
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 10270–10287

July 9-14, 2023 ©2023 Association for Computational Linguistics

Local Interpretation of Transformer Based on Linear Decomposition

Sen Yang, Shujian Huang∗, Wei Zou, Jianbing Zhang, Xinyu Dai, Jiajun Chen
National Key Laboratory for Novel Software Technology, Nanjing University

{yangsen,zouw}@smail.nju.edu.cn
{huangsj,zjb,daixinyu,chenjj}@nju.edu.cn

Abstract

In recent years, deep neural networks (DNNs)
have achieved state-of-the-art performance on
a wide range of tasks. However, limitations in
interpretability have hindered their applications
in the real world. This work proposes to inter-
pret neural networks by linear decomposition
and finds that the ReLU-activated Transformer
can be considered as a linear model on a sin-
gle input. We further leverage the linearity of
the model and propose a linear decomposition
of the model output to generate local expla-
nations. Our evaluation of sentiment classifi-
cation and machine translation shows that our
method achieves competitive performance in ef-
ficiency and fidelity of explanation. In addition,
we demonstrate the potential of our approach
in applications with examples of error analysis
on multiple tasks.1

1 Introduction

Deep neural networks (DNNs) such as Trans-
formers (Vaswani et al., 2017) have achieved
state-of-the-art results on various natural language
tasks (Devlin et al., 2019; Liu et al., 2019; Brown
et al., 2020; Dai et al., 2019) via learning complex
nonlinear relationships of inputs.

However, the lack of interpretability of the pre-
dictions given by black-box models limits their
application in real-world (Guidotti et al., 2018; Lip-
ton, 2018; Ribeiro et al., 2016b).

A typical way to understand model prediction
dynamics is to generate prediction explanations
for each input, called local explanation genera-
tion (Chen et al., 2020). Most existing works on
local explanation algorithms in NLP strive to un-
derstand such dynamics on word-level or phrase-
level by assigning importance scores on input fea-
tures (Ribeiro et al., 2016a; Lei et al., 2016; Lund-
berg et al., 2018; Plumb et al., 2018). However,

∗ Corresponding author.
1We release our algorithm toolkit at https://github.

com/DoubleVII/pydec.

nonlinearity in models makes it difficult to assign
the contribution of individual words or phrases
to predictions, while the linear counterparts are
more interpretable as the weight of each component
could be naturally interpreted as its contribution.

In this work, we present a linear decomposition
theory to interpret linear models, which can be gen-
eralized to nonlinear DNNs. That is, we formalize
the decomposition of the linear outputs into com-
ponents corresponding to the input features, then
mathematically propose the properties of linear de-
composition and the uniqueness of the decomposi-
tion under these properties.

Furthermore, we prove that the ReLU-activated
Transformer can be regarded as a linear function
by given input features if the causal relationship be-
tween the input and certain intermediate variables
is disregarded. Therefore, generalize the proposed
linear decomposition to Transformer under such an
assumption.

However, this decomposition yields a compo-
nent corresponding to the parameters of additive
bias (usually used in the linear layer), which con-
tains a partial contribution of the inputs. Thus we
separate and reallocate this part of the contribution
to the input features while preserving the mathe-
matical properties of the decomposition.

Quantitative experiments were conducted on sen-
timent classification and machine translation to
identify important input features. We show that our
local explanation algorithms efficiently outperform
several competitive baselines. Additionally, we
propose further implementation of our algorithm to
explain the model errors on natural language tasks.
The fidelity of our algorithm exceeds that of other
baselines.

Our key contributions are summarized as fol-
lows:

• We prove the linearity of the ReLU-activated
Transformer for a given input under reason-
able assumptions.

10270

https://github.com/DoubleVII/pydec
https://github.com/DoubleVII/pydec

• We design algorithms for the linear decompo-
sition of Transformer hidden states and pro-
pose methods for reallocating the contribution
of additive bias while maintaining the mathe-
matical properties.

• Experimental results and case studies on sen-
timent classification and machine translation
validate the fidelity and interpretability of the
proposed methods.

2 Method

In this section, we propose the decomposition the-
ory of linear functions. Then, we generalize it to
nonlinear cases (i.e., Transformer) and present sev-
eral decomposition methods accordingly. Finally,
we analyze the mathematical properties of the dif-
ferent methods.

2.1 Linear Decomposition Theory
Decomposing the output of a linear system accord-
ing to its input is relatively simple. The results
of the decomposition are intuitively interpreted as
the contributions of the inputs to the outputs. We
present a theory of linear decomposition, including
the definition of decomposition, linear decompos-
ability, and the properties of interpretable decom-
position.

Given a set X = {x1, · · · , xm} and a function
f , the output is denoted as h = f(X).

Definition 1. (linearly decomposable). The output
h of the function f is linearly decomposable for
input X if and only if h can be represented as a
linear combination of X:

h = f(X) =
m∑

i

WX
i xi, (1)

where xi ∈ Rn(xi) denotes the i-th input vector,
WX

i ∈ Rn(h)×n(x) is the linear transformation ma-
trix with respect to xi, and the input X is defined
as the basis of the decomposition. Here we use n(·)
to denote the dimension of ·.

For linearly decomposable h, it is intuitive to
regard WX

i xi in Eq. (1) as the contribution of xi.
Sometimes input features are divided into different
groups, and we are more interested in the overall
impact of each group (e.g., tokens split from the
same word can be divided into a group to produce
word-level explanations). Specifically, a group is
an element of a set P , where P is an arbitrary
partition of the basis X .

Definition 2. (decomposition). A decomposition
of h under partition P is the splitting of h into
components corresponding to all groups in P , i.e.,

h =
∑

g∈P

Dh

Dg

∣∣∣∣
P

,

where Dh
Dg

∣∣∣
P

denotes the component corresponding
to group g under partition P in the decomposition
of h. In this paper, the partition P is omitted if
there is no ambiguity.

Considering the given partition P1 =
{{x1, x2}, {x3, · · · , xm}} as an example,
the decomposition of h under P1 is denoted as

h =
Dh

D{x1, x2}

∣∣∣∣
P1

+
Dh

D{x3, · · · , xm}

∣∣∣∣
P1

.

Since there are exponential decompositions for
a function, each with unclear interpretability, we
examine the following properties:

Property 1. Orthogonality.

Dxi
Dg

=

{
xi, if xi ∈ g

0, otherwise
.

Property 2. Linearity.

Dh1
Dg

+
Dh2
Dg

=
D(h1 + h2)

Dg
,

W
Dh

Dg
=

D(Wh)

Dg
.

Property 3. Group Additivity.

Dh

Dg1
+

Dh

Dg2
=

Dh

Dg1 ∪ g2
.

Definition 3. (interpretable decomposition). A
decomposition D is interpretable if it satisfies Or-
thogonality and Linearity.

The interpretable decomposition specifies the
necessary conditions that guarantee interpretability
under linear operations. The Group Additivity is
related to the consistency of a decomposition.

Definition 4. (consistency). A decomposition D is
consistent if Dh

Dg are equal for the same group g in
any partition of the basis.

For example, given the partition P1 =
{{x1}, · · · , {xm}}, the decomposition of h can
be formulated as

h =
Dh

D{x1}

∣∣∣∣
P1

+ · · ·+ Dh

D{xm}

∣∣∣∣
P1

, (2)

10271

and given another partition P2 =
{{x1}, {x2, · · · , xm}}, we have

h =
Dh

D{x1}

∣∣∣∣
P2

+
Dh

D{x2, · · · , xm}

∣∣∣∣
P2

. (3)

If D is consistent, then Dh
D{x1}

∣∣∣
P1

= Dh
D{x1}

∣∣∣
P2

holds.
Consistency guarantees the consistent contribu-

tion of a given group by arbitrary partitions from
the perspective of interpretability. To determine a
consistent decomposition, we propose the follow-
ing lemma (proved in Appendix A):
Lemma 1. A decomposition D is consistent if and
only if it satisfies the Group Additivity.

To the best of our knowledge, most of the current
local explanation algorithms (Singh et al., 2019;
Chen et al., 2020; Li et al., 2016; Sundararajan
et al., 2017) are interpretable. Furthermore, for lin-
early decomposable h, these algorithms are essen-
tially equivalent to the following decomposition:
Definition 5. (decomposition D̄). D̄ is defined on
linearly decomposable h, where each component
D̄h
D̄g

∣∣∣
P

is the sum of terms corresponding to the
given group g ∈ P , and each term comes from the
linear combination of X about h, i.e.,

D̄h

D̄g

∣∣∣∣
P

:=
∑

xi∈g
WX

i xi.

D̄ is intuitive, and more importantly, the unique
interpretable decomposition for any linearly decom-
posable h (proved in Appendix B).

Obviously, D̄ satisfies Group Additivity thus is
consistent. As forementioned, most existing meth-
ods are equivalent and consistent under linear con-
ditions. However, they may lose consistency with
nonlinear functions. This aspires us to transform
nonlinear functions into locally linear ones for con-
sistency guarantees of the interpretable decompo-
sition, and extend the interpretable decomposition
onto nonlinear activation functions while maintain-
ing consistency.

2.2 ReLU-activated Transformer Is a Linear
Function of The Input

A typical Transformer (Vaswani et al., 2017) is
composed of a stack of identical layers. Each layer
of the encoder consists of two major components:
a multi-head self-attention mechanism and a feed-
forward neural network. Besides, a residual con-
nection (He et al., 2016) is employed around each

of the two components, followed by layer normal-
ization (Ba et al., 2016). The decoder is in a similar
fashion to the encoder, but with additional attention
to draw relevant information from the hidden states
generated by the encoders.

Complicated as it may be, a Transformer can
be seen as a combination of the above modules.
Thus, if each module is linearly decomposable,
the final result will be linearly decomposable. To
achieve this, we disregard the input’s contribution
to the intermediate variables of attention scores and
standard deviation of layer normalization. Conse-
quently, these intermediate variables can be consid-
ered as coefficients of the linear transformation in
the formula, analogous to the parameters of linear
layers in the model. Though we partially ignore
some of the influence propagations, the remainings
retain the major causalities of the model, which
are sufficient to provide adequate explanations. We
verified this assumption by comparing the perfor-
mance before and after cutting off the gradient of
the attention scores and standard deviations (Sec-
tion 3.2). To make life easier, this paper assumes
the model uses ReLU as the activation function. We
discuss the extensibility of our approach to other
activation functions in Section 7.

Based on the above elaboration, we give the fol-
lowing lemma, which provides the condition to
apply linear decomposition on Transformer.

Lemma 2. For a given input X =
{x1, x2, · · · , xm}, any hidden state h in Trans-
former can be represented as:

h =
m∑

i

WX
i xi +

L∑

l

WB
l bl, (4)

where xi denotes the i-th input vector, bl denotes
the parameter of additive bias in the model2.

Proof. Proof by mathematical induction.
Base Case. For any input xi, we have xi = xi,

which is consistent with Eq. (4), i.e.

WX
j =

{
I, if j = i

0, otherwise
,WB

l = 0.

Induction step. Assume Eq. (4) holds for all input
hidden states of a Transformer sub-layer, it holds
for the output of the sub-layer, too. We prove each
of the sub-layer types below respectively.

2For ease of expression, all the parameters of additive bias
in the model are numbered from 1 to L.

10272

For Linear Layer, we have

h′ = W ′h+ bk

=
m∑

i

W ′WX
i xi +

L∑

l̸=k

W ′WB
l bl + (I +W ′WB

k)bk.

For Attention Layer, since each attention score
ai is considered as a coefficient of the linear trans-
formation, then we have

h′ = a1h1 + · · ·+ amhm

=
m∑

j

aj

[
m∑

i

WX
ij xi +

L∑

l

WB
lj bl

]

=
m∑

i

[
m∑

j

ajW
X
ij

]
xi +

L∑

l

[
m∑

j

ajW
B
lj

]
bl.

(5)

For Residual Connection, we have

h′ = h1 + h2

=
m∑

i

[
WX

i1 +WX
i2

]
xi +

L∑

l

[
WB

l1 +WB
l2

]
bl.

As for Layer Normalization, we rewrite a linear
transformation

h′ = LN(h) = s(h−W ′h), (6)

where the scalar s = 1/
√
V ar(h) is the coefficient

and W ′ is the averaging operator, i.e.

W ′ = [1/n(h)]n(h)×n(h).

The Activation Function ReLU can be rewritten
as a linear transformation h′ = relu(h) = W ′h,
where

W ′ = diag(d1, · · · , dn(h))

di =

{
1, if h[i] ≥ 0

0, otherwise
.

(7)

With Lemma 2, we raise the core theorem of this
paper.
Theorem 1. For a given input, any hidden state
h in Transformer is linearly decomposable on the
basis X ′ = {x1, · · · , xm, b1, · · · , bL}.

In other words, we can obtain the decomposition
D̄ of h as

h =
∑

g∈P

D̄h

D̄g
+

D̄h

D̄B
, (8)

where B = {b1, · · · , bL} and we still use P to de-
note the partition of the input X instead of the basis
X ′. The partition of the basis X ′ can be recovered
as P ′ = P ∪ {B} if b1, · · · , bL are considered as
a single group.

2 1 0 1 2
h
X

1

0

1

relu(h)
B

h
B

= 1
h
B

= 1

(a)

2 1 0 1 2
h
X

1

0

1

relu(h)
B

h
B

= 1

h
B

= 1

(b)

Figure 1: The curves of the bias component of the
ReLU output given each component of the ReLU input
h, where h = D̄h

D̄X
+ D̄h

D̄B
. For D̄ (a), D̄relu(h)

D̄B
is gov-

erned by both D̄h
D̄B

and D̄h
D̄X

, while for D̂ (b), D̂relu(h)
D̂B

is

only governed by D̂h

D̂B
and is independent of D̂h

D̂X
.

2.3 Decomposing The Contribution of
Additive Bias

Eq. (8) shows that the parameters of additive bias
in the model contribute partially to h, by D̄h

D̄B
. This

is reasonable because the term D̄h
D̄B

represents a
prior guess made by the model in the absence of
inputs (e.g., even in the absence of inputs, a lan-
guage model may predict ‘The’ as the beginning
of a sentence with a certain probability). However,
the term D̄h

D̄B
is also mixed with the contribution

from inputs, since the bias component of the ReLU
output may change due to the components of the
input (Figure 1 (a)). To address this issue, we de-
fine a new decomposition D̂ and require the bias
component of the ReLU output to be independent
of the input components (Figure 1 (b)), i.e.,

D̂relu(h)

D̂B
:= relu(

D̂h

D̂B
). (9)

The remaining parts are to be assigned to each
group of the input, which is

relu(h)− relu(
D̂h

D̂B
)

=W ′h− relu(
D̂h

D̂B
)

=W ′

∑

g∈P

D̂h

D̂g
+

D̂h

D̂B

− relu(

D̂h

D̂B
)

=
∑

g∈P
W ′ D̂h

D̂g
+

[
W ′ D̂h

D̂B
− relu(

D̂h

D̂B
)

]
,

(10)

where W ′ comes from Eq. (7).
The first term of Eq. (10) is easily assigned to

each group, and the second term implies the contri-
bution separated from the original bias term, which

10273

is split in the assignment:

D̂relu(h)

D̂g
:= W ′ D̂h

D̂g
+αg

[
W ′ D̂h

D̂B
− relu(

D̂h

D̂B
)

]
, (11)

where
∑

g∈P αg = 1.
We designed two methods to calculate α.

Absolute-value-based:

αg =
| D̂h
D̂g

|
∑

g∈P | D̂h
D̂g

|
. (12)

Signed-value-based:

αg =

D̂h
D̂g∑

g∈P
D̂h
D̂g

. (13)

For linear functions, we introduce Orthogonality
and Linearity into D̂ to make it interpretable:

D̂xi

D̂g
:=

{
xi, if xi ∈ g

0, otherwise
, (14)

D̂(h1 + h2)

D̂g
:=

D̂h1

D̂g
+

D̂h2

D̂g
, (15)

D̂(Wh)

D̂g
:= W

D̂h

D̂g
. (16)

Finally, we notice that the α in Eq. (13) explodes
as the denominator gets close to 0, degrading the
algorithm’s performance. As a comparison, α in
Eq. (12) is more stable when constrained by the
probability simplex. To alleviate the stability issue,
we switch to the absolute-value-based method in
the unstable region of Eq. (13). The instability is
measured by

r =

∣∣∣
∑

g∈P
D̂h
D̂g

∣∣∣
∑

g∈P

∣∣∣ D̂h
D̂g

∣∣∣
, (17)

where r indicates more stability when ascending
from 0 to 1. In our experiments, we adopt a hy-
perparameter λ to interpolate different α schemes:
absolute-value-based when r < λ and signed-
value-based when r ≥ λ. When λ goes from 0 to
1, the decomposition D̂ will change from signed-
value-based algorithm to absolute-value-based al-
gorithm with more inconsistency.

2.4 Comparison
Our algorithms exhibit different properties under
the two α schemes in Eq. (11), which lead to dif-
ferent final results. The signed-value-based D̂ sat-
isfies Group Additivity, while the absolute-value-
based approach does not satisfy it (Appendix C).
More importantly, it can be proved that the signed-
value-based α calculation is the only solution that
satisfies Group Additivity (Appendix D), and the
absolute-value-based approach aims at the numeri-
cal stability issue. By Lemma 1, we conclude that
D̂ based on Signed-value is consistent, while the
one based on Absolute-value is inconsistent.

3 Experiments

We evaluate our algorithms with SOTA Trans-
former implementations on text classifica-
tion (RoBERTa, Liu et al., 2019) and machine
translation (Vaswani et al., 2017). It is notable
that the classification follows the encoder-only
architecture, while the translation follows the
encode-decode architecture.

3.1 Experiment Settings
Datasets. We use the SST-2 (Socher et al., 2013)
and the IMDB (Maas et al., 2011) datasets for sen-
timent analysis, which is modeled as a binary clas-
sification. The SST-2 includes 6920/872/1821 in-
stances in the train/dev/test sets. The IMDB in-
cludes 25000/25000 instances in the train/test sets.
We adopt WMT14 English-to-German (En⇒De)
for machine translation, with 4.5M parallel sen-
tences consisting of 118M English and 111M Ger-
man words for training. We use newstest 2013 for
validation and newstest 2014 as the test set.

We evaluate the explanation on test sets of all
datasets, except for the IMDB, where we test on a
subset with 2000 randomly selected samples from
test data due to computation expenses.

Models. We adopt the Transformer (Vaswani
et al., 2017) base model with baseline set-
tings for machine translation. We adopt the
fine-tuned RoBERTa base model (Liu et al.,
2019) for text classification. RoBERTa utilizes
GELU (Hendrycks and Gimpel, 2016) as its acti-
vation function. To apply our decomposition, we
replaced it with ReLU during fine-tuning. The
impact on performance and other implementation
details are explained in Appendix E.

Appendix F shows the best performance of the
models on all datasets in our experiments.

10274

Methods SST-2 IMDB WMT14 En⇒De
AOPC↑ LAT./s ↓ AOPC↑ LAT./s ↓ AOPC↑ LAT./s ↓

Random 5.69 0.03 3.33 0.02 30.39 0.61
ACD (Singh et al., 2019) 8.87 2.30 failed - 35.85 126.80
HEDGE (Chen et al., 2020) 44.25 0.30 65.14 2.88 43.62 21.79
LRP (Voita et al., 2021) 22.75 3.28 failed - 59.92 122.29
GlobEnc (Modarressi et al., 2022)† 20.09 0.29 19.75 1.60 N/A -
LIME (Ribeiro et al., 2016b) 37.39 0.53 19.09 3.57 68.66 9.90
LOO (Li et al., 2016) 53.29 0.38 59.67 3.09 68.83 21.23
IG (Sundararajan et al., 2017) 43.60 1.04 30.56 58.11 68.23 108.46

+ linearizing Attn & LN 45.58 1.00 46.08 46.95 67.92 74.72

Decomposition D̄ 48.94 0.06 81.63 0.82 66.98 1.31
Decomposition D̂ 57.69 0.06 87.11 1.96 67.95 1.34
† Not applicable to the encoder-decoder architecture.

Table 1: AOPCs and average latency of different methods on the SST-2, IMDB and WMT En-De datasets.

ID Variables with retained gradients Variables with cut off gradients SST-2 IMDB WMT14

1 ai and s hi and h−W ′h 5.73× 10−4 1.46× 10−4 2.26
2 hi and h−W ′h ai and s 10.35 1.55 15.05

Table 2: Averaged gradient norms passed to input via different intermediate variables. The intermediate variables
are from Eq. (5) (attention layer) and Eq. (6) (layer normalization), which denote the attention scores and values,
mean-subtracted hidden states and their standard deviation, respectively. The gradients for other layers are intact.

Evaluations. We adopt the area over the pertur-
bation curve (AOPC, Chen et al., 2020; Nguyen,
2018; Samek et al., 2016) to evaluate token-level
explanations, which measures local fidelity by com-
paring the probability change on the predicted label
after deleting k% top-scored tokens assigned by
explanation algorithms. We set k = 20 for senti-
ment analysis. For machine translation, the number
of deleted tokens is fixed at 4. This is because
a complete generation consists of multiple token
predictions, while each generated target-side token
depends on only a few input tokens rather than
the entire input sequence. In addition, we average
the AOPC scores for the decoding process of the
machine translation model.

In this paper, we generate contribution scores by
decomposing the logits of the model. Specifically,
for a classification of n classes, the model generates
a n-dimensional vector of logits ho ∈ Rn for a pre-
diction ŷ = argmaxi h

o[i]. Thus, the importance
score of feature xi can be expressed as Dho

D{xi} [ŷ].

3.2 Main Results

We compare our algorithms with the following
baselines: Leave-One-Out (LOO, Li et al., 2016),
LIME (Ribeiro et al., 2016b), GlobEnc (Modarressi
et al., 2022), Integrated Gradient (IG, Sundararajan
et al., 2017), Agglomerative Contextual Decompo-
sition (ACD, Singh et al., 2019), Layer-wise Rel-

0.0 0.2 0.4 0.6 0.8 1.0

56.0

56.5

57.0

57.5

A
O

PC

 (signed)

 (abs)

(a)

0.0 0.2 0.4 0.6 0.8 1.0

67.75

67.80

67.85

67.90

67.95

 (signed)

 (abs)

(b)

Figure 2: AOPC curves given different λ on the SST (a)
and WMT (b) datasets.

evance Propagation (LRP, Voita et al., 2021), and
HEDGE (Chen et al., 2020). We also report the
AOPC as a reference when random scores are as-
signed to tokens. For our algorithms, we adopt D̄
and D̂ in the evaluation, and fix the hyperparameter
λ of D̂ at 0.1.

As shown in Table 1, the improved decomposi-
tion D̂ outperforms our base decomposition D̄ and
other baselines in the quality of explanations over
the SST-2 dataset, especially the IMDB dataset.
Our decomposition D̂ achieves comparable perfor-
mance to IG on the WMT En-De dataset. IG per-
forms well on the translation but poorly on the sen-
timent classification with excessive computational
complexity. We suspect that this is because the loss
scale of the sentiment classification is significantly
smaller than that of the translation, weakening the
salience of the gradient. Occlusion-based methods,

10275

such as LOO and LIME, achieve relatively good
performance on the WMT dataset because they
are very similar to the evaluation metrics when
k is small. Furthermore, on the IMDB dataset,
LOO and LIME become weaker as the sequence
becomes longer due to the diminished impact of
a single token deletion in a sentence. The ACD
fails the IMDB due to accumulated precision error,
while the LRP suffers from exponential overhead.

Nevertheless, IG comprehensively considers the
influence of each variable, including attention
weights and standard deviations of layer normal-
ization. We additionally consider linearizing the
attention layer and layer normalization by cutting
off the gradients of attention weights and standard
deviations for comparison, where we justify our
hypothesis of ignoring their influence propagations
by looking into its impact on performance. Surpris-
ingly, this hypothesis even gains improvements on
the SST-2 and IMDB datasets. To further validate
our hypothesis, we investigated the contribution
of inputs to outputs through different intermediate
variables by examining the norms of the gradients
propagated to inputs from different variables. As
shown in Table 2, when the gradients of attention
scores and standard deviation are retained in the
sentiment classification task, the gradient norms re-
flected on the input are negligible. In the translation
tasks, the weight is larger but still much smaller
than that of group 2, which the decoder may in-
troduce. Finally, it’s notable that the connection
between our method and these experiments lies in
the fact that the gradient produced by group 2 is
equal to the transition matrix of each input in the
decomposition D̄ (i.e., WX in Eq. (4)). There-
fore, our decomposition indeed captures the major
causalities of the model.

Overall, the results show that our approach is
applicable and efficient in classification and end-
to-end generation. We provide additional results
of AOPCs by different k in Appendix G, including
an extra natural language understanding task from
GLUE (Wang et al., 2018).

3.3 Ablation Study

We investigate the impact of different λ on the
SST-2 and WMT14 datasets, which controls the
interpolation of D̂ (signed) and D̂ (abs).

We achieve the best AOPC score with λ near
0.1 (Figure 2). Compared with the absolute-value-
based decomposition (λ = 1). The AOPC scores of

the pure signed-value-based decomposition (λ =
0) differ slightly from the best results. As the λ
increases, the AOPC scores on both datasets de-
crease, demonstrating that improved consistency
leads to better interpretability.

if
ste

ve
n

sod
erb

erg
h 's `

sol
ari

s ' is a
fai

lur
e it is a

glo
rio

us
fai

lur
e .

Ours
IG

LOO

0.0 1.0

Figure 3: The contribution heatmaps generated by our
algorithm, IG (Integrated Gradient) and LOO (Leave-
One-Out). All contribution scores are normalized within
[0, 1].

4 Applications

Our method can be applied to various scenarios
by designing different partitions. In this section,
we analyze the causes of model errors in sentiment
classification and translation at the instance level.
We set up our algorithm with D̂ (signed) for strict
consistency. We also compare the results of IG
(Integrated Gradient) and LOO (Leave-One-Out).

4.1 Errors in Sentiment Classification

We find that over half of the errors of the SST-2 test
occur when the sentiment expressed at the sentence
level is opposite to the polarity of the sentiment
words in the input. For example, the sentence “if
steven soderbergh’s ‘solaris’ is a failure it is a
glorious failure.” is a positive comment, but the
model’s prediction is negative.

Figure 3 shows the contribution heatmap gener-
ated by our algorithm and the baseline algorithms,
where tokens belonging to the same word are di-
vided into the same group for word-level explana-
tions3. The results of the analysis show that the
model focuses on both “failure” and fails classifica-
tion, indicating the model’s insufficient understand-
ing of the overall sentence meaning. It is notable
that our method not only considers the last “fail-
ure” as the main basis of the model decision but
the first “failure” as well. This is more intuitive
since the model’s prediction only inverts as soon
as both “failure” are masked. For comparison, the

3For other baseline algorithms, we sum the token-level
scores within the group to obtain the group-level scores, de-
spite of inconsistency.

10276

Source Prediction

This hotel is bad. Das1 Hotel2 ist3 sehr4 zentral5 gelegen6 ,7 aber8 trotzdem9 ruhig10 .11 ⟨EOS⟩12
[The hotel is very centrally located , but still quiet.]

Many of my customers are very
young.

Viele1 meiner2 Kunden3 sind4 sehr5 j@@6 ung7 .8 ⟨EOS⟩9 [Many of my customers
are very young .]

Table 3: Examples of hallucinated and well-generated samples. The sequence is generated in the order according to
the number marked at each token, with an English translation in brackets. The hallucination is underlined.

1 2 3 4 5 6 7 8 9 10 11 12
generation steps

0

20

40

60

80

100

co
nt

rib
ut

io
n

of
 ta

rg
et

 p
re

fix
 /

%

hallucinated
well-generated

(a)

1 2 3 4 5 6 7 8 9 10 11 12
generation steps

0

20

40

60

80

100

hallucinated
well-generated

(b)

1 2 3 4 5 6 7 8 9 10 11 12
generation steps

0

20

40

60

80

100

hallucinated
well-generated

(c)

Figure 4: The contribution of target prefix (%) generated by our algorithm (a), IG (b), and LOO (c).

Ours IG LOO
20

40

60

80

100

av
er

ag
e

co
nt

rib
ut

io
n

of
 ta

rg
et

 p
re

fix
 /

%

well-generated
hallucinated

Figure 5: The contribution of target prefix (%) averaged
over the generation steps. We sample 100 samples (50
for each class) from the training data and vertically
distribute them for presentation.

other two baselines fail to indicate the impact of
the first “failure”.

4.2 Errors in Translation

We noticed that, despite fluency in the target lan-
guage, machine translation produces hallucinated
outputs (Müller et al., 2020) that are semantically
decoupled from the source sequence (Table 3).

We divide inputs into two groups to inspect their
contributions to outputs: the source and the target
prefix. Figure 4 shows the percentage of the contri-
bution by target prefix at each generation step for
the case in Table 3. Our algorithm indicates that the
model tries to generate a sentence without access-
ing source information during hallucination since
the target prefix dominates the contribution. On the

contrary, the contribution of the target prefix stays
relatively low in a well-generated sequence. It only
escalates at the generation of subword tails (step
7) or ⟨EOS⟩ tokens (step 9), where more language
modeling takes over.

As a comparison, we did not find the above pat-
tern in the results of IG. The results of LOO overes-
timate the contribution of the target prefix and lack
interpretability of the trends on the well-generated
sample. We further verify this pattern on more
test samples, as shown in Figure 5. The contribu-
tions of target prefix to hallucinated samples are
generally more than that to well-generated samples
amongst all three methods, but only our algorithm
distinguishes the two clusters.

5 Related Work

Interpreting DNNs involves various techniques,
such as feature visualization (Olah et al., 2017;
Yosinski et al., 2015), probing (Conneau et al.,
2018; Shi et al., 2016), and analyzing learned
weights (Tsang et al., 2018). Local interpretation
belongs to another paradigm, which tries to inter-
pret individual predictions of a DNN.

Existing works of local interpretation focus
on assigning importance to individual features
with respect to the prediction, such as pixels in
an image or words in a sentence. The assign-
ment employs methods like input occlusion (Li
et al., 2016; Ribeiro et al., 2016b), gradient-
based algorithms (Hechtlinger, 2016; Sundarara-

10277

jan et al., 2017), layer-wise relevance propaga-
tion (LRP, Voita et al., 2021; Bach et al., 2015),
decomposition-based methods (Murdoch et al.,
2018; Singh et al., 2019; Jin et al., 2020; Kobayashi
et al., 2021; Modarressi et al., 2022; Ferrando et al.,
2022), and others (Hao et al., 2021; Shrikumar
et al., 2017).

Specifically in NLP, Voita et al. (2021) extend
LRP to the Transformer to analyze NMT models.
Murdoch et al. (2018) introduces a contextual de-
composition to track the word-level importance in
LSTM (Hochreiter and Schmidhuber, 1997). Singh
et al. (2019) extend the aforementioned to produce
hierarchical clustering of words along with the con-
tribution of each cluster.

Backpropagation-based algorithms such as
gradient-based algorithms (Sundararajan et al.,
2017) and LRP (Voita et al., 2021) have exponential
time or space complexity, making their application
on long sequences infeasible. The occlusion algo-
rithms (Li et al., 2016; Chen et al., 2020) also suffer
from performance degradation on long sentences
since occlusion has a limited impact on the seman-
tics of long sentences. Our methods are similar to
those based on additive decomposition (Kobayashi
et al., 2021; Modarressi et al., 2022; Ferrando et al.,
2022; Mickus et al., 2022). Despite not being ex-
plicitly noted, these methods all rely on the same
assumption to linearize attention scores and layer
normalization. However, they do not decompose
the FFN layer and instead use heuristic algorithms
to aggregate contributions across layers.

6 Conclusion

In this paper, we find that specific DNNs satisfy
linearity under proper assumptions. We further
leverage the linearity of the model to generate local
explanations. We test proposed algorithms with the
standard and pretrained Transformer architecture
on two benchmark datasets. Experimental results
show that our method achieves competitive per-
formance in efficiency and fidelity of explanation.
Additionally, we offer examples of different tasks
to apply our algorithms for error analysis. We leave
the analysis of other DNNs and the intermediate
states of the models as future work.

7 Limitations

Although based on the Transformer model, our
methods also apply to various DNN modules, in-
cluding CNNs, Poolings, and their compositions.

The applications of the proposed method in com-
puter vision are left for future work.

An obvious limitation of this work is that we
only verify our algorithm on models activated by
ReLU. This issue can be alleviated because our al-
gorithm is theoretically compatible with any piece-
wise linear activation function. For other functions
in the ReLU family, such as the GELU (Hendrycks
and Gimpel, 2016) used by BERT (Devlin et al.,
2019; Liu et al., 2019), we replace the activations
with ReLU, then fine-tune on downstream tasks
and pretrain tasks (Appendix E). Our algorithms
bog down on more complex nonlinear functions
(e.g., sigmoid and tanh). It’s intuitive to fit these
nonlinear functions with ReLU-activated FNNs.
However, this leads to additional computational
and space complexity, which degrades performance
after fitting.

Acknowledgements

We would like to thank the anonymous reviewers
for their insightful comments and suggestions that
helped us to improve the quality of this manuscript.
Their feedback was invaluable in helping us to re-
fine our ideas and present them more effectively.
Shujian Huang is the corresponding author. This
work is supported by National Science Foundation
of China (No. 62176115, 62176120), the Liaoning
Provincial Research Foundation for Basic Research
(No. 2022-KF-26-02).

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Sebastian Bach, Alexander Binder, Grégoire Montavon,
Frederick Klauschen, Klaus-Robert Müller, and Wo-
jciech Samek. 2015. On pixel-wise explanations
for non-linear classifier decisions by layer-wise rele-
vance propagation. PloS one, 10:e0130140.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Hanjie Chen, Guangtao Zheng, and Yangfeng Ji. 2020.
Generating hierarchical explanations on text classifi-
cation via feature interaction detection. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 5578–5593, On-
line. Association for Computational Linguistics.

10278

https://doi.org/10.18653/v1/2020.acl-main.494
https://doi.org/10.18653/v1/2020.acl-main.494

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126–2136, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988, Florence, Italy. Asso-
ciation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Javier Ferrando, Gerard I. Gállego, and Marta R. Costa-
jussà. 2022. Measuring the mixing of contextual
information in the transformer. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 8698–8714, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri,
Franco Turini, Fosca Giannotti, and Dino Pedreschi.
2018. A survey of methods for explaining black box
models. ACM computing surveys (CSUR), 51(5):1–
42.

Yaru Hao, Li Dong, Furu Wei, and Ke Xu. 2021. Self-
attention attribution: Interpreting information interac-
tions inside transformer. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35,
pages 12963–12971.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Yotam Hechtlinger. 2016. Interpretation of prediction
models using the input gradient. arXiv preprint
arXiv:1611.07634.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Xisen Jin, Zhongyu Wei, Junyi Du, Xiangyang Xue, and
Xiang Ren. 2020. Towards hierarchical importance
attribution: Explaining compositional semantics for
neural sequence models. In ICLR.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR (Poster).

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and
Kentaro Inui. 2021. Incorporating Residual and Nor-
malization Layers into Analysis of Masked Language
Models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 4547–4568, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 107–117, Austin,
Texas. Association for Computational Linguistics.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Un-
derstanding neural networks through representation
erasure. arXiv preprint arXiv:1612.08220.

Zachary C Lipton. 2018. The mythos of model inter-
pretability: In machine learning, the concept of in-
terpretability is both important and slippery. Queue,
16(3):31–57.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Scott M Lundberg, Gabriel G Erion, and Su-In
Lee. 2018. Consistent individualized feature at-
tribution for tree ensembles. arXiv preprint
arXiv:1802.03888.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Timothee Mickus, Denis Paperno, and Mathieu Con-
stant. 2022. How to dissect a Muppet: The struc-
ture of transformer embedding spaces. Transactions
of the Association for Computational Linguistics,
10:981–996.

Ali Modarressi, Mohsen Fayyaz, Yadollah
Yaghoobzadeh, and Mohammad Taher Pile-
hvar. 2022. GlobEnc: Quantifying global token
attribution by incorporating the whole encoder
layer in transformers. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 258–271, Seattle,

10279

https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/2022.emnlp-main.595
https://aclanthology.org/2022.emnlp-main.595
https://doi.org/10.18653/v1/2021.emnlp-main.373
https://doi.org/10.18653/v1/2021.emnlp-main.373
https://doi.org/10.18653/v1/2021.emnlp-main.373
https://doi.org/10.18653/v1/D16-1011
https://aclanthology.org/P11-1015
https://doi.org/10.1162/tacl_a_00501
https://doi.org/10.1162/tacl_a_00501
https://doi.org/10.18653/v1/2022.naacl-main.19
https://doi.org/10.18653/v1/2022.naacl-main.19
https://doi.org/10.18653/v1/2022.naacl-main.19

United States. Association for Computational
Linguistics.

Mathias Müller, Annette Rios, and Rico Sennrich. 2020.
Domain robustness in neural machine translation. In
Proceedings of the 14th Conference of the Associa-
tion for Machine Translation in the Americas (Volume
1: Research Track), pages 151–164, Virtual. Associa-
tion for Machine Translation in the Americas.

W James Murdoch, Peter J Liu, and Bin Yu. 2018. Be-
yond word importance: Contextual decomposition to
extract interactions from lstms. In ICLR.

Dong Nguyen. 2018. Comparing automatic and human
evaluation of local explanations for text classification.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1069–1078, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Chris Olah, Alexander Mordvintsev, and Ludwig Schu-
bert. 2017. Feature visualization. Distill, 2(11):e7.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Gregory Plumb, Denali Molitor, and Ameet S Talwalkar.
2018. Model agnostic supervised local explanations.
Advances in neural information processing systems,
31.

Marco Ribeiro, Sameer Singh, and Carlos Guestrin.
2016a. “why should I trust you?”: Explaining the pre-
dictions of any classifier. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 97–101, San Diego, California. As-
sociation for Computational Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016b. " why should i trust you?" explain-
ing the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pages 1135–
1144.

Wojciech Samek, Alexander Binder, Grégoire Mon-
tavon, Sebastian Lapuschkin, and Klaus-Robert
Müller. 2016. Evaluating the visualization of what
a deep neural network has learned. IEEE trans-
actions on neural networks and learning systems,
28(11):2660–2673.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,

Berlin, Germany. Association for Computational Lin-
guistics.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does
string-based neural MT learn source syntax? In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1526–
1534, Austin, Texas. Association for Computational
Linguistics.

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. 2017. Learning important features through
propagating activation differences. In International
conference on machine learning, pages 3145–3153.
PMLR.

Chandan Singh, W James Murdoch, and Bin Yu. 2019.
Hierarchical interpretations for neural network pre-
dictions. In ICLR.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Interna-
tional conference on machine learning, pages 3319–
3328. PMLR.

Michael Tsang, Dehua Cheng, and Yan Liu. 2018. De-
tecting statistical interactions from neural network
weights. In International Conference on Learning
Representations.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Elena Voita, Rico Sennrich, and Ivan Titov. 2021. Ana-
lyzing the source and target contributions to predic-
tions in neural machine translation. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1126–1140, Online.
Association for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Jason Yosinski, Jeff Clune, Thomas Fuchs, and Hod Lip-
son. 2015. Understanding neural networks through
deep visualization. In In ICML Workshop on Deep
Learning. Citeseer.

10280

https://aclanthology.org/2020.amta-research.14
https://doi.org/10.18653/v1/N18-1097
https://doi.org/10.18653/v1/N18-1097
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/N16-3020
https://doi.org/10.18653/v1/N16-3020
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/D16-1159
https://doi.org/10.18653/v1/D16-1159
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.18653/v1/2021.acl-long.91
https://doi.org/10.18653/v1/2021.acl-long.91
https://doi.org/10.18653/v1/2021.acl-long.91
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446

A Consistency Condition

Proof. Prove the sufficiency and necessity of
Lemma 1, respectively.

Sufficiency. To prove the sufficiency, we intro-
duce decomposition under the elementary partition
as an intermediate, where the elementary partition
Pe is a partition in which each element in X forms
a set., i.e. Pe = {{x1}, · · · , {xm}}.

For any two partitions Pa and Pb that Pa ∩Pb ̸=
∅ and g ∈ Pa ∩ Pb, if D satisfies Group Additivity,
then there is

Dh

Dg

∣∣∣∣
Pa

=
∑

x∈g

Dh

D{x}

∣∣∣∣
Pe

=
Dh

Dg

∣∣∣∣
Pb

.

(18)

Necessity. For any two groups g1, g2 ∈ X
that g1 ∩ g2 = ∅ and g1, g2 ̸= ∅, and any par-
titions Pa and Pb that g1, g2 ∈ Pa, g1 ∪ g2 ∈
Pb. Without loss of generality, assume that
Pa = {g1, g2, ga3 , · · · , gam} and Pb = {g1 ∪
g2, g

b
3, · · · , gbn}.

There are two different partitions P ′
a =

{g1, g2, X\(g1∪g2)} and P ′
b = {g1∪g2, X\(g1∪

g2)}. And we have

m∑

i=3

Dh

Dgai

∣∣∣∣
Pa

= h− Dh

Dg1

∣∣∣∣
Pa

− Dh

Dg2

∣∣∣∣
Pa

, (19)

Dh

D(X\(gi ∪ gj))

∣∣∣∣
P ′
a

= h− Dh

Dg1

∣∣∣∣
P ′
a

− Dh

Dg2

∣∣∣∣
P ′
a

.

(20)

By the consistency of D , we have Dh
Dg1

∣∣∣
Pa

=

Dh
Dg1

∣∣∣
P ′
a

and Dh
Dg2

∣∣∣
Pa

= Dh
Dg2

∣∣∣
P ′
a

. Thus

m∑

i=3

Dh

Dgai

∣∣∣∣
Pa

=
Dh

D [X\(gi ∪ gj)]

∣∣∣∣
P ′
a

. (21)

Similarly, there is
n∑

i=3

Dh

Dgbi

∣∣∣∣
Pb

=
Dh

D [X\(gi ∪ gj)]

∣∣∣∣
P ′
b

. (22)

Now we get

Dh

Dg1

∣∣∣∣
Pa

+
Dh

Dg2

∣∣∣∣
Pa

= h−
m∑

i=3

Dh

Dgai

∣∣∣∣
Pa

= h− Dh

D [X\(gi ∪ gj)]

∣∣∣∣
P ′
a

.

(23)

Dh

Dgi ∪ gj

∣∣∣∣
Pb

= h−
n∑

i=3

Dh

Dgbi

∣∣∣∣
Pb

= h− Dh

D [X\(gi ∪ gj)]

∣∣∣∣
P ′
b

.

(24)

Again according to the consistency, we have

Dh

D [X\(gi ∪ gj)]

∣∣∣∣
P ′
a

=
Dh

D [X\(gi ∪ gj)]

∣∣∣∣
P ′
b

.

(25)
So

Dh

Dg1

∣∣∣∣
Pa

+
Dh

Dg2

∣∣∣∣
Pa

=
Dh

Dgi ∪ gj

∣∣∣∣
Pb

. (26)

B The Uniqueness of Interpretable
Decomposition

We claim that the interpretable decomposition of
linearly decomposable h is unique.

Proof. Assuming h = f(X) =
∑m

i WX
i xi.

Based on Orthogonality, we have

Dxi
Dg

=xi for xi ∈ g, (27)

Dxj
Dg

=0 for xj /∈ g. (28)

By the linear transformation of Linearity, we
have

D(WX
i xi)

Dg
= WX

i

Dxi
Dg

= WX
i xi for xi ∈ g,

(29)

D(WX
j xj)

Dg
= WX

i

Dxj
Dg

= 0 for xj /∈ g. (30)

By the addition of Linearity, we have

Dh

Dg
=

D(
∑m

i WX
i xi)

Dg

=
m∑

i

D(WX
i xi)

Dg

=
∑

xi∈g
WX

i xi.

(31)

10281

C Mathematical Properties of D̂

By definition, it is clear that D̂ satisfies Linearity.

Proof. proof of Group Additivity by mathematical
induction.

Base Case. The same as Eq. (14), D̂ degenerates
to D̄ and therefore inherits the Group Additivity
property.

Induction step. For any hidden state hl, it is ob-
tained either by linear transformation and addition
or by ReLU. Assume that the hidden states involved
in the operation to get hl all satisfy Group Additiv-
ity.

For addition and linear transformation, without
loss of generality, suppose h′ = W1h1 + W2h2,
then there is

D̂h′

D̂g1
+

D̂h′

D̂g2
=

D̂(W1h1 +W2h2)

D̂g1
+

D̂(W1h1 +W2h2)

D̂g2

= W1
D̂h1

D̂g1
+W2

D̂h2

D̂g1
+W1

D̂h1

D̂g2
+W2

D̂h2

D̂g2

= W1
D̂h1

D̂g1 ∪ g2
+W2

D̂h2

D̂g1 ∪ g2

=
D̂h′

D̂g1 ∪ g2
.

(32)

For ReLU, suppose h′ = relu(h) = W ′h and Θ
is the separated contribution in Eq. (11), i.e.

Θ := W ′ D̂h

D̂B
− relu(

D̂h

D̂B
). (33)

Then we have

D̂h′

D̂g1
+

D̂h′

D̂g2
= W ′ D̂h

D̂g1
+ αg1Θ +W ′ D̂h

D̂g2
+ αg2Θ

= W ′ D̂h

D̂g1 ∪ g2
+ (αg1 + αg2)Θ

= W ′ D̂h

D̂g1 ∪ g2
+ (

D̂h

D̂g1∑
g∈P

D̂h

D̂g

+

D̂h

D̂g2∑
g∈P

D̂h

D̂g

)Θ

= W ′ D̂h

D̂g1 ∪ g2
+

D̂h

D̂g1
+ D̂h

D̂g2∑
g∈P

D̂h

D̂g

Θ

= W ′ D̂h

D̂g1 ∪ g2
+

D̂h

D̂g1∪g2∑
g∈P

D̂h

D̂g

Θ

= W ′ D̂h

D̂g1 ∪ g2
+ αg1∪g2Θ

=
D̂h′

D̂g1 ∪ g2
.

(34)

Notice that we apply the signed-value-based de-
composition (Eq. (13)) in line 3 of Eq. (34), while
the absolute-value-based one does not make the
derivation to hold.

D The Uniqueness of α

We claim that the signed-value-based α calcula-
tion is the only continuous solution that makes the
decomposition D̂ satisfies consistency.

Proof. Since consistency and Group Additivity are
equivalent, we will use both of their properties in
the proof.

First prove that α itself satisfies Group Additivity,
i.e, αg1 + αg2 = αg1∪g2 .

According to the Group Additivity property of
D̂ , we have

D̂relu(h)

D̂g1
+

D̂relu(h)

D̂g2
=

D̂relu(h)

D̂g1 ∪ g2
, (35)

W ′ D̂h

D̂g1
+ αg1Θ +W ′ D̂h

D̂g2
+ αg2Θ =

W ′ D̂h

D̂g1 ∪ g2
+ αg1∪g2Θ,

(36)

W ′ D̂h

D̂g1 ∪ g2
+ αg1Θ + αg2Θ =

W ′ D̂h

D̂g1 ∪ g2
+ αg1∪g2Θ,

(37)

αg1 + αg2 = αg1∪g2 , (38)

where Θ is defined in Eq. (33).
Suppose that α is calculated by the function A,

that is

αg = A(H,
D̂h

D̂g
), (39)

where H = { D̂h
D̂g

|g ∈ P}.

Next, we prove that the value of A(H, D̂h
D̂g

) is

only related to D̂h
D̂g

and
∑

g∈P
D̂h
D̂g

, instead of a spe-
cific values of other elements in H .

Since the sum of α is 1, we have

A(H,
D̂h

D̂g
) = 1−

∑

e∈H,e ̸=g

A(H,
D̂h

D̂e
). (40)

By the Group Additivity of α,

∑

e∈H,e̸=g

A(H,
D̂h

D̂e
) = A(H ′,

D̂h

D̂
⋃

e∈H,e ̸=g e
),

(41)

10282

where H ′ = { D̂h
D̂g

, D̂h
D̂

⋃
e∈H,e̸=g e

}.

By the Group Additivity of D̂ , there is

D̂h

D̂
⋃

e∈H,e̸=g e
=

∑

g∈P

D̂h

D̂g
− D̂h

D̂g
. (42)

With Eq. (40) and Eq. (41), we have

A(H,
D̂h

D̂g
) = 1−A(H ′,

∑

g∈P

D̂h

D̂g
− D̂h

D̂g
), (43)

and H ′ = { D̂h
D̂g

,
∑

g∈P
D̂h
D̂g

− D̂h
D̂g

}.
The proposition is proved. Let’s replace the func-

tion A(H, D̂h
D̂g

) with function A′(
∑

g∈P
D̂h
D̂g

, D̂h
D̂g

).
Notice that we have

A′(s,
D̂h

D̂g1
) +A′(s,

D̂h

D̂g2
) =A′(s,

D̂h

D̂g1 ∪ g2
)

=A′(s,
D̂h

D̂g1
+

D̂h

D̂g2
).

(44)

This means that A′(s, x1)+A′(s, x2) = A′(s, x1+
x2) always holds. Thus A′(s, ax) = aA′(s, x)
holds for all a ∈ Z and all x, s ∈ R. Further,
A′(s, abx) =

a
bA

′(s, x) holds for all a
b ∈ Q and all

x, s ∈ R.
Finally, we prove that A′(s, rx) = rA′(s, x)

holds for all r ∈ R and all x, s ∈ R.
If r ∈ R and r /∈ Q, consider a sequence qi

in Q converging to r. Then the sequence qix con-
verges to rx and the sequence qiA′(s, x) converges
to rA′(s, x). If A′ is continuous, then

A′(s, rx) =A′(s, lim
i→∞

qix)

= lim
i→∞

A′(s, qix)

= lim
i→∞

qiA
′(s, x)

=rA′(s, x).

(45)

Therefore, A′(s, x) is a linear function with re-
spect to x. Suppose A′(s, x) = cx, we have

1 =
∑

g∈P

A′(
∑

g∈P

D̂h

D̂g
,
D̂h

D̂g
) =

∑

g∈P

c
D̂h

D̂g
= c

∑

g∈P

D̂h

D̂g
,

(46)

c = 1/
∑

g∈P

D̂h

D̂g
. (47)

E Experiment Details

Data preprocessing All input text of GLEU and
IMDB datasets are encoded by Byte-Pair Encoding
(BPE, Sennrich et al., 2016) of RoBERTa, contain-
ing 50K subword units of byte-level vocabulary.

For WMT14 En-De dataset, sentences have been
jointly tokenized and byte-pair encoded with 32k
merge operations using a shared vocabulary.

Training details For GLUE (Wang et al.,
2018), we follow the hyperparameter set-
tings of RoBERTa (Liu et al., 2019), with
batch sizes ∈ {16, 32}, and learning rates
∈ {1e− 5, 2e− 5, 3e− 5}, with a linear warmup
for the first 6% of steps followed by a linear
decay to 0. We use the Adam optimizer (Kingma
and Ba, 2015) with β1 = 0.9, β2 = 0.98 and
ϵ = 1e − 6. We fine-tune 10 epochs in each
dataset. More details about hyperparameter
configurations can be found in https://github.
com/facebookresearch/fairseq/tree/main/
examples/roberta/config/finetuning. For
the IMDB dataset we set batch = 16, lr = 1e− 5
and warmup = 1256, other settings are the same
as GLEU benchmark.

Since the GELU activation (Hendrycks and Gim-
pel, 2016) in RoBERta is incompatible with our
theory, we replace it with ReLU at fine-tuning,
which leads to performance degradation, especially
with small datasets. This issue can be solved by
fine-tuning pre-training tasks prior to the down-
stream tasks: we re-train the pretraining tasks
(i.e., masked language modeling) on a smaller
dataset with ReLU activation function. We adopt
the WikiText-103 dataset as the retraining corpus
and use the same training configuration as fine-
tuning, including batch = 16, lr = 1e − 5 and
warmup = 1500. The model with additional fine-
tuning by pretraining tasks is comparable, and
sometimes better than RoBERTa (Table 4).

For machine translation, we adopt β =
[0.9, 0.98] and ϵ = 1e−8 for Adam optimizer. The
learning rate linearly increases from 1e−7 to 7e−4
with 4000 warmup steps, then decay by the inverse
square root schedule. We additionally adopt label
smoothing at 0.1. Training instances are batched
together by approximate sequence length. Input
tokens in the batch are restricted to 8102 per GPU.
The model is updated for 300k steps. We average
the last 5 checkpoints, each of which is saved at the
end of an epoch.

10283

https://github.com/facebookresearch/fairseq/tree/main/examples/roberta/config/finetuning
https://github.com/facebookresearch/fairseq/tree/main/examples/roberta/config/finetuning
https://github.com/facebookresearch/fairseq/tree/main/examples/roberta/config/finetuning

MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B AVG.

RoBERTaBASE 87.6 92.8 91.9 78.7 94.8 90.2 63.6 91.2 86.35
Our Impl. 86.9 89.7 91.1 56.3 92.1 75.5 75.5 87.1 81.8

+ FT. on MLM. 87.7 92.8 91.6 77.3 95.0 89.5 83.5 90.5 88.49

Table 4: Development set results on GLUE tasks for RoBERTa and our implementations.

All experiments were trained and evaluated us-
ing a single RTX 3090 Ti GPU, except for the
translation model, which was trained on 2 RTX
3090 Ti GPUs.

F Performance Experiments

We present the full RoBERTa results of our im-
plementation on development sets in Table 4. For
IMDB, the fine-tuned RoBERTa model achieves
93.8% accuracy on the full test set. The model
achieves a BLEU score (Papineni et al., 2002) of
27.19 on the WMT14 when trained from scratch.

G Results of AOPCs changing with
different k

10284

10 20 30 40 50
k / %

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
O

PC

Random
ACD
HEDGE
LIME
LRP
LOO
IG
GLOBENC

(a) AOPCs on the SST-2 dataset.

10 20 30 40 50
k / %

0.0

0.2

0.4

0.6

0.8

1.0

A
O

PC

Random
HEDGE
LIME
LOO
IG
GLOBENC

(b) AOPCs on the IMDB dataset.

10 20 30 40 50
k / %

0.0

0.2

0.4

0.6

0.8

A
O

PC

Random
ACD
HEDGE
LIME
LRP
LOO
IG
GLOBENC

(c) AOPCs on the RTE dataset.

1 2 3 4 5 6 7 8
The number of deleted tokens

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
O

PC

Random
ACD
HEDGE
LIME
LRP
LOO
IG

(d) AOPCs on the WMT dataset.

Figure 6: AOPCs with different k on the SST-2, IMDB, RTE and WMT En-De datasets.

10285

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

7

�7 A2. Did you discuss any potential risks of your work?
Our work contains little potential risk.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
2, 3, 4

�3 B1. Did you cite the creators of artifacts you used?
3

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
All artifacts are publicly available and used in academic research.

�7 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
We use it for research purposes only.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
We have used only publicly available datasets whose sensitive information has passed the provider’s
checks.

�7 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Documentation of our algorithms will be provided in the future along with the code.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
3

C �3 Did you run computational experiments?
3, 4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix E

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

10286

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
3, Appendix E

�7 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
The experimental results are not randomized.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Appendix E

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

10287

