPell (Hong et al.,
2019) and PLOME (Liu et al., 2021) of Type-6.
Moreover, BERT (Devlin et al., 2019) is also con-

7Open source: https://github.com/google-research/bert

sidered.

4.2 Results on SIGHAN series benchmarks
Table 2 illustrates the performance of UMRSpell
and baseline models on SIGHAN 13∼15. From
this table, we observe that: 1) UMRSpell ranks
top 3 in most cases, especially achieving the best
F1-scores in correction parts on all three bench-
marks in character-level metric. Chunk-based
Model (ChunkM) obtains outstanding performance
on SIGHAN 14 in sentence-level metric, attributed
to its global optimization to correct single- and
multi-character typos (Bao et al., 2020). However,
ChunkM depends on beam search algorithm to
generate the correct text, which might be lower
efficient than the other non-regression-based meth-
ods including UMRSpell. The other powerful
competitors, PLOME and SpellGCN, design more
task-specific complex networks to capture a priori
knowledge or features of characters, even utilizing
far more larger corpora (162.1 million sentences for
PLOME (Liu et al., 2021)) in pre-training. Consid-
ering factors mentioned above, UMRSpell seems
to keep its competitiveness. 2) UMRSpell with
fine-tuning outperforms that without the process,
where the difference of F1-scores between the two
is less than 4%, implying the generalization ability
of UMRSpell. 3) UMRSpell performs relatively
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Data Detector+Corrector
Sentence-level Character-level

Detection Correction Detection Correction
R (%) P (%) F1 (%) R (%) P (%) F1 (%) R (%) P (%) F1 (%) R (%) P (%) F1 (%)

SI
G

H
A

N
13 BERT+BERT 70.9 77.4 74.0 2.5 2.8 2.6 81.4 68.2 74.2 2.9 3.3 3.1

Ours+BERT 69.5 77.1 73.1 2.4 2.5 2.5 80.2 68.5 73.9 5.3 6.9 6.0

BERT+Ours 68.7 74.3 71.3 61.9 68.1 64.9 80.4 82.3 81.3 93.1 94.6 93.3

Ours+Ours 73.6 83.0 78.0 71.0 80.0 75.2 81.0 89.2 84.9 96.4 96.7 96.4

SI
G

H
A

N
14 BERT+BERT 62.4 66.8 64.5 3.5 4.2 3.8 63.3 82.1 71.5 5.6 6.7 6.1

Ours+BERT 55.4 67.2 60.7 3.9 4.3 4.1 62.1 83.5 71.2 5.3 6.9 6.0

BERT+Ours 61.6 68.7 64.9 54.7 61.0 57.8 68.2 86.2 76.3 88.6 91.7 89.4

Ours+Ours 56.6 69.0 62.2 52.3 63.9 57.6 62.3 88.6 73.2 92.6 95.0 93.3

SI
G

H
A

N
15 BERT+BERT 68.2 78.5 73.0 4.7 5.4 6.0 65.2 83.4 73.2 5.1 5.3 5.2

Ours+BERT 68.6 73.7 71.1 4.3 5.0 4.6 66.2 82.5 73.5 4.7 5.0 4.8

BERT+Ours 70.8 77.1 73.8 63.0 68.6 65.7 77.2 88.7 82.6 90.3 93.0 90.8

Ours+Ours 72.2 77.2 75.0 64.8 69.3 67.0 75.1 92.4 83.0 91.6 92.8 91.5

Table 3: Performance of four kinds of detection-correction frameworks, where R, P, F1 means recall, precision,
F1-score, respectively. All results are from our implementation. Considering the fairness, BERT is first fine-tuned
on masked version of (Wang et al., 2018) and then fine-tuned on the current dataset. UMRSpell (Ours) is the
pre-trained and fine-tuned version.

better in correction part than detection one, indi-
cating that the designed Detection Transmission
Self-attention is valid to pass more information of
tokens in detection part to those in correction part.

4.3 Ablation Study
In this section, we validate whether UMRSpell
works when it is used as a detector or a correc-
tor during the prediction process, and analyze the
reason behind that. To control variates, we replace
UMRSpell to BERT from the whole prediction
framework in Figure 2 in turn so as to get four dif-
ferent kinds of detector and corrector combinations
listed in Table 3. From the table we find that: 1)
UMRSpell+UMRSpell achieves the best result of
all in most situations; 2) UMRSpell+UMRSpell
outperforms BERT+UMRSpell, implying that
UMRSpell works better at acquiring feature rep-
resentations than BERT as a detector; 3) When
BERT is used as a corrector, the results on correc-
tion task collapsed. Since BERT does not have
specially-designed self-attention matrix that passes
information from detection part to correction part
as that in UMRSpell, it might not be good at learn
the feature of masked errors. 4) Finally, UMRSpell
is found highly adaptive to both detection and cor-
rection parts, which make it very flexible to use in
real world situations.

4.4 Results on ECMR-2023
Table 4 shows the performance of the selected
representative models on our proposed dataset.

The overall trend of performance change is basi-
cally consistent with those on the SIGHAN 13∼15
benchmarks. It is found that there is still a lot
of room for improvement of models on the dataset.
New versions including more samples of more error
types would be continuously updated for ECMR.

Model Detection F1 (%) Correction F1 (%)
BERT 56.5 33.2
PLOME 62.6 36.7
Ours (p&f) 68.2 54.6

Table 4: Performance of representative models on
ECMR-2023 using character-level metric. Results of
UMRSpell (Ours) and BERT are from our implementa-
tion. Considering the fairness, BERT is first fine-tuned
on (Wang et al., 2018) and then fine-tuned on ECMR-
2023. UMRSpell is the pre-trained and fine-tuned ver-
sion.

5 Conclusion

In this paper, we propose UMRSpell to learn de-
tection and correction parts together with a detec-
tion transmission self-attention matrix, and flexibly
deal with Chinese missing, redundant, and spelling
errors through re-tagging rules. We further con-
struct a dataset ECMR-2023 containing five kinds
of spelling errors to enrich the existing CSC task.
Experiments on both SIGHAN benchmarks and
ECMR-2023 demonstrate the significant effective-
ness of UMRSpell.
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Limitations

Currently, to deal with spelling, missing, redundant
character errors in Chinese text, we jointly pre-train
two sub-tasks based on a masked language model
with task-specific attention mechanism and utilize
re-tagging rules to reformulate the length of text
during prediction. The proposed model might be
less effective in more complex scenarios:

Word-Level case According to the structure of
our model, it could theoretically handle errors that
are not limited to character-level, such as redun-
dant or missing words. However, the currently used
self-attention matrix works between tokens instead
of spans of tokens. A novel attention mask strat-
egy might be considered. If the problem is solved,
then our model would be able to handle both Chi-
nese Spelling Correction (CSC) and some kinds of
Grammatical Error Correction (GEC) tasks at the
same time.

Task-specific Backbone case The backbone
of the proposed model is BERT that is not task-
specific, while some errors in SIGHAN happened
in entities that might need priori knowledge to
solve. For example, the correct sentence is “我
要跟我的朋友去师大夜市” and the wrong sen-
tence is “我要跟我的朋友去市大夜市”, where
the mispelled character belonging to an entity “师
大” that is abbreviation of “师范大学” (means
“Normal University”). To improve the performance
of our model in more complicated applications,
backbones that learn more task-specific knowledge
should be considered.

Languages Mixture case In real world OCR
or ASR applications, a Chinese character might
be confused not only by another Chinese charac-
ter, but also by an English character due to their
similar pronunciation or shape. For example, the
Chinese character “丁” is visually similar to the
English capital letter “J”, while the Chinese “喂”
(means “Hi”) is phoneticly similar to the English
word “Way”. Furthermore, a same character of
simplified Chinese and traditional Chinese might
be visually different.

High Efficiency case Industrial applications of-
ten require the prediction time in milliseconds-level
under controlled usage of GPUs, which would
bring troubles to large models. Distillation or trun-
cating strategies might be a way to improve the
proposed model.
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achieved if parameter tuning technique (e.g., grid search) is employed."

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Please see Section 4 "Experiments" - "4.2 Results on SIGHAN series benchmarks" and "4.3 Ablation
Study", bold fonts are used in the tables to highlight the best methods.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Please see footnote 3 7.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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