
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 10341–10357

July 9-14, 2023 ©2023 Association for Computational Linguistics

Do I have the Knowledge to Answer?
Investigating Answerability of Knowledge Base Questions

Mayur Patidar†, Prayushi Faldu‡, Avinash Singh†, Lovekesh Vig†,
Indrajit Bhattacharya†, Mausam‡

†TCS Research, ‡Indian Institute of Technology, Delhi
{patidar.mayur, singh.avinash9, lovekesh.vig, b.indrajit} @tcs.com

prayushifaldu123@gmail.com, mausam@cse.iitd.ac.in

Abstract

When answering natural language questions
over knowledge bases, missing facts, incom-
plete schema and limited scope naturally lead
to many questions being unanswerable. While
answerability has been explored in other QA
settings, it has not been studied for QA over
knowledge bases (KBQA). We create GrailQA-
bility, a new benchmark KBQA dataset with
unanswerability, by first identifying various
forms of KB incompleteness that make ques-
tions unanswerable, and then systematically
adapting GrailQA (a popular KBQA dataset
with only answerable questions). Experiment-
ing with three state-of-the-art KBQA models,
we find that all three models suffer a drop in
performance even after suitable adaptation for
unanswerable questions. In addition, these of-
ten detect unanswerability for wrong reasons
and find specific forms of unanswerability par-
ticularly difficult to handle. This underscores
the need for further research in making KBQA
systems robust to unanswerability.

1 Introduction

The problem of natural language question answer-
ing over knowledge bases (KBQA) has received a
lot of interest in recent years (Saxena et al., 2020;
Zhang et al., 2022; Mitra et al., 2022; Wang et al.,
2022; Das et al., 2022; Cao et al., 2022c; Ye et al.,
2022; Chen et al., 2021; Das et al., 2021). An
important aspect of this task for real-world deploy-
ment is detecting answerability of questions. This
problem arises for KBs due to various reasons, in-
cluding schema-level and data-level incomplete-
ness of KBs (Min et al., 2013), limited KB scope,
questions with false premises, etc. In such cases,
a robust and trustworthy model should detect and
report that a question is unanswerable, instead of
outputting some incorrect answer.

Answerability is well studied for QA over un-
structured contexts (Rajpurkar et al., 2018; Choi
et al., 2018; Reddy et al., 2019; Sulem et al., 2022;

Raina and Gales, 2022). However, there is no exist-
ing work on answerability for KBQA. Benchmark
KBQA datasets (Gu et al., 2021; Yih et al., 2016a;
Talmor and Berant, 2018; Cao et al., 2022a) contain
only answerable questions.

We first identify how different categories of KB
incompleteness (schema and data incompleteness)
affect answerability of questions. Then, using
GrailQA (Gu et al., 2021), one of the largest KBQA
benchmark dataset, we create a new benchmark for
KBQA with unanswerable questions, which we call
GrailQAbility, by deleting various elements from
the KB to simulate scope and fact coverage limita-
tions. This involves addressing a host of challenges,
arising due to different ways in which KB element
deletion affects answerability of questions, depen-
dence between deletion of different types of KB
elements, the shared nature of KB elements across
questions, and more. We also define and include
different generalization scenarios for unanswerable
questions in the test set, namely IID and zero-shot,
mirroring those for answerable questions.

We then use GrailQAbility to evaluate the robust-
ness of three recent state-of-the-art KBQA mod-
els, RnG-KBQA (Ye et al., 2022), ReTraCk (Chen
et al., 2021) and TIARA (Shu et al., 2022), against
unanswerable KB questions. We find that all three
models suffer an overall drop in performance with
unanswerable questions, even after appropriate
adaptation for unanswerability via retraining and
thresholding. More alarmingly, these often detect
unanswerability for incorrect reasons, raising con-
cerns about trustworthiness. Additionally, while
the strength of these models is that they learn at
the schema-level, we find that this also results in
significantly poorer ability to detect data-level in-
completeness. Using error analysis, we identify
important failure points for these models. All of
these highlight robustness issues for KBQA models
in real applications, raising important questions for
future research.

10341



Figure 1: (A) KB schema and facts. Elements in red are part of ‘ideal’ KB but missing in the given KB for QA. An
answerable question is shown for this KB with logical form l in s-expression, answer a and path (shaded blue). (B)
5 types of unanswerable questions for provided KB, with actual logical forms l, answers a and ideal logical forms
l∗ with missing KB elements in red (3-5). (C) Illustration of 3 different types of unanswerability scenario in test.

In summary, our contributions are as follows. (a)
We motivate and introduce the task of detecting
answerabilty for KBQA. (b) We create GrailQAbil-
ity, which is the first benchmark for KBQA with
unanswerable questions. (c) Using experiments
and analysis on GrailQAbility with three state-of-
the-art KBQA models , we identify aspects of unan-
swerability that these models struggle to identify.
We release code and data for further research.1

2 KBQA with Answerability Detection

A Knowledge Base (KB) (also called Knowledge
Graph) G contains a schema S (or ontology) with
entity types (or types) T and relations R defined
over pairs of types, which we together refer to as
schema elements of the KB. The types in T are
often organized as a hierarchy. It also contains en-
tities E as instances of types, and facts (or triples)
F ⊆ E × R × E, which we together refer to as
data elements of the KB. The top layer of Fig. 1(A)
shows example schema elements, while the bot-
tom layer shows entities and facts. In Knowledge
Base Question Answering (KBQA), we are given a
question q written in natural language which needs

1https://github.com/dair-iitd/GrailQAbility.
git

to be translated to a logical form (or query) l that
executes over G to yield a set of answers A. Differ-
ent logical forms, SPARQL (Yih et al., 2016b), s-
expressions (Gu et al., 2021), programs (Cao et al.,
2022b), etc., have been used in the KBQA literature.
We concentrate on s-expressions (Gu et al., 2021),
which employ set-based semantics and functions
with arguments and return values as sets. These can
be easily translated to KB query languages such
as SPARQL, and provide a balance between read-
ability and compactness (Gu et al., 2021). We call
a logical form valid for G if it executes over G
without an error. On successful execution, a log-
ical form traces a path in the KB leading to each
answer. Fig. 1(A) shows an example query with
a valid logical form (using s-expression) and the
path traced by its execution.

We define a question q to be answerable for a
KB G, if (a) q admits a valid logical form l for
G, AND (b) l returns a non-empty answer set A
when executed over G. The example question in
Fig. 1(A) is answerable for the shown KB. The
standard KBQA task over a KB G is to output the
answer A, and optionally the logical form l, given
a question q, assuming q to be answerable for G.

Most recent KBQA models (Ye et al., 2022;

10342

https://github.com/dair-iitd/GrailQAbility.git
https://github.com/dair-iitd/GrailQAbility.git


Chen et al., 2021) are trained with questions and
gold logical forms. Other models directly generate
the answer (Sun et al., 2019; Saxena et al., 2022).
Different train-test settings have been explored and
are included in benchmark KBQA datasets (Gu
et al., 2021). For a question q, let Sq denote the
schema elements in the logical form for q. Given
a training set Qtr, a test question q is labelled iid
if it follows the distribution for questions in Qtr,
and contains only schema elements seen in train
Sq ⊆ SQtr (we have overloaded notation to define
SQtr ). Alternatively, a test question q is labelled
zero shot if it involves at least one unseen schema
element (Sq ̸⊆ SQtr ). Finally, test question q in-
volves compositional generalization if Sq ⊆ SQtr

but the specific logical form for q does not match
that for any q′ ∈ Qtr.

By negating the above answerability definition,
we define a question q to be unanswerable for a
KB G if (a) q does not admit a valid logical form l
for G, or (b) the valid l when executed over the G
returns an empty answer. Clearly, meaningless and
out-of-scope questions for a KB are unanswerable.
Even for a meaningful question, unanswerability
arises due to incompleteness (in data or schema)
in G. Such questions admit an ‘ideal KB’ G∗ for
which q has a valid ideal logical form l∗ which
executes on G∗ to generate a non-empty ideal an-
swer a∗. The available KB G lacks one or more
schema or data elements making q unanswerable.
Fig. 1(A) illustrates an available KB, with missing
elements with respect to the ideal KB shown in red.
In Fig. 1(B), questions 1-2 yield valid queries for
the available KB but missing facts lead to empty
answers, while questions 3-5 lack schema elements
for valid queries.

The task of KBQA with answerability detec-
tion, given a question q and an available KB G, is
to (a) appropriately label the answer A as NA (No
Answer) or the logical form l as NK (No Knowl-
edge, i.e., query not possible) when q is unanswer-
able for G, or (b) generate the correct non-empty
answer A and valid logical form l when q is answer-
able for G. The training set may now additionally
include unanswerable questions labeled appropri-
ately with A = NA or l = NK. Note that training
instances do not contain ‘ideal’ logical forms for
the unanswerable questions that have l = NK.

Mirroring answerable questions, we define dif-
ferent train-test scenarios for unanswerable ques-
tions as well. An iid unanswerable question in test

follows the same distribution as unanswerable ques-
tions in train, and all missing KB elements (schema
elements in its ideal logical form and missing data
elements in its ideal paths) are encountered in train
unanswerable questions associated with the same
category of incompleteness. For example, the miss-
ing schema element Research Area for the first test
question in Fig. 1(C) is covered by the second train
question. In contrast, a zero-shot unanswerable test
question involves at least one missing KB element
(schema element in its ideal logical form or data
element in its paths) that is not part of any unan-
swerable question in train associated with same cat-
egory of incompleteness. E.g., the missing schema
elements (located in and works at) for the second
and third test questions in Fig.1(C) are not covered
by any unanswerable question in train. We further
define two sub-classes, partial and complete zero-
shot, for zero-shot unanswerable questions, but for
clarity, discuss these in Sec. 5.

3 GrailQAbility: Extending GrailQA
with Answerability Detection

In this section, we describe the creation of a new
benchmark dataset for KBQA with unanswerable
questions. In a nutshell, we start with a standard
KBQA dataset containing only answerable ques-
tions for a given KB. We introduce unanswerability
in steps, by deleting schema elements (entity types
and relations) and data elements (entities and facts)
from the given KB. We mark questions that become
unanswerable as a result of each deletion with ap-
propriate unanswerability labels. We control the
percentage of questions that become unanswerable
as a result of each type of deletion.

Many complications arise in this. (a) Deletion
of different KB elements affect answerability dif-
ferently. Some affect logical forms and answers,
while others affect answers only. (b) The same
KB element potentially appears in paths or logi-
cal forms of multiple questions. (c) KB elements
cannot be deleted independently – entity types are
associated with relations and entities, while rela-
tions and entities are associated with facts. (d)
Questions with multiple answers remain answer-
able until the fact paths to all of these answers
have been broken by deletions. (e) Choosing KB
elements to delete uniformly at random does not
resemble incompleteness in the real world.

We address these issues as follows. (a-b) We
iterate over the 4 categories of KB elements to be

10343



Dataset #Q #LF #D #R #T #E
Q. Type Test Scenarios
A U A U

GrailQA 64,331 4969 86 3720 1534 32,585 ✓ ✗ I, C, Z ✗

GrailQAbility 50,507 4165 81 2289 1081 22,193 ✓ ✓ I, C, Z I, Z

Table 1: Statistics for GrailQA and GrailQAbility. #Q is no. of questions, #LF no. of unique canonical logical forms,
#D no. of domains, #R, #T, #E no. of relations, types and entities, A and U denote answerable and unanswerable
questions. I, C, and Z denote IID, compositional and zero-shot.

deleted, efficiently identify affected questions for a
deleted schema element using an index, tag these
with the deleted type, and appropriately relabel
their logical forms or answers. We stop when spe-
cific percentages of questions are unanswerable for
each category. (c) We delete different types of KB
elements in an appropriate sequence – entity types,
followed by relations, entities and finally facts. (d)
We track remaining fact paths for questions and
mark a question as unanswerable only when all
paths are broken by KB deletions. (e) When sam-
pling KB elements to delete, since “better known”
KB elements are less likely to be missing, we incor-
porate the inverse popularity of an element in the
original KB in the sampling distribution. Addition-
ally, we only consider those elements present in
still valid logical forms and paths for the questions
in the dataset. Next, we describe the specifics for
individual KB element categories.
Fact Deletion: Dropping a KB fact can break the
path of one or more answers for a question but
cannot affect the logical form. Answers whose
paths are broken are removed from the answer list
of the question. If the answer list becomes empty
as a result of a fact drop, we set its answer to NA
but leave its logical form unchanged. In Fig.1(B),
deleting (C. Manning, works at, Stanford) makes
Q1 unanswerable.
Entity Deletion: To delete an entity from the KB,
we first delete all its associated facts, and then drop
the entity itself. Deleting facts affects answerability
of questions as above, as for Q2 in Fig.1(B). Delet-
ing an entity additionally affects answerability of
questions whose logical form contains that entity
as one of the mentioned entities. This happens for
Q3 in Fig.1(B) when entity R. Socher is deleted.
For such questions, the logical form also becomes
invalid, and we set it as NK.
Relation Deletion: To delete a relation, we first
drop all facts associated with it, and then drop
the relation itself from the schema. Deleting facts
makes some questions unanswerable as above, and

we set their answers to be NA. Deleting the rela-
tion additionally affects the logical form of some
questions, and we set their logical forms to be NK.
This happens for Q4 in Fig. 1(B) on deleting the
located in relation.

Entity Type Deletion: Entities are often tagged
with multiple types in a hierarchy (e.g C. Manning
may be Researcher and Person). After deleting an
entity type from the KB schema, we also delete
all entities e that are associated only with that type.
We further delete all relations associated with the
type. For Q5 in Fig.1(b), the logical form becomes
invalid on deleting the Research Area entity type.
For an affected question, we set its answer as NA
and its logical form as NK.

Split A U
NK NA

Train 23,933 7110 4240
Dev 3399 1064 595
Test 6808 2162 1196

Table 2: GrailQAbility: Train, Dev and Test Splits

GrailQAbility Dataset: We make use of
GrailQA (Gu et al., 2021), which is one of the
largest and most diverse KBQA benchmark based
on Freebase but contains only answerable ques-
tions, and create a new benchmark for KBQA with
answerability detection. We call this GrailQAbil-
ity (GrailQA with Answerability). We make this
dataset public. Aligning with earlier QA datasets
with unanswerability (Rajpurkar et al., 2018; Sulem
et al., 2022; Choi et al., 2018; Raina and Gales,
2022), we keep the total percentage of unanswer-
able questions as 33%, splitting this nearly equally
(8.25%) between deleted entity types, relations, en-
tities and facts.

Train-Test Split: Since the test questions for
GrailQA are unavailable, we use the train and dev
questions. We keep aside the compositional and
zero shot questions from dev as the compositional
and zero shot answerable questions in our new dev

10344



and test set. We then combine the train and iid
dev questions, introduce unanswerability into these
by running the 4 categories of deletion algorithms
in sequence, and split these to form the new train
and iid test+dev (both answerable and unanswer-
able) and zero shot unanswerable test+dev ques-
tions. The unanswerable questions in test and dev
contain 47% iid, and 53% zero-shot. Statistics for
GrailQAbility and GrailQA are compared in Tab. 1.
Sizes of the different splits are shown in Tab. 2.
Details on dataset creation are in appendix (A.1).

4 Experimental Setup

KBQA Models: Among state-of-the-art KBQA
models, we pick RnG-KBQA (Ye et al., 2022),
ReTraCk (Chen et al., 2021) and TIARA (Shu
et al., 2022). These report state-of-the-art results
on GrailQA as well as on WebQSP (Berant et al.,
2013; Yih et al., 2016a; Talmor and Berant, 2018) -
the two main benchmarks. On the GrailQA leader
board,2 these are the top three published models
with available code (at the time of submission).
Since these generate logical forms, we expect these
to be more robust to data level incompleteness than
purely retrieval-based approaches (Saxena et al.,
2020; Das et al., 2021; Zhang et al., 2022; Mitra
et al., 2022; Wang et al., 2022).

RnG-KBQA (Ye et al., 2022) first uses a BERT-
based (Devlin et al., 2019) ranker to select a set of
candidate logical forms for a question by searching
the KB, and then a T5-based (Raffel et al., 2020a)
model generates the logical form using the ques-
tion and candidates. ReTraCk (Chen et al., 2021)
also uses a rank and generate approach, but uses
a dense retriever to retrieve schema elements for
a question, and grammar-guided decoding using
an LSTM (Hochreiter and Schmidhuber, 1997) to
generate the logical form using the question and
retrieved schema items. TIARA (Shu et al., 2022)
combines the retrieval mechanisms of the first two
models to include both candidate logical forms as
well as candidate schema elements from the KB. It
then uses constrained decoding like ReTraCk but
using T5 (Raffel et al., 2020b). All three models
use entity disambiguation to find KB entities men-
tioned in a question and also check execution for
generated logical forms.

2https://dki-lab.github.io/GrailQA/

Adapting for Answerability: We use existing
code bases34 5 of these models, and adapt these in
two ways — thresholding and training with unan-
swerability. ReTraCk and TIARAreturn empty log-
ical form when execution fails, which we interpret
as l = NK prediction. For all models, we addition-
ally introduce thresholds for entity disambiguation
and logical form generation, and take the predic-
tion to be NK when the scores for entity linking
and logical form are less than their correspond-
ing thresholds. These thresholds are tuned using
the validation set. We train the models as in their
original setting with only the answerable subset of
training questions, leaving out the unanswerable
questions (A training). We also train by including
both the answerable and unanswerable questions
in the training data (A+U training). More details
are in appendix (A.3).

Evaluation Measures: To evaluate a model’s
performance for detecting unanswerability, we pri-
marily focus on the correctness of the logical form.
We compare the predicted logical form with the
gold-standard one using exact match (EM) (Ye
et al., 2022). As it is ultimately a QA task (and
other systems may produce answers without gener-
ating logical forms), we also perform direct answer
evaluation. Since in general a question may have
multiple answers, we evaluate predicted answers
using precision, recall and F1. In regular answer
evaluation (R), we compare the predicted answer
(which could be NA) with the gold answer in the
modified KB, as usual. Specifically for unanswer-
ability, we also consider lenient answer evaluation
(L), where we account for the gold answer in the
original (ideal) KB as well, and also give credit
to models which are able to recover this answer,
perhaps via inference. As an example, for the sec-
ond test question in Fig. 1(C), R-evaluation only re-
wards NA as answer, whereas L-evaluation rewards
both NA and USA as perfect answers. Details of
evaluation measures are in appendix (A.2).

5 Results and Discussion

We structure our discussion of experimental results
around four research questions.

3https://github.com/salesforce/rng-kbqa
4https://github.com/microsoft/KC/tree/main/

papers/ReTraCk
5https://github.com/microsoft/KC/tree/main/

papers/TIARA

10345

https://dki-lab.github.io/GrailQA/
https://github.com/salesforce/rng-kbqa
https://github.com/microsoft/KC/tree/main/papers/ReTraCk
https://github.com/microsoft/KC/tree/main/papers/ReTraCk
 https://github.com/microsoft/KC/ tree/main/papers/TIARA
 https://github.com/microsoft/KC/ tree/main/papers/TIARA


Train Model Overall Answerable Unanswerable
F1(L) F1(R) EM F1(L) F1(R) EM F1(L) F1(R) EM

A

RnG-KBQA 67.8 65.6 51.6 78.1 78.1 74.2 46.9 40.1 5.7
RnG-KBQA+T 67.6 65.8 57.0 71.4 71.3 68.5 59.9 54.5 33.6
ReTraCk 69.2 67.0 50.7 67.0 66.9 62.4 73.8 67.2 27.1
ReTraCk+T 69.9 67.9 52.0 65.3 65.3 61.2 79.3 73.2 33.4
TIARA 77.1 75.0 56.0 82.9 82.8 79.2 65.4 59.0 9.0
TIARA+T 76.5 74.8 63.4 76.9 76.8 74.1 75.9 70.8 41.8

A+U

RnG-KBQA 80.5 79.4 68.2 75.9 75.9 72.6 89.7 86.4 59.4
RnG-KBQA+T 77.8 77.1 67.8 70.9 70.8 68.1 92.0 89.8 67.2
ReTraCk 69.7 68.4 56.5 61.4 61.3 57.3 86.5 82.8 54.7
ReTraCk+T 70.3 69.1 56.6 61.2 61.1 57.1 88.7 85.1 55.5
TIARA 83.9 82.9 69.7 81.0 81.0 78.3 89.9 86.8 52.3
TIARA+T 81.7 81.1 72.6 76.0 76.0 74.0 93.3 91.3 69.8

Table 3: Performance of different models on GrailQAbility over all, answerable and unanswerable questions. EM
is exact match on logical forms and F1(L) and F1(R) are lenient and regular evaluations of answers. A and A+U
indicate training with only answerable questions and with both answerable and unanswerable questions. Models
with suffix +T have additional thresholds for entity disambiguation and logical form fine-tuned on dev set.

Train Model Schema Element Missing Data Element Missing
Type Relation Mention Entity Other Entity Fact

F1(R) EM F1(R) EM F1(R) EM F1(R) EM F1(R) EM

A

RnG-KBQA 40.1 0.0 44.2 0.0 27.4 0.0 45.1 13.5 46.0 16.8
RnG-KBQA+T 55.5 49.5 57.1 46.6 44.7 40.3 56.0 11.5 58.6 13.9
ReTraCk 71.1 34.8 59.3 18.9 80.7 63.7 72.6 11.2 64.4 11.9
ReTraCk+T 75.7 47.9 64.9 28.8 83.5 70.3 81.0 10.9 72.3 12.0
TIARA 57.7 0.0 56.9 0.0 51.9 0.0 65.8 22.4 65.8 26.3
TIARA+T 68.0 56.5 69.5 48.7 74.4 62.6 70.9 18.5 74.0 20.9

A+U

RnG-KBQA 91.6 75.8 86.4 66.6 87.6 72.0 84.0 37.5 82.4 39.1
RnG-KBQA+T 93.4 86.8 89.7 85.5 92.1 89.6 87.1 30.8 86.0 32.5
ReTraCk 89.6 82.2 86.4 74.4 90.3 85.9 79.0 9.8 71.7 10.8
ReTraCk+T 90.6 83.1 87.8 76.0 91.2 86.8 83.2 9.8 76.4 10.8
TIARA 83.7 50.6 83.6 40.5 88.7 52.5 91.6 62.5 90.9 63.7
TIARA+T 88.9 80.3 90.9 77.1 94.7 84.6 91.6 53.2 92.6 53.4

Table 4: Performance for different KBQA models for subsets of questions affected by different types of KB
incompleteness. Note that missing mention entities result in invalid logical form and other missing entities lead to
valid logical form with no answer. Names have the same meanings as in Tab. 3.

Train Model IID Zero-Shot
F1(R) EM F1(R) EM

A+U

RnG-KBQA 91.9 73.3 81.7 47.1
RnG-KBQA+T 94.3 75.9 85.9 59.5
ReTraCk 88.7 66.5 77.7 44.4
ReTraCk+T 90.1 66.6 80.7 45.7
TIARA 90.9 63.4 83.1 42.5
TIARA+T 94.5 78.7 88.5 62.0

Table 5: Performance of different models for unanswer-
able IID and zero-shot test scenarios in GrailQAbility.
Names have the same meanings as in Tab. 3.

RQ1. How do state-of-the-art KBQA models
perform for answerability detection?

Tab. 3 shows high-level performance for the
three models on answerable and unanswerable
questions. We observe the following.

(A) When training with only answerable ques-
tions (A training), all models perform poorly for
unanswerable questions in terms of EM, ReTraCk

Train Model Full Z-Shot Partial Z-Shot
F1(R) EM F1(R) EM

A+U

RnG-KBQA 87.2 75.9 78.0 40.0
RnG-KBQA+T 89.7 86.7 83.1 71.0
ReTraCk 86.2 65.0 73.6 54.5
ReTraCk+T 88.2 67.0 75.6 56.7
TIARA 85.7 41.9 73.7 20.0
TIARA+T 90.6 72.4 82.0 64.0

Table 6: Performance of different models for partial
zero-shot and full-zero test scenarios in GrailQAbility.
Names have the same meanings as in Tab. 3.

being better than the other two.
(B) Performance improves for unanswerable

questions with thresholding and A+U training but
remains below the skyline for answerable questions
with A training. The gap is ∼7 pct points for RnG-
KBQA and ReTraCk and ∼9 for TIARA.

(C) Not surprisingly, improvement for unanswer-
able questions comes at the expense of answer-

10346



able question performance. The best overall perfor-
mance (72.6 EM for TIARA) is ∼6.5 percentage
points lower than the best answerable performance
(79.2 EM for TIARA). Further, we observed that
answerable performance is affected by thresholding
(across iid, compositional and zero-shot settings)
for all models. This is also the case for the A+U
training in the zero-shot setting. More details can
be found in Tab.9 in appendix. The reason is that
for both forms of adaptation, the models incorrectly
predict l = NK for answerable questions.

(D) Unlike for answerable questions, there is a
very large gap between EM and F1(R) for unan-
swerable questions. This is because correct NA (no
answer) predictions are often associated with spuri-
ous logical form predictions, for all three models
but for different reasons. We discuss this further
under RQ4.

(E) Performance is better (by about 2-4 percent-
age points) with lenient answer evaluation than
with the regular counterpart. We found that this is
often because the models generate logical forms
with schema elements similar to the deleted ones,
and return as a result subsets or supersets of the old
answer instead of NA. As one example, the ques-
tion Which football leagues share the same foot-
ball league system as Highland Football League?
has 7 answers, but becomes unanswerable when
the relation soccer.football_league_system.leagues
is missing. The model answers a different ques-
tion - Which football leagues play the same sport
as Highland Football League - by substituting the
missing relation with sports.sports_league.sport,
and retrieves 152 answers, one of which, Scottish
Premier League, is also in the original answer.

RQ2. Are different forms of KB incomplete-
ness equally challenging?

In Tab. 4, we break down performance for unan-
swerable questions according to different forms
of KB incompleteness. Note that we have decom-
posed entity deletions further into deletion of men-
tioned entities (which affect the logical form) and
other entities in the path (which affect only the an-
swer paths). The following are the main takeaways.

(A) Performance (EM) is significantly poorer
for all forms of missing data elements than miss-
ing schema elements, even after thresholding and
retraining. TIARA is an exception and performs
better for missing data elements with A+U training.

(B) A+U training significantly boosts perfor-
mance for missing schema elements but not for

missing data elements. This is because RnG-
KBQA and ReTraCk learn to generate logical
forms involving schema elements. As a result,
schema-level patterns are easier to learn for unan-
swerable questions with missing schema elements
than those with missing data elements. Secondly,
these two rely on retrieved data paths to gener-
ate logical forms. When relevant data elements
are missing, the models fail to retrieve any famil-
iar input pattern and predict l = NK. The inter-
esting exception is TIARA. By virtue of generat-
ing logical forms conditioned on both retrieved
paths and schema elements and removing data path
constraints during decoding, it learns to generate
correct logical forms for missing data elements.
But this also leads to the generation of syntacti-
cally valid but incorrect logical forms for missing
schema elements. However, these typically have
low score and performance for missing schema
elements improves with thresholding.

(C) Gap between EM and F1(R) is small for
missing schema elements (l = NK) and extremely
large for missing data elements (l ̸= NK), with the
exception of A+U trained TIARA. Also, threshold-
ing hurts performance for missing data elements.
This is because questions with missing data ele-
ments have valid logical forms, and thresholding
and A+U training produce l = NK predictions
which are themselves incorrect but imply A = NA
which is correct. Thus we get correct A = NA
predictions for the wrong reason.

RQ3. How difficult is zero shot generalization
compared to iid for unanswerable questions?

Recall that a zero-shot unanswerable test in-
stance involves one or more missing KB elements
that are not encountered in any unanswerable train
instance with the same category of incompleteness.
Note that the definitions of iid and zero-shot make
use of unanswerable training instances, so that only
A+U training makes sense for this comparison.

(A) The decomposition of unanswerable per-
formance in terms of iid and zero-shot subsets is
shown in Tab. 5. As expected, iid performance
is better than zero-shot for all models. The best
performance is for TIARA+T (EM 78.7 for iid,
62 for zero-shot) which is marginally better than
RnG-KBQA+T.

(B) However, more interesting insights arise for
unanswerability from a deeper drill-down of zero-
shot instances. We define a zero-shot instance to be
full zero-shot when it does not involve any schema

10347



element seen in logical forms of answerable ques-
tions in train. The second test question in Fig. 1(C),
involving the missing relation located in is an exam-
ple. In contrast, a partial zero-shot unanswerable
question is part “seen answerable” in addition to
being part “unseen unanswerable”. Specifically, its
ideal logical form also contains at least one schema
element seen for answerable questions in train. The
third test question in Fig. 1(C) is an example. The
located in and works at relations are “new unseen”,
while writes and published at are “seen” in the first
train question, which is answerable. In GrailQA-
bility, zero-shot instances due to schema drop are
roughly 75% partial zero-shot and 25% full zero-
shot. Tab.6 shows full zero-shot and partial zero-
shot performance for unanswerable questions. We
see that all models find full-zero-shot to be sig-
nificantly easier than partial zero-shot. For RnG-
KBQA+T, which is the best model, there is a 15.7
percentage point difference in EM. The reason is
that partial zero-shot unanswerable questions have
some KB elements seen during training (in answer-
able contexts), and some zero-shot KB elements
(that make the question unanswerable) unseen dur-
ing training. This confuses the models, which often
labels these as answerable. The full zero-shot in-
stances do not have any similarity with training
answerable questions and are less confusing.

We have not considered compositional general-
ization for unanswerable questions. We may define
a compositional unanswerable question as one that
contains more than one missing KB element in
its ideal logical form or in its ideal paths, all of
which have appeared in unanswerable training in-
stances, but not all in the same instance. We hypoth-
esize that detecting unanswerability in this scenario
should only be hard as for IID unanswerability. We
plan to validate this experimentally in the future.
Additionally, since missing data elements consti-
tute an important aspect of unanswerability for KB
questions, we have included missing data elements
in our definitions of iid and zero-shot unanswer-
ability. However, distributions at the level of KB
data elements cannot realistically be learnt. There-
fore alternative definitions for these based only on
schema elements may be more practical.

RQ4. How do RnG-KBQA, ReTraCk and
TIARA compare for unanswerable questions?

On GrailQA (answerable questions with A-
training), RnG-KBQA outperforms ReTraCk (Ye
et al., 2022) and TIARA outperforms both (Shu

et al., 2022), and we see the same pattern in
GrailQAbility. In the context of unanswerable ques-
tions, we make the following observations.

(A) RnG-KBQA outperforms ReTraCk with
thresholding and retraining by a similar margin
as for answerable questions (12 pct points). How-
ever, TIARA outperforms RnG-KBQA by a much
smaller margin for unanswerable questions (2.6 pct
points) compared to answerable ones (5 pct points).

(B) With just A training, ReTraCk performs bet-
ter than the other two models for unanswerable
questions. This is due to the difference in fall-
back strategies when execution fails for generated
logical forms. ReTraCk’s fallback acknowledges
unanswerability — it returns empty logical form.
On the other hand, RnG-KBQA’s fallback assumes
answerability. It returns logical forms correspond-
ing to top-ranked paths or the nearest neighbor in
the training set. In settings with unanswerability,
ReTraCk naturally performs better. TIARA also
has the ability to return empty logical forms, but
this happens rarely — when execution fails for gen-
erated logical forms and additionally the ranker
output is empty (i.e. no enumerations)).

(C) We find that all models generate spu-
rious logical forms, but for different reasons.
RNG-KBQA hallucinates relations that do not
exist in the KB. For example, when the re-
lation cricket_tournament_event.tournament
is deleted, RnG-KBQA substitutes
that with the imaginary relationship
cricket_tournament_event.championship. Re-
TraCk and TIARA avoid this by virtue of
constrained decoding, but incorrectly replace
missing relations with other semantically or
lexically relevant relations for the same entity.
For example, for the question Which ac power
plug standard can handle more than 50 Hz?,
when the mains_power.ac_frequency relation is
missing, ReTraCk incorrectly replaces that with
power_plug_standard.rated_voltage.

(D) With A+U training and thresholding, Re-
TraCk performs almost at par with RnG-KBQA for
missing schema elements. But it performs signifi-
cantly worse for missing data elements, for which
its performance is hurt by these adaptations. This
is because ReTraCk’s constrained decoding forces
it to always generate l = NK in the absence of
valid answer paths, which cannot be alleviated by
additional training. Using decoding with syntac-
tic constraints, TIARA establishes the best balance

10348



between missing schema and data elements and out-
performs the other two models by a huge margin
for missing data elements. However for missing
schema elements RnG-KBQA is the best individual
model outperforming TIARA by 5-8 pct points.

6 Related Work

KBQA models: There has been extensive re-
search on KBQA in recent years. Retrieval based
approaches (Saxena et al., 2020; Zhang et al., 2022;
Mitra et al., 2022; Wang et al., 2022; Das et al.,
2022) learn to identify paths in the KB starting
from entities mentioned in the question, and then
score and analyze these paths to directly retrieve the
answer. Query generation approaches (Cao et al.,
2022c; Ye et al., 2022; Chen et al., 2021; Das et al.,
2021) learn to generate a logical form or a query
(e.g in SPARQL) based on the question, which is
then executed over the KB to obtain the answer.
Some of these retrieve KB elements first and then
use these in addition to the query to generate the
logical form (Ye et al., 2022; Chen et al., 2021).
Cao et al. (2022c) first generate a KB independent
program sketch and then fill in specific arguments
by analyzing the KB. All these models have so
far only been evaluated for answerable questions.
There is work on improving accuracy of QA over
incomplete KBs (Thai et al., 2022; Saxena et al.,
2020), but these do not address answerability.

Answerability in QA: Answerability has been ex-
plored for extractive QA (Rajpurkar et al., 2018),
conversational QA (Choi et al., 2018; Reddy et al.,
2019), boolean (Y/N) QA (Sulem et al., 2022) and
MCQ (Raina and Gales, 2022). While our work
is motivated by these, the nature of unanswerable
questions is very different for KBs compared to
unstructured contexts. Also, KBQA models work
differently than other QA models. These retrieve
paths and KB elements to prepare the context for a
question. Relevant context is then pieced together
to generate a logical query rather than the answer
directly. We find that this makes them more prone
to mistakes in the face of unanswerability.

QA Datasets and Answerability: Many bench-
mark datasets exist for KBQA (Gu et al., 2021;
Yih et al., 2016a; Talmor and Berant, 2018; Cao
et al., 2022a), but only contain answerable ques-
tions. QALD (Perevalov et al., 2022) is a multilin-
gual dataset containing “out-of-scope” questions
that may be considered unanswerable according

to our definition. However, the number of such
questions is very small (few tens in different ver-
sions of the dataset), which hinders any meaningful
bench-marking. It also does not have any finer cat-
egorization of such questions.

Unanswerable questions have been incorporated
into other QA datasets (Rajpurkar et al., 2018;
Sulem et al., 2022; Reddy et al., 2019; Choi et al.,
2018; Raina and Gales, 2022). These are typically
achieved by pairing one question with the context
for another question. Introduction of unanswerabil-
ity in the dataset in a controlled manner is signif-
icantly more challenging in KBQA, since the KB
is the single shared context across questions and
across train and test.

7 Conclusions and Discussion

We have introduced the task of detecting answer-
ability when answering questions over a KB. We
have released GrailQAbility1 as the first benchmark
dataset for KBQA with unanswerable questions,
along with extensive experiments on three KBQA
models. We find that no model is able to replicate
its answerable performance for the unanswerable
setting even with appropriate retraining and thresh-
olding, though both these methods of adaptation
help in improving performance substantially.

Further, we find that there is a trade-off between
robustness to missing schema elements and miss-
ing data elements. The models find schema-level
incompleteness easier to handle while data-level in-
completeness substantially affects the models that
enforce data-level constraints while decoding. An-
other observation is that the models get quite con-
fused for those unanswerable questions that contain
a schema element seen in an answerable train ques-
tion, along with a missing schema element that is
not seen at training. Finally, while TIARA turns out
to be the best overall model, different models find
different categories of unanswerability to be more
challenging. This suggests that new KBQA models
will need to combine architectural aspects of differ-
ent existing models to best handle unanswerability.
We believe that our dataset and observations will
inspire research towards developing more robust
and trustworthy KBQA models.

Acknowledgements

Prayushi is supported by a grant from Reliance
Foundation. Mausam is supported by grants by
TCS, Verisk, and the Jai Gupta chair fellowship

10349



by IIT Delhi. He also acknowledges travel sup-
port from Google and Yardi School of AI travel
grants. We thank the IIT Delhi HPC facility for its
computational resources.

Limitations

Our dataset creation process - introducing unan-
swerability into a dataset of answerable KB ques-
tions by deleting KB elements - limits the nature of
unanswerable questions. All of these become an-
swerable by completing the provided KB. However,
other kinds of unanswerability exists. Questions
may involve false premise, for example, C. Man-
ning works at which European University?, or may
not even be relevant for the given KB. We will
explore these in future work.

Complete training and inference for each model
with our dataset size takes 50-60 hours. As a result,
generating multiple results for the same models in
the same setting was not possible and our results
are based on single runs. However, using multiple
runs with smaller dataset sizes we have seen that
the variance is quite small. Also, the dataset cre-
ation involves sampling KB elements for deletion
and as such the generated dataset is one sample
dataset with unanswerability. This is unfortunately
unavoidable when creating one benchmark dataset.

Risks

Our work does not have any obvious risks. In fact,
addressing answerability reduces the risk of KBQA
models confidently generating incorrect answers in
spite of lack of knowledge.

References
Jonathan Berant, Andrew Chou, Roy Frostig, and Percy

Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing.

Shulin Cao, Jiaxin Shi, Liangming Pan, Lunyiu Nie,
Yutong Xiang, Lei Hou, Juanzi Li, Bin He, and Han-
wang Zhang. 2022a. KQA pro: A dataset with ex-
plicit compositional programs for complex question
answering over knowledge base. In Proceedings of
the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers).

Shulin Cao, Jiaxin Shi, Liangming Pan, Lunyiu Nie,
Yutong Xiang, Lei Hou, Juanzi Li, Bin He, and Han-
wang Zhang. 2022b. KQA Pro: A large diagnostic
dataset for complex question answering over knowl-
edge base. In ACL’22.

Shulin Cao, Jiaxin Shi, Zijun Yao, Xin Lv, Jifan Yu,
Lei Hou, Juanzi Li, Zhiyuan Liu, and Jinghui Xiao.
2022c. Program transfer for answering complex
questions over knowledge bases. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers).

Shuang Chen, Qian Liu, Zhiwei Yu, Chin-Yew Lin, Jian-
Guang Lou, and Feng Jiang. 2021. ReTraCk: A flexi-
ble and efficient framework for knowledge base ques-
tion answering. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing: System Demon-
strations.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-
tau Yih, Yejin Choi, Percy Liang, and Luke Zettle-
moyer. 2018. QuAC: Question answering in context.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing.

Rajarshi Das, Ameya Godbole, Ankita Naik, Elliot
Tower, Manzil Zaheer, Hannaneh Hajishirzi, Robin
Jia, and Andrew Mccallum. 2022. Knowledge base
question answering by case-based reasoning over
subgraphs. In Proceedings of the 39th International
Conference on Machine Learning.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya God-
bole, Ethan Perez, Jay Yoon Lee, Lizhen Tan, Lazaros
Polymenakos, and Andrew McCallum. 2021. Case-
based reasoning for natural language queries over
knowledge bases. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. ArXiv, abs/1810.04805.

Evgeniy Gabrilovich, Michael Ringgaard, and Amarnag
Subramanya. 2013. Facc1: Freebase annotation of
clueweb corpora, version 1 (release date 2013-06-26,
format version 1, correction level 0).

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy
Liang, Xifeng Yan, and Yu Su. 2021. Beyond i.i.d.:
Three levels of generalization for question answering
on knowledge bases. In Proceedings of the Web
Conference 2021, WWW ’21.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780.

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux,
and Jason Weston. 2019. Poly-encoders: Trans-
former architectures and pre-training strategies for
fast and accurate multi-sentence scoring. arXiv
preprint arXiv:1905.01969.

Pierre-Emmanuel Mazaré, Samuel Humeau, Martin
Raison, and Antoine Bordes. 2018. Training mil-
lions of personalized dialogue agents. arXiv preprint
arXiv:1809.01984.

10350

https://doi.org/10.1162/neco.1997.9.8.1735


Bonan Min, Ralph Grishman, Li Wan, Chang Wang,
and David Gondek. 2013. Distant supervision for
relation extraction with an incomplete knowledge
base. In North American Chapter of the Association
for Computational Linguistics.

Sayantan Mitra, Roshni Ramnani, and Shubhashis Sen-
gupta. 2022. Constraint-based multi-hop question
answering with knowledge graph. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies: Industry Track.

Laurel Orr, Megan Leszczynski, Simran Arora, Sen
Wu, Neel Guha, Xiao Ling, and Christopher Re.
2020. Bootleg: Chasing the tail with self-supervised
named entity disambiguation. arXiv preprint
arXiv:2010.10363.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Aleksandr Perevalov, Dennis Diefenbach, Ricardo Us-
beck, and Andreas Both. 2022. Qald-9-plus: A mul-
tilingual dataset for question answering over dbpe-
dia and wikidata translated by native speakers. In
2022 IEEE 16th International Conference on Seman-
tic Computing (ICSC).

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020a. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020b. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Vatsal Raina and Mark Gales. 2022. Answer uncertainty
and unanswerability in multiple-choice machine read-
ing comprehension. In Findings of the Association
for Computational Linguistics: ACL 2022.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers).

Siva Reddy, Danqi Chen, and Christopher D. Manning.
2019. CoQA: A Conversational Question Answer-
ing Challenge. Transactions of the Association for
Computational Linguistics, 7:249–266.

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla.
2022. Sequence-to-sequence knowledge graph com-
pletion and question answering. In Proceedings of
the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers).

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar.
2020. Improving multi-hop question answering over
knowledge graphs using knowledge base embeddings.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics.

Yiheng Shu, Zhiwei Yu, Yuhan Li, Börje Karlsson,
Tingting Ma, Yuzhong Qu, and Chin-Yew Lin. 2022.
TIARA: Multi-grained retrieval for robust question
answering over large knowledge base. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing.

Elior Sulem, Jamaal Hay, and Dan Roth. 2022. Yes,
no or IDK: The challenge of unanswerable yes/no
questions. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies.

Haitian Sun, Tania Bedrax-Weiss, and William Cohen.
2019. PullNet: Open domain question answering
with iterative retrieval on knowledge bases and text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP).

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers).

Dung Thai, Srinivas Ravishankar, Ibrahim Abdelaziz,
Mudit Chaudhary, Nandana Mihindukulasooriya,
Tahira Naseem, Rajarshi Das, Pavan Kapanipathi,
Achille Fokoue, and Andrew McCallum. 2022. Cbr-
ikb: A case-based reasoning approach for question
answering over incomplete knowledge bases.

Yu Wang, Vijay Srinivasan, and Hongxia Jin. 2022. A
new concept of knowledge based question answering
(KBQA) system for multi-hop reasoning. In Proceed-
ings of the 2022 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System

10351

https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2204.08554
https://arxiv.org/abs/2204.08554
https://arxiv.org/abs/2204.08554
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6


Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou,
and Caiming Xiong. 2022. RNG-KBQA: Genera-
tion augmented iterative ranking for knowledge base
question answering. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016a. The value of se-
mantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers).

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016b. The value of se-
mantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206, Berlin,
Germany. Association for Computational Linguis-
tics.

Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie
Tang, Cuiping Li, and Hong Chen. 2022. Subgraph
retrieval enhanced model for multi-hop knowledge
base question answering. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

A Appendix

A.1 Details of Dataset Creation
In this section, we describe more details of the
dataset creation process.

We assume the given KB to be the ideal KB
G∗ and the given logical forms and answers to be
the ideal answers a∗ and ideal logical forms l∗ for
the questions Q. We then create a KBQA dataset
Qau with answerable and unanswerable questions
with an ‘incomplete’ KB Gau by iteratively drop-
ping KB elements from G∗. Prior work on QA
over incomplete KBs has explored algorithms for
dropping facts from KBs (Saxena et al., 2020; Thai
et al., 2022). We extend this for all categories of
KB elements (type, relation, entity and fact) and
explicitly track and control unanswerability. At
step t, we sample a KG element g from the current
KB Gt−1

au , identify all questions q in Qt−1
au whose

current logical form lt−1 or path pt−1 contains g,
and remove g from it. Since q may have multi-
ple answer paths, this may only eliminate some
answers from at−1 but not make it empty. If g
eliminate all answers from at−1, thereby making
q unanswerable. If q becomes unanswerable, we
mark it appropriately (with at =NA or lt =NK)

and update Gt
au = Gt−1

au \{g}. This process is con-
tinued until Qt contains a desired percentage pu of
unanswerable questions.

One of the important details is sampling KB
element g to drop. In an iterative KB creation or
population process, whether manual or automated,
popular KB elements are less likely to be missing
at any time. Therefore we sample g according
to inverse popularity in G∗. However, the naive
sampling process is inefficient since it is likely
to affect the same questions across iterations or
not affect any question at all. So, the sampling
additionally considers the presence of g for Qt

au —
the set of questions in Qt

au whose current logical
form or answer paths contains g. Unlike schema
elements, for selecting data elements to drop, we
consider all data elements to be equally popular.

Next we describe how we drop all categories of
KB elements in the same dataset.

Combining Drops: Our final objective is a
dataset Qau that contains pu percentage of unan-
swerable questions with contributions pfu, peu, pru
and ptu from the four categories of incompleteness.
Starting with the original questions Q∗ and KB G∗,
we execute type drop, relation drop, entity drop
and fact drop with the corresponding percentage
in sequence, in each step operating on the updated
dataset and KB. For analysis, we label questions
with the drop category that caused unanswerability.
Note that a question may be affected by multiple
categories of drops at the same time.

GrailQA (Gu et al., 2021) only contains the
SPARQL queries for the questions (in English lan-
guage) and the final answers, but not the answer
paths. To retrieve the answer paths, we modify
the provided SPARQL queries to return the answer
paths in addition to the final answer, and then ex-
ecute these queries. In Tab.7, we include detailed
statistics for unanswerable questions in GrailQA-
bility. We will release the GrailQAbility under the
same license as GrailQA i.e., CC BY-SA 4.0.

A.2 Lenient Answer Evaluation

Under lenient evaluation (L) for a given question,
we calculate precision and recall w.r.t both gold
answer in Qau and ideal answer in Q. We consider
maximum over Qau and Q for precision and recall,
and then calculate F1 as usual for calculating F1(L).

10352

https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033


Split
Type Drop Relation Drop Entity Drop Fact Drop

IID Z-Shot IID Z-Shot IID Z-Shot IID Z-Shot
NK P (NK) F (NK) NK P (NK) F (NK) NA NK NA NK NA NA

Train 2667 0 0 2780 0 0 1288 1663 0 0 2952 0
Dev 211 154 47 211 146 55 91 89 87 151 176 241
Test 422 330 96 425 298 107 178 193 179 291 352 487

Table 7: Statistics for unanswerable questions (P: Partial and F: Full) in GrailQAbility due to different types of KB
incompleteness.

Split IID Compositional Z-Shot
Train 23,933 0 0
Dev 1691 488 1220
Test 3386 981 2441

Table 8: Statistics for answerable questions in GrailQA-
bility.

A.3 Model Adaptation and Training Details

RnG-KBQA: RnG-KBQA (Ye et al., 2022) con-
sists of four modules: Entity Linker, Entity Disam-
biguation, Ranker and Generator. We use the same
training objective and base models for re-training
of these components on GrailQAbility. Similar
to GrailQA (Gu et al., 2021), for mention detec-
tion, we fine-tune a BERT-base-uncased model for
3 epochs with a learning rate of 5e-5 and a batch
size of 32. For training the Entity Disambiguator,
similar to RnG-KBQA, we fine-tuned a BERT-base-
uncased (Devlin et al., 2019) model for 3 epochs
with a learning rate of 1e-3 and a batch size of
16. We use a non-bootstrapped strategy for sam-
pling negative logical forms during the training of
the ranker and fine-tune a BERT-based-uncased
model for 3 epochs with a learning rate of 1e-3
and a batch size of 2. As a generator, we fine-
tune T5-base (Raffel et al., 2020a) for 10 epochs
with a learning rate of 3e-5 and a batch size of
8. During inference with the generator, similar to
RnG-KBQA, we use a beam size of 10 but due to
the presence of NA questions in the test we do not
perform execution augmented-inference. We com-
pute the entity threshold τe and and logical form
threshold τl based on disambiguation score and
perplexity respectively by tuning on the validation
set. During inference we use τe = −1.3890 and
τl = 1.0030 for RnG-KBQA A and τe = −0.7682
and τl = 1.0230 for RnG-KBQA A+U.

RnG-KBQA takes the (question, logical form)
pair as input during training where the valid logi-
cal form also contains information about the men-
tioned entities in the question. We train two RnG-
KBQA based KBQA models, one with answer-

able questions and the other with a combination
of answerable and unanswerable questions. Dur-
ing training with A+U, we train mention detection
and entity disambiguation model with questions
having valid logic form i.e., l = NK, and perform
entity linking for questions where l ̸= NK. And
Generator is trained to predict “no logical form”
for unanswerable questions with l = NK and valid
logical form for remaining training questions.

We use Hugging Face (Wolf et al., 2020), Py-
Torch (Paszke et al., 2019) for our experiments and
use the Freebase setup specified on github 6. We
use NVIDIA A100 GPU with 20 GB GPU mem-
ory and 60 GB RAM for training and inference
of RnG-KBQA on GrailQAbility which takes 60
hours.

ReTraCk: ReTraCk (Chen et al., 2021) includes
three main components - retriever, transducer, and
checker. Retriever consists of an entity linker that
links entity mentions to corresponding entities in
KB and a schema retriever that retrieves relevant
schema items given a question. The entity linker
has two stages - the first stage follows the entity
linking pipeline described in (Gu et al., 2021) fol-
lowed by a BOOTLEG (Orr et al., 2020) model
used for entity disambiguation. We have used the
pre-trained entity linker of ReTraCk. We remove
the dropped entities from the predictions of the
entity linker. The schema retriever leverages the
dense retriever framework (Mazaré et al., 2018;
Humeau et al., 2019; Wolf et al., 2020) for obtain-
ing classes(types) and relations. Same as ReTraCk,
we use pre-trained BERT-base-uncased model as a
schema retriever and fine-tune it on GrailQAbility
for 10 epochs with a learning rate of 1e-5. The
best model is selected on basis of recall@top_k
where top_k is 100 and 150 for types and relations
respectively. We train two schema retriever models,
one for A and one for A+U. For A, all answerable
questions are used for training, while for A+U we
use non-NK questions i.e. questions having only

6https://github.com/dki-lab/Freebase-Setup

10353

https://github.com/dki-lab/Freebase-Setup


Train Model IID Compositional Zero-Shot
F1(L) F1(R) EM F1(L) F1(R) EM F1(L) F1(R) EM

A

RnG-KBQA 85.5 85.4 83.2 65.9 65.9 60.2 72.7 72.7 67.3
RnG-KBQA+T 79.0 79.0 77.3 58.8 58.8 54.5 65.8 65.8 61.9
ReTraCk 79.6 79.5 75.6 63.1 63.1 55.4 51.0 51.0 46.8
ReTraCk+T 79.0 78.9 75.2 61.6 61.6 53.9 47.8 47.8 44.5
TIARA 88.9 88.8 86.8 74.2 74.2 65.9 78.1 78.1 73.9
TIARA+T 84.1 84.0 82.6 67.7 67.7 60.9 70.6 70.6 67.5

A+U

RnG-KBQA 85.4 85.3 83.3 65.8 65.8 60.8 66.9 66.9 62.6
RnG-KBQA+T 80.9 80.9 79.2 60.5 60.5 56.1 61.1 61.1 57.6
ReTraCk 77.8 77.6 73.9 60.6 60.6 53.5 39.0 39.0 35.8
ReTraCk+T 77.7 77.5 73.8 59.9 59.9 52.8 38.9 38.9 35.7
TIARA 89.1 89.0 87.3 73.1 73.1 68.7 72.9 72.9 69.6
TIARA+T 85.5 85.5 84.2 66.3 66.3 62.8 66.8 66.8 64.2

Table 9: Performance of different models for answerable IID, compositional, and zero-shot test scenarios in
GrailQAbility. Names have the same meanings as in Tab. 3.

valid logical forms.

Transducer modules consist of a question en-
coder and a grammar-based decoder. ReTraCk uses
a set of grammar rules for logical form. For NA
training we have added a new grammar rule i.e.
num → NK where NK is a terminal symbol rep-
resenting No Knowledge. So for a question with
no logical form, the sequence of grammar rules
will be @start@ → num and num → NK. We
have trained the transducer model with updated
grammar rules for GrailQAbility. Training set-
tings and hyperparameters are same as ReTraCk
i.e. the BERT-base-uncased model with Adam op-
timizer and learning rate 1e-3, while learning rate
for BERT is set to 2e-5. The best model is selected
on basis of the average exact match calculated be-
tween predicted logical form and golden logical
form. Additionally, ReTraCk uses a Checker to
improve the decoding process via incorporating
semantics of KB. It consists of 4 types of checks
i.e; Instance level, Ontology level, real and virtual
execution. We have modified the stopping criteria
for real execution. ReTraCk’s real execution termi-
nates only when it finds a non-empty answer after
query execution whereas we accept empty answers
also after the execution of the query successfully
(since unanswerable training involves empty an-
swers). We compute the logical form threshold τl
by tuning on the validation set. During inference
we use τl = −6.5 for ReTraCk A and τl = −7.5
for ReTraCk A+U. We use NVIDIA V100 GPU
with 32 GB GPU memory and 60 GB RAM for the
training of ReTraCk on GrailQAbility which takes
50 hours. And we do inference on a CPU machine
with 80GB RAM which takes 3 hours.

TIARA: TIARA (Shu et al., 2022) consist of
four modules - Entity Retrieval, Schema Retriver,
Exemplary Logical Form Retrieval and Genera-
tor. Entity Retrieval has three steps - mention
detection, candidate generation, and entity disam-
biguation. They have used there own mention de-
tector called SpanMD. But since SpanMD is not
open sourced so as suggested by authors we have
used PURE mention detector which has similar
performance to SpanMD. Candidates are gener-
ated using FACC1 (Gabrilovich et al., 2013) and
entity disambiguation pipeline is leveraged from
(Ye et al., 2022). The logical form retrieval in-
cludes enumeration and ranking. It follows same
methods as proposed in (Gu et al., 2021) and
(Ye et al., 2022). So training process and hyper-
parameters for this module is same as described
in RnG-KBQA section above. Schema retrieval is
implemented by a cross-encoder using pretrained
BERT-base-uncased model. The model is trained
for 10 epochs and best model is selected on the
basis of recall@top_k where k is 10 for both rela-
tions and classes. To train schema-retriever for A
model we use all answerable questions while for
A+U model we use questions with valid logical
forms. Generator in TIARA takes following input -
question, outputs of Entity Retrieval, Schema Re-
triver, Exemplary Logical Form Retrieval and out-
puts a logical form. Generation is performed by a
transformer-based seq2seq model - T5(base) (Raf-
fel et al., 2020a). The Generator is fine-tuned for
10 epochs with learning rate 3e-5 and batch size of
8. We have trained two Generator models - A and
A+U. For A model, all answerable questions are
used for training, and for A+U model we use all an-
swerable and unanswerable questions for training.
For unanswerable questions the model is trained

10354



to generate output as "no logical form". Similar to
above models TIARA also performs beam search
during inference with a beam size of 10. Addi-
tionally TIARA also performs constraint decoding
to reduce generation errors on logical form oper-
ators and schema tokens. It uses a prefix trie to
validate the sequence of tokens generated. After
generation it is checked if the output is executable
or not. Output is considered valid only if it exe-
cutable (after constrained generation). Note: We
consider executable queries with empty answers as
valid query.

We use Hugging Face (Wolf et al., 2020), Py-
Torch (Paszke et al., 2019) for our experiments
and use the Freebase setup specified on github
7.Training configurations for schema retriver are
same as mentioned in ReTraCk and training con-
figurations for Exemplary Logical Form Retrieval
is same as mentioned in Rng-KBQA. We use
NVIDIA A100 GPU with 40 GB GPU memory
and 32 GB RAM for training TIARA Generator
which takes around 8 hours for one model. Infer-
ence is performed parallely on 8 A100 GPUs with
40 GB GPU memory which takes around 1.5-2
hours.

7https://github.com/dki-lab/Freebase-Setup

10355

https://github.com/dki-lab/Freebase-Setup


ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section 8

�3 A2. Did you discuss any potential risks of your work?
Section 9

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 3

�3 B1. Did you cite the creators of artifacts you used?
Section 3 and Appendix A.1

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Appendix A.1

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Appendix A.1

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 3

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
We have provided relevant statistics about the data in Table 2,6 and 7.

C �3 Did you run computational experiments?
Appendix A.3

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix A.3

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

10356

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Appendix A.3

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 5 and Section 8

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Appendix A.3

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

10357


