
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 10391–10405

July 9-14, 2023 ©2023 Association for Computational Linguistics

Revisiting Token Dropping Strategy in Efficient BERT Pretraining
Qihuang Zhong1, Liang Ding2, Juhua Liu3∗, Xuebo Liu4

Min Zhang4, Bo Du1∗, Dacheng Tao5

1 National Engineering Research Center for Multimedia Software, Institute of Artificial Intelligence, School of Computer Science

and Hubei Key Laboratory of Multimedia and Network Communication Engineering, Wuhan University, China
2 JD Explore Academy, China 3 Research Center for Graphic Communication, Printing and Packaging,

and Institute of Artificial Intelligence, Wuhan University, China
4 Institute of Computing and Intelligence, Harbin Institute of Technology, China 5 University of Sydney, Australia

{zhongqihuang, liujuhua, dubo}@whu.edu.cn, {liangding.liam, dacheng.tao}@gmail.com

Abstract

Token dropping is a recently-proposed strategy
to speed up the pretraining of masked language
models, such as BERT, by skipping the com-
putation of a subset of the input tokens at sev-
eral middle layers. It can effectively reduce
the training time without degrading much per-
formance on downstream tasks. However, we
empirically find that token dropping is prone
to a semantic loss problem and falls short in
handling semantic-intense tasks (§2). Moti-
vated by this, we propose a simple yet effective
semantic-consistent learning method (SCTD)
to improve the token dropping. SCTD aims to
encourage the model to learn how to preserve
the semantic information in the representation
space. Extensive experiments on 12 tasks show
that, with the help of our SCTD, token drop-
ping can achieve consistent and significant per-
formance gains across all task types and model
sizes. More encouragingly, SCTD saves up
to 57% of pretraining time and brings up to
+1.56% average improvement over the vanilla
token dropping.

1 Introduction

Masked language models (MLMs), such as
BERT (Devlin et al., 2019) and its variants (Liu
et al., 2019; He et al., 2020; Zhong et al., 2023a)1,
have achieved great success in a variety of natural
language understanding (NLU) tasks. However,
with the scaling of model size and corpus size, the
pretraining of these BERT-style models becomes
more computationally expensive and memory in-
tensive (Jiao et al., 2020; Hou et al., 2022). Hence,
it is crucial and green to speed up the training and
reduce the computational overhead for BERT-style
pretraining (Zhang and He, 2020; Schwartz et al.,
2020).

∗ Corresponding Authors: Juhua Liu (e-mail: liu-
juhua@whu.edu.cn), Bo Du (e-mail: dubo@whu.edu.cn)

1We refer to these models as BERT-style models.

Figure 1: Performance of BERTbase on several down-
stream tasks. We see that: 1) Despite the remarkable
performance on general tasks (i.e., MNLI and SST-2),
token dropping leads to dramatically poor performance
on the semantic-intense task (i.e., RTE). 2) Our SCTD
achieves consistent performance gains among all tasks.

To achieve this goal, various training-efficient
approaches have been developed and summa-
rized (Shoeybi et al., 2019; You et al., 2019; Zhang
and He, 2020; Shen et al., 2023). Among these
efforts, a recently-proposed token dropping2 strat-
egy (Hou et al., 2022) has attracted increasing at-
tention owing to its easy-to-implement algorithm
and impressive efficiency (reducing the training
cost by 25% without much average performance
dropping) (Yao et al., 2022; Chiang et al., 2022).
Different from most previous works that focus on
changing model architecture or optimization pro-
cess, token dropping aims to improve training effi-
ciency by dynamically skipping the compute of the
redundant (unimportant) tokens that are less infor-
mative to the current training, at some middle lay-
ers of BERT during training. Although achieving a
remarkable speedup, the performance improvement
of token dropping is usually limited and unstable,
compared to the baseline training scheme. More
specifically, we empirically found that token drop-
ping falls short in handling semantic-intense tasks,
as shown in Figure 1. This motivates us to explore
and address the limitations of token dropping in
this paper.

In light of the conventional wisdom that “seman-
2We also refer to it as “token drop” in some cases.

10391

tic information is mainly encoded in the BERT’s
intermediate and top layers” (Jawahar et al., 2019),
we suspected, apriori, that the corruption caused
by the removal of unimportant tokens would break
the sentence structure, and may easily lead to the
semantic drift of sentence representations, as also
observed in many similar scenarios (Zhang et al.,
2022; Wang et al., 2021). To verify this conjecture,
we conduct a series of preliminary analyses on a
representative BERT model, and find that:

❶ The training dynamics of the token drop-
ping show a significant semantic drift.

❷ The representation of a well-trained BERT
with token dropping contains less semantics.

❸ The downstream semantic-intense tasks
show a clear performance degradation.

Based on these observations, we can basically
conclude that (one of) the limitation of token drop-
ping is the semantic loss3 problem, which causes
vulnerable and unstable training of BERT models.
To address this limitation, we propose a simple
yet effective semantic-consistent learning method
(referred to as SCTD) to improve token dropping.
The principle of SCTD is to encourage the BERT to
learn how to preserve the semantic information in
the representation space. Specifically, SCTD first
introduces two semantic constraints to align the
semantic information of representations between
baseline- and token dropping-based models, and
then adopts a novel hybrid training approach to
further improve the training efficiency.

We evaluate SCTD on a variety of bench-
marks, including GLUE (Wang et al., 2018), Super-
GLUE (Wang et al., 2019) and SQuAD v1/v2 (Ra-
jpurkar et al., 2016, 2018), upon two typical MLMs:
BERT-BASE and -LARGE. Results show that
SCTD can not only bring consistent and signifi-
cant improvements (up to +1.56% average score
among all tasks) into the token dropping strategy
on both BERT models, but also alleviate the se-
mantic loss problem. Moreover, compared to the
standard BERT models, SCTD can also save up
to 48% of pretraining time while achieving com-
parable performance, and further achieve +1.42%
average gain for the same training iterations.

To summarize, our contributions are as follows:
3As we find that BERT models trained with token dropping

are prone to losing some semantic-related polarities, e.g., less
semantic knowledge in the dropped layers, we refer to this
phenomenon as “semantic loss" in the paper.

• Our study reveals the semantic loss problem
in the token dropping strategy, which limits its
performance on downstream tasks, especially
on semantic-intense tasks.

• We propose a simple yet effective, plug-in-
play approach (SCTD) to alleviate the seman-
tic loss and further improve efficiency.

• Experiments show that SCTD outperforms
the vanilla token dropping with up to +1.56%
average improvement and saves up to 57% of
pretraining time.

2 Revisiting Token Dropping Strategy

In this section, we first review the background of
token dropping strategy and then present the empir-
ical analyses of this strategy in detail.

Figure 2: Illustration of BERT-style models with (a)
baseline training and (b) token dropping training. In (b),
the “group1” and “group2” denote the important and
unimportant (skipped) tokens, respectively. The LSCl

and LSCg (in red arrows) refer to the semantic-align
objectives used in our SCTD.

2.1 Preliminaries

Suppose that we focus on pretraining the BERT
with l transformer layers. Let Li denote the i-th
(i ∈ {1, ..., l}) layer, Xi ∈ Rsi×d be the output ten-
sors of i-th layer, where si is the sequence length
of i-th layer and d is the hidden size. Notably, X0

denotes the input (after embedding) of the model.
For the baseline training process (as illustrated in
Figure 2 (a)), full-sequence tokens will be sequen-
tially fed into all layers, i.e., s0 = s1 = ... = sl. In

10392

this way, we can obtain the final output tensors Xl

of l-th layer, and then use a cross-entropy loss to
optimize the training process as follow:

LMLM = E
(
−
∑

logP (Y |Xl)
)
, (1)

where Y denotes the ground-truths.
For token dropping (as illustrated in Figure 2

(b)), different from the full-sequence training, the
training of a subset of unimportant tokens in mid-
dle layers will be skipped4. In practice, for stable
training, token dropping follows the full-sequence
training at several first layers (i.e., from 1-th layer
to (l/2 − 1)-th layer). Then, it uses several im-
portance scores/metrics to determine the dropped
tokens and divides tokens into two groups, where
we denote the “group1” as important tokens and
“group2” as unimportant (dropped) tokens. The
group1 tokens will be fed into later layers (i.e.,
from (l/2− 1)-th layer to (l − 1)-th layer), while
the computations of the group2 tokens are skipped.
Lastly, all tokens are merged before the last layer
and then are used to obtain the final outputs5 X̃l.
The loss function of token dropping is similar to
Eq. 1, and we refer to it as L∗

MLM .

2.2 Empirical Analyses

In this part, to verify whether removing the unim-
portant tokens will cause the loss of semantic infor-
mation and thus hinder the performance of token
dropping, we conduct systematic analyses from
three aspects: 1) revealing the semantic drift prob-
lem during training dynamics; 2) probing the
representation of a well-trained model with to-
ken dropping; 3) evaluating the downstream per-
formance on semantic-intense tasks. In practice,
for comparison, we pre-train the representative
BERTbase models with baseline training scheme
and token dropping, respectively. Through the
above analyses, we empirically observe that:

❶ The training dynamics of the token drop-
ping show a significant semantic drift. As sus-
pected in §1, the corruption caused by the removal
of several tokens would break the sentence struc-
ture, thus leading to semantic drift. Here, we ver-
ify this conjecture by quantitatively estimating the

4Hou et al. (2022) state that such a process would not only
hardly damage the effect of pretraining, but also reduce the
computation costs.

5To distinguish from final outputs Xl of baseline training,
we denote it as X̃l.

loss of semantic information contained in the cor-
rupted sentence. For measuring the semantic infor-
mation, we first adopt the off-the-shelf Sentence-
BERT (Reimers and Gurevych, 2019) to capture
the semantic representations. Then, suppose that
the original sentence (without any corruption, such
as masking or token dropping) contains full seman-
tic information, we refer to the cosine similarity
between semantic representations of the corrupted
and original sentences as a metric to measure the
semantic drift in the corrupted sentence.

Figure 3: The comparison of similarity and valida-
tion curves between baseline and token dropping on
BERTbase pretraining. The left y-axis is the cosine simi-
larity between corrupted- (in baseline and token drop-
ping settings, respectively) and original sentences, while
the right y-axis is the validation results. The similarity
and validation gaps are illustrated in the inserted figure.

In practice, given some sentences randomly sam-
pled from training data, we follow the above pro-
cess and measure the (average) semantic drift dur-
ing the baseline/token dropping training dynamics,
respectively. For reference, we also report the vali-
dation results and illustrate all results in Figure 3.
It can be found that: compared to baseline train-
ing, i) sentence semantics in token dropping drifts
more from the original semantics; ii) token drop-
ping hinders the full learning of BERT, especially
in the middle and later training stages (after 75K
steps). To have a closer look, we show the similar-
ity and validation gaps between both settings in the
inserted figure of Figure 3. As seen, with the train-
ing going on, both gaps have a similar tendency to
increase6, especially at the beginning of training.
In general, these analyses indicate that there is a
significant semantic drift during training dynamics

6The curve of validation gap tends to flatten in the later
training stage, as both models are going to converge.

10393

of token dropping, which shows a correlation with
the performance drop of token dropping.

❷ The representation of a well-trained BERT
with token dropping contains less semantics.
In addition to the analysis during training dynamics,
we then investigate the semantic properties of well-
trained models. Specifically, following many prior
works (Conneau et al., 2018; Jawahar et al., 2019;
Ding et al., 2020; Zhong et al., 2022a), we perform
several semantic-aware probing tasks on the sen-
tence representations at different layers. Taking
the Tense and subject number (SubjNum) tasks as
examples, we provide the comparison of semantic
information between baseline and token dropping
at different layers in Figure 4.

Figure 4: The comparison of semantic information
between baseline and token dropping on different
BERTbase layers. We see that, for token dropping, as
the number of dropped layers (from layer 5 to layer
11, illustrated in shadow areas) increases, the semantic
information saved by the model is significantly reduced.

We observe that there is more semantic information
in the top layers (from layer 9 to layer 12) of BERT
trained with the baseline scheme, which is similar
to the finding of Jawahar et al. (2019). However,
when using the token dropping, the semantic in-
formation contained in BERT tends to decrease in
the dropped layers (from layer 5 to layer 11). The
semantic information of token dropping at 11-th
layer drops dramatically, which is much lower (up
to 25.2 points) than that of baseline. Moreover, due
to the vulnerable and unstable training, the final
representation in token dropping at the last layer
is also sub-optimal. These results basically prove
that the semantic drift of token dropping damages
the semantic learning ability of BERT.

❸ The downstream semantic-intense tasks show
a clear performance degradation. The afore-
mentioned analyses mainly focus on interpreting
the semantic properties of models. Here, we fur-
ther evaluate the downstream performance of to-
ken dropping. Specifically, several representa-

tive semantic-intense7 tasks are used, including
OntoNotes 5.0 (Weischedel et al., 2013) (Onto. for
short), CoNLL03 (Sang and De Meulder, 2003),
MRPC (Dolan and Brockett, 2005) and SICK-
Relatedness (Marelli et al., 2014) (SICK-R for
short). Notably, for Onto. and CoNLL03, we report
the few-shot (32-shot) performance to enlarge the
performance difference between different models.
We measure the development performance of each
task using its corresponding evaluation metrics, and
report the contrastive results in Table 1.

Method
Onto. CoNLL03 MRPC SICK-R Avg.

F1 F1 Acc. Spear.

Baseline 30.16 54.48 86.80 69.08 60.13
token drop 27.49 53.73 85.50 66.16 58.22

∆ (↓) -2.67 -0.75 -1.30 -2.92 -1.91

Table 1: Experimental results of BERTbase trained with
different methods on several semantic-intense tasks. We
observe that token dropping strategy leads to poor per-
formance among all these tasks.

As seen, there is a great discrepancy between
the downstream performance of baseline and to-
ken dropping. Overall, token dropping consis-
tently under-performs the baseline with an average
1.91% performance drop, among all these semantic-
intense tasks. Specifically, as for SICK-R (usually
used to measure the semantic textual similarity),
token dropping performs much worse (up to ↓2.92)
than the baseline. These results indicate that, due
to the semantic drift, BERT with token dropping
falls short in handling the semantic-intense tasks.

3 Improving Token Dropping with
Semantic-Consistent Learning

Based on the observations in §2, we recognize
that it is essential to alleviate the side effect (i.e.,
semantic loss problem) of token dropping. To
achieve this goal, we propose a simple yet effective
semantic-consistent learning (SCTD) framework
Specifically, our SCTD adopts two key techniques
as follows:

Semantic-Consistent Learning. The principle
of our SCTD is to encourage the model to pre-
serve the semantic information in the represen-
tation space. Inspired by the success of knowl-
edge distillation (Hinton et al., 2015; Xu et al.,

7We chose tasks based on whether they require semantic-
related information to solve. For instance, we included
MRPC (Dolan and Brockett, 2005), a task that predicts if
two sentences are semantically equivalent.

10394

Figure 5: The comparison of training flow between
the vanilla token dropping and our SCTD. The “token
drop” and “baseline” modules refer to the corresponding
training processes in Figure 2. For SCTD, “×(Fi − 1)”
means repeating the token dropping process multiple
times, where Fi is a fixed interval.

2020), SCTD refers to the model with baseline
training (containing more semantic information)
as the teacher to guide the training of students
(i.e., model trained with token dropping). Con-
sidering that it is usually unavailable to obtain the
pre-trained teacher model, we hereby recast it as a
self-distillation process (Zhang and Sabuncu, 2020;
Ding et al., 2021b). Given the same input X0, we
input X0 into the model to perform twice forward-
propagation processes, where one is for token drop-
ping and the other is for baseline training. The
outputs of baseline training (Xl) are used as the
teacher distributions to teach the student (outputs
X̃l of token dropping). As such, the student can
learn how to align the semantic information with
the teacher. More specifically, SCTD introduces
two semantic constraints in a local-to-global man-
ner (as illustrated in Figure 2). For the global one,
we use the KL divergence to constrain the global-
level semantic distributions of baseline- and token-
dropping-based models at the last l-th layer, as
follows:

LSCg = KL
(
p(Xl)||p(X̃l)

)
, (2)

where p(Xl) and p(X̃l) denote the corresponding
distributions respectively. On the other hand, in
slight of the finding that semantic loss is the most
significant in the penultimate layer (l − 1) in token
dropping setting (Figure 4), we further construct
a local-level semantic constraint at the (l − 1)-th
layer, which is similar to Eq. 2:

LSCl
= KL

(
p(Xl−1)||p(X̃l−1)

)
. (3)

Hybrid Training. Since the semantic-consistent
learning process requires twice forward/back-

propagation, SCTD would introduce much com-
putational overhead, leading to inefficiency. To
overcome this issue, SCTD adopts a novel hybrid
training strategy, as illustrated in Figure 5. Specif-
ically, instead of using the semantic-consistent
learning method throughout the training, SCTD
basically follows the vanilla token dropping and
adopts the semantic-consistent training intermit-
tently. As such, SCTD can combine the advantages
of semantic-consistent learning (effectiveness) and
token dropping (efficiency). Let Fi be a fixed inter-
val, SCTD first performs the vanilla token dropping
training (Fi− 1) times and then performs once the
semantic-consistent training. The overall training
objective of SCTD can be formulated as:

Lall =

1

2
L∗
MLM +

1

2
LMLM

+ λ ∗ (LSCg + LSCl
)
, t mod Fi = 0

L∗
MLM , t mod Fi ̸= 0

(4)
where t denotes the index of training iterations
and λ is a weight factor to balance the different
objectives, which is empirically8 set as 0.05.

4 Evaluation

4.1 Setup

Downstream Tasks To investigate the effective-
ness and universality of SCTD, we follow many
previous studies (Zhong et al., 2022b,d) and con-
duct extensive experiments on various NLU tasks,
covering a diversity of tasks from GLUE (Wang
et al., 2018), SuperGLUE (Wang et al., 2019) and
SQuAD benchmarks. Specifically, three semantic-
intense tasks (MRPC (Dolan and Brockett, 2005),
STS-B (Cer et al., 2017) and RTE (Giampic-
colo et al., 2007)), five question answering tasks
(BoolQ (Clark et al., 2019a), COPA (Roemmele
et al., 2011), MultiRC (Khashabi et al., 2018),
SQuAD-v1 (Rajpurkar et al., 2016) and -v2 (Ra-
jpurkar et al., 2018)), two natural language in-
ference tasks (MNLI (Williams et al., 2018) and
CB (De Marneffe et al., 2019)), and two others
(CoLA (Warstadt et al., 2019) and SST-2 (Socher
et al., 2013)) are used. For evaluation, we report
the performance with Accuracy (“Acc.”) metric
for most tasks, except the Pearson and Spearman
correlation (“Pear./Spea.”) for STS-B, the Matthew

8The detailed analysis can be found in §4.3.

10395

Method
Budget CoLA MRPC STS-B RTE MNLI SST-2 GLUE

hours Mcc. Acc. F1 Pear. Spea. Acc. m. mm. Acc. Avg.

BERTlarge

Baseline (250K) 34.35 61.3 90.0 92.7 90.2 89.9 83.8 86.3 86.1 93.5 84.37
token drop (250K) 27.33 (-20%) 64.3 88.0 91.4 89.7 89.5 80.1 86.8 86.3 94.0 84.04
-w/ SCTD (100K) 11.83 (-66%) 62.3 89.2 92.2 89.9 89.7 80.9 85.1 84.8 93.0 83.61
-w/ SCTD (160K) 17.75 (-48%) 65.8 88.7 91.8 89.9 89.7 81.2 86.4 86.1 94.0 84.55
-w/ SCTD (250K) 29.54 (-14%) 65.6 91.4 93.8 90.2 89.9 84.5 87.1 86.5 94.2 85.63

BERTbase

Baseline (250K) 15.17 56.0 86.8 90.1 89.0 88.8 77.6 83.3 83.5 92.3 81.11
token drop (250K) 12.92 (-15%) 54.1 85.5 89.6 87.8 87.8 77.6 83.4 83.3 91.7 80.35
-w/ SCTD (100K) 5.51 (-64%) 55.4 87.3 91.1 88.4 88.3 76.9 82.2 82.4 91.4 80.59
-w/ SCTD (160K) 8.79 (-42%) 58.1 87.0 90.7 88.1 88.0 78.7 83.4 83.3 90.6 81.28
-w/ SCTD (250K) 13.78 (-9.2%) 58.8 86.8 90.5 88.2 88.1 79.4 83.8 83.6 91.6 81.72

Table 2: Experimental results (dev scores) of BERTlarge and BERTbase trained with different methods on the GLUE
benchmark. Average scores on all tasks are underlined. The best results are in bold. We see that our SCTD improves
the performance and training efficiency of token drop strategy across all task types and model sizes.

correlation (“Mcc.”) for CoLA, the F1 score for
MultiRC, and the Exact Match (“EM”) scores for
SQuAD v1/v2. We report the averaged results
over 5 random seeds to avoid stochasticity. The
details of all tasks and datasets are shown in Ap-
pendix A.1.

Hyper-parameters For pretraining, we train the
BRET-BASE and -LARGE models with different
methods9 from scratch. We basically follow the
original paper (Devlin et al., 2019) (e.g., the same
pretraining corpus), except that we do not use the
next sentence prediction (NSP) objective, as sug-
gested in (Liu et al., 2019). In practice, we train
each model for 250K steps, with a batch size of
1024 and a peak learning rate of 2e-4. For fine-
tuning, the learning rate is selected in {1e-5, 2e-5,
3e-5, 5e-5}, while the batch size is in {12, 16, 32}
depending on tasks. The maximum length of in-
put sentence is 384 for SQuAD v1/v2 and 256/512
for other tasks. The detailed hyper-parameters for
fine-tuning are provided in Appendix A.2. We use
AdamW (Loshchilov and Hutter, 2018) as the op-
timizer for both pretraining and fine-tuning pro-
cesses. All experiments are conducted on NVIDIA
A100 (40GB) GPUs.

4.2 Compared Results
Results of GLUE are shown in Table 2, while those
of SuperGLUE and SQuAD are in Table 3. Based

9Following Hou et al. (2022), we implement the token
dropping and our approach under the same settings, e.g., drop-
ping 50% of the tokens.

Method
Boolq CB MultiRC COPA SQ-v1 SQ-v2

Acc. Acc. F1 Acc. EM EM

BERTlarge

Baseline 78.1 91.1 70.3 72.0 85.53 79.16
token drop 79.9 91.1 72.8 68.0 86.35 81.50
-w/ SCTD 79.7 92.9 72.8 72.0 86.54 81.67

BERTbase

Baseline 74.4 83.9 68.1 63.0 81.97 72.18
token drop 73.0 83.9 67.7 64.0 81.67 72.68
-w/ SCTD 73.8 87.5 68.9 68.0 82.47 72.79

Table 3: Experimental results of BERTlarge and
BERTbase trained with different methods on the Super-
GLUE (Wang et al., 2019) benchmark and SQuAD (Ra-
jpurkar et al., 2016) (SQ for short) tasks. We see that
our SCTD achieves consistent and significant improve-
ments on SuperGLUE and SQuAD tasks as well.

on these results, we can find that:

SCTD consistently improves performance on
all types of tasks. First, results on the semantic-
intense tasks (MRPC, STS-B and RTE) show that
SCTD effectively alleviates the semantic loss prob-
lem of token dropping. Specifically, for the RTE
task, SCTD brings significant improvement (up
to +3.4%) against the vanilla token dropping, and
even outperforms the full-sequence training base-
line. On the other hand, we observe that SCTD is
also beneficial to the other general tasks (e.g., ques-
tion answering). With the help of SCTD, token
dropping strategy achieves up to +1.56% average
gains among all types of tasks, proving the effec-
tiveness and universality of SCTD.

10396

Figure 6: Average scores (%) on GLUE benchmark of
BERTbase models trained with different methods for the
full pretraining process. Our method achieves compara-
ble performance with baseline at 150K training steps.

SCTD improves performance on both model
sizes. Extensive results show that SCTD works
well on both Large and Base BERT models. Specif-
ically, compared to the vanilla token dropping,
SCTD brings +1.59% and +1.37% average gains
on GLUE tasks, respectively. Results on the other
tasks also show a similar phenomenon. Thus, we
could recommend our SCTD to speed up the train-
ing of all discriminative MLMs regardless of the
regime in model capacity.

SCTD effectively improves the training effi-
ciency. Results in Table 2 show that, with our
SCTD, BERT models can achieve comparable or
even better performance with much fewer train-
ing steps, i.e., improving the training efficiency10.
Specifically, compared to the full training (250K
steps) BERT models, SCTD can save up to 48%
pretraining time while achieving comparable per-
formance. We attribute it to the higher data effi-
ciency, since SCTD not only takes full advantage
of the token dropping’s ability to learn important
words but also alleviates the semantic loss problem
in the token dropping. This can be further proved
by the illustration of Figure 6, as SCTD always
shows better performance against the other coun-
terparts during the training dynamics. Furthermore,
when training with the same iterations, our SCTD
can even outperform the standard BERT by a clear
margin. We attribute this to the regularization effect

10While the semantic-consistent learning process in SCTD
will introduce extra computation overhead, SCTD performs
much better in terms of training efficiency. That is, the rela-
tively little computation overhead is acceptable.

LMLM LSCl
LSCg

GLUE SGLUE SQuAD

Avg. Avg. Avg.

Baseline 77.73 69.11 74.15
token drop 76.58 68.01 72.28

-w/ SCTD (Ours)
✓ 78.30 68.73 75.56

✓ 78.06 69.49 75.66
✓ 79.27 68.64 75.80

✓ ✓ 78.51 69.64 75.51
✓ ✓ 79.26 69.32 75.59

✓ ✓ 79.36 69.89 75.91
✓ ✓ ✓ 79.58 70.29 76.01

Table 4: Ablation study on different training objectives
({LMLM ,LSCl

,LSCg
}) introduced in our SCTD.

of token dropping11.

4.3 Ablation Study

We evaluate the impact of each component of our
SCTD, including i) semantic-consistent learning
objectives, ii) coefficient λ and iii) fixed interval
Fi in the hybrid training process. Notably, due
to the limited computational budget, we conduct
experiments on the BERTlarge models trained with
different methods for 5 epochs (35K steps).

Impact of different training objectives. As
shown in §3, in addition to the original
MLM objective L∗

MLM of token dropping,
we introduce several extra training objectives
(LMLM ,LSCl

,LSCg}) to align the semantic infor-
mation. Here, we conduct experiments to analyze
the impact of different objectives and show the re-
sults in Table 4. It can be seen that all objectives are
beneficial to our SCTD, where the LSCg is the most
helpful. This indicates the semantic alignment in
the global-level representation space is more crit-
ical. Also, we can observe that the combination
of all objectives performs best, thus leaving as the
default setting.

Impact of Coefficient λ. The factor λ in Eq. 4,
which is used to balance different objectives, is an
important hyper-parameters. In this study, we an-
alyze its influence by evaluating the performance
with different λ spanning {0, 0.01, 0.05, 0.25, 0.5}
on several GLUE tasks. Figure 7 illustrates the aver-
age results. Compared with the baseline, our SCTD
consistently brings improvements across all ratios

11BERT-style PLMs are often over-parameterized and prone
to overfitting. Using regularization methods like token drop-
ping and LayerDrop (Fan et al., 2020) during training can
improve model generalization and even boost performance.

10397

Figure 7: Parameter analysis of λ on BERTlarge.

Method
Budget GLUE SQuAD

training time (hours) Avg. Avg.

Baseline 4.93 77.73 74.15
token drop 3.87 (-21.5%) 76.58 72.28

-w/ SCTD (Ours)
Fi = 5 4.69 (-4.9%) 78.96 75.49
Fi = 10 4.25 (-13.8%) 79.58 75.80
Fi = 20 4.04 (-18.1%) 78.45 75.74
Fi = 50 3.92 (-20.5%) 79.01 75.04

Table 5: Ablation study on different fixed intervals Fi
for performing the semantic-align process.

of λ, basically indicating that the performance of
SCTD is not sensitive to λ. More specifically, the
case of λ = 0.05 performs best, and we thereby
use this setting in our experiments.

Impact of Fixed Interval Fi. In our SCTD, we
use a fixed interval Fi to control the frequency for
performing the semantic-align process. To verify
its impact, we evaluate the performance of SCTD
on different Fi and show the results in Table 5.
Observably, too small Fi not only causes much
computational overhead, but also affects the stabil-
ity of hybrid training, thus leading to sub-optimal
performance. On the contrary, for the larger Fi
(e.g., 50), it may be difficult to make full use of the
semantic-consistent learning process, hindering the
effect of SCTD. In the case of Fi = 10, SCTD
achieves a better trade-off between costs and per-
formance, which we suggest as the best setting12.

12Some readers may wonder why the teacher (i.e., model
with baseline training) trained with only 1/Fi steps is strong
enough to guide the training of student model. One possible
reason for this question is that training with hard-to-learn to-
kens (Fi-1) times and training with easy-to-learn tokens once
is sufficient to obtain remarkable teacher models, similar to
the Lookahead Optimizer (Zhang et al., 2019), which updates
fast weights k times before updating slow weights once.

4.4 Does SCTD indeed alleviate the semantic
loss problem?

Here, we examine whether SCTD can alleviate the
limitation of token dropping. Specifically, follow-
ing the preliminary analyses in §2, we compare
our SCTD with other counterparts by probing the
trained BERT models (as illustrated in Figure 8)
and pertinently evaluating on several semantic-
intense tasks (as shown in Table 6).

Figure 8: The comparison of semantic information on
different BERTbase layers. We see that SCTD preserves
more semantic information than vanilla token dropping.

Method
Onto. CoNLL03 MRPC SICK-R Avg.

F1 F1 Acc. Spear.

Token drop 27.49 53.73 85.50 66.16 58.22
SCTD (∆ ↑) +2.04 +2.59 +1.30 +2.38 +2.08

Table 6: Experimental results of BERTbase models on
several semantic-intense tasks. We observe that our
SCTD brings consistent performance gains.

It can be found that, with our SCTD, BERT learns
more semantic information among most layers, es-
pecially in dropped layers. Also, SCTD brings
consistent and significant performance gains on
all semantic-intense tasks against the vanilla token
dropping. These results can prove that SCTD is
beneficial to address the semantic loss problem.

5 Related Works

Pretraining with Transformer-based architectures
like BERT (Devlin et al., 2019) has achieved great
success in a variety of NLP tasks (Devlin et al.,
2019; Liu et al., 2019; He et al., 2020; Joshi et al.,
2020). Despite its success, BERT-style pretraining
usually suffers from unbearable computational ex-
penses (Jiao et al., 2020; Zhang and He, 2020). To
this end, several training-efficient approaches are
proposed to speed up the pretraining and reduce the
computational overhead, such as mixed-precision
training (Shoeybi et al., 2019), distributed train-
ing (You et al., 2019), curriculum learning (Nagat-
suka et al., 2021; Ding et al., 2021a) and designing

10398

efficient model architectures and optimizers (Gong
et al., 2019; Clark et al., 2019b; Zhang and He,
2020; Zhang et al., 2023; Zhong et al., 2022c; Sun
et al., 2023). These works mainly focus on effi-
cient optimization processes or model architecture
changes.

More recently, Hou et al. (2022) propose the to-
ken dropping strategy, which exposes a new mode
to speed up the BERT pretraining. Without mod-
ifying the original BERT architecture or training
setting, token dropping is inspired by the dynamic
halting algorithm (Dehghani et al., 2018) and at-
tempts to skip the computations on part of (unim-
portant) tokens in some middle BERT layers during
the forward-propagation process. Owing to its im-
pressive efficiency, token dropping has recently
attracted increasing attention (Yao et al., 2022; Chi-
ang et al., 2022). For instance, Yao et al. (2022)
apply the token dropping strategy to broader appli-
cations, e.g., both NLP and CV communities.

Along with the line of token dropping, we take
a further step by exploring and addressing its lim-
itations. To be specific, we first reveal the seman-
tic loss problem (§2) in the token dropping, and
then propose a novel semantic-consistent learning
method (§3) to alleviate this problem and further
improve performance and training efficiency.

6 Conclusion

In this paper, we reveal and address the limitation
of token dropping in accelerating language model
training. Based on a series of preliminary analyses,
we find that removing parts of tokens would lead
to a semantic loss problem, which causes vulner-
able and unstable training. Furthermore, experi-
ments show such a semantic loss will hinder the
performance of token dropping in most semantic-
intense scenarios. To address this limitation, we
improve token dropping with a novel semantic-
consistent learning algorithm. It designs two se-
mantic constraints to encourage models to preserve
semantic information. Experiments show that our
approach consistently and significantly improves
downstream performance across all task types and
model architectures. In-depth analyses prove that
our approach indeed alleviates the problem, and
further improves training efficiency.

In future work, we will explore the effectiveness
of our method on more advanced discriminative
language models (He et al., 2020; Zhong et al.,
2023b). Also, it will be interesting to revisit and

address the semantic loss problem in efficient train-
ing methods for generative language models (such
as GPT3 (Brown et al., 2020)).

Limitations

Our work has several potential limitations. First,
given the limited computational budget, we only
validate our SCTD on the Large and Base sizes of
BERT models. It will be more convincing if scaling
up to the larger model size and applying SCTD to
more cutting-edge model architectures. On the
other hand, besides the downstream performance,
we believe that there are still other properties, e.g.,
generalization and robustness, of MLMs that can
be improved by our SCTD approach, which are not
fully explored in this work.

Ethics and Reproducibility Statements

Ethics We take ethical considerations very seri-
ously, and strictly adhere to the ACL Ethics Pol-
icy. This paper proposes a semantic-consistent al-
gorithm to improve the existing token dropping
strategy. The proposed approach aims to speed
up the pretraining of BERT-style models, instead
of encouraging them to learn privacy knowledge
that may cause the ethical problem. Moreover,
all pretraining datasets used in this paper are pub-
licly available and have been widely adopted by
researchers. Thus, we believe that this research
will not pose ethical issues.

Reproducibility We will publicly release our
code in https://github.com/WHU-ZQH/ScTD
and the pretrained models in https:
//huggingface.co/bert-sctd-base to help
reproduce the experimental results of this paper.

Acknowledgements

We are grateful to the anonymous reviewers and the
area chair for their insightful comments and sug-
gestions. This work was supported in part by the
National Natural Science Foundation of China un-
der Grants 62225113 and 62076186, and in part by
the Science and Technology Major Project of Hubei
Province (Next-Generation AI Technologies) under
Grant 2019AEA170. Xuebo Liu was supported by
Shenzhen Science and Technology Program (Grant
No. RCBS20221008093121053). The numerical
calculations in this paper have been done on the su-
percomputing system in the Supercomputing Cen-
ter of Wuhan University.

10399

https://github.com/WHU-ZQH/ScTD
https://huggingface.co/bert-sctd-base
https://huggingface.co/bert-sctd-base

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In NeurIPS.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In SemEval.

Cheng-Han Chiang, Yung-Sung Chuang, and Hung-Yi
Lee. 2022. Recent advances in pre-trained language
models: Why do they work and how do they work.
In AACL.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019a. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In NAACL.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2019b. Electra: Pre-training
text encoders as discriminators rather than generators.
In ICLR.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single\ &!#* vector: Probing
sentence embeddings for linguistic properties. In
ACL.

Marie-Catherine De Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The commitmentbank: Investi-
gating projection in naturally occurring discourse. In
proceedings of Sinn und Bedeutung.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2018. Universal
transformers. In ICLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

Liang Ding, Longyue Wang, Xuebo Liu, Derek F Wong,
Dacheng Tao, and Zhaopeng Tu. 2021a. Progres-
sive multi-granularity training for non-autoregressive
translation. In Findings of the ACL.

Liang Ding, Longyue Wang, Xuebo Liu, Derek F
Wong, Dacheng Tao, and Zhaopeng Tu. 2021b. Un-
derstanding and improving lexical choice in non-
autoregressive translation. In ICLR.

Liang Ding, Longyue Wang, Di Wu, Dacheng Tao, and
Zhaopeng Tu. 2020. Context-aware cross-attention
for non-autoregressive translation. In COLING.

Bill Dolan and Chris Brockett. 2005. Automatically
constructing a corpus of sentential paraphrases. In
IWP.

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In ICLR.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
William B Dolan. 2007. The third pascal recognizing
textual entailment challenge. In ACL.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei
Wang, and Tieyan Liu. 2019. Efficient training of
bert by progressively stacking. In ICML.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. In ICLR.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015.
Distilling the knowledge in a neural network. In
NeurIPS.

Le Hou, Richard Yuanzhe Pang, Tianyi Zhou, Yuexin
Wu, Xinying Song, Xiaodan Song, and Denny Zhou.
2022. Token dropping for efficient bert pretraining.
In ACL.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does bert learn about the structure of
language? In ACL.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling bert for natural language under-
standing. In Findings of EMNLP.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. TACL.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In NAACL-HLT.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In ICLR.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zampar-
elli. 2014. A sick cure for the evaluation of composi-
tional distributional semantic models. In LREC.

Koichi Nagatsuka, Clifford Broni-Bediako, and
Masayasu Atsumi. 2021. Pre-training a BERT with
curriculum learning by increasing block-size of input
text. In RANLP.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. In ACL.

10400

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In EMNLP.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In EMNLP.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In AAAI.

Erik Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the conll-2003 shared task: Language-
independent named entity recognition. In HLT-
NAACL.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren
Etzioni. 2020. Green ai. Communications of the
ACM.

Li Shen, Yan Sun, Zhiyuan Yu, Liang Ding, Xinmei
Tian, and Dacheng Tao. 2023. On efficient training of
large-scale deep learning models: A literature review.
arXiv.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
arXiv.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In EMNLP.

Hao Sun, Li Shen, Qihuang Zhong, Liang Ding, Shix-
iang Chen, Jingwei Sun, Jing Li, Guangzhong
Sun, and Dacheng Tao. 2023. Adasam: Boosting
sharpness-aware minimization with adaptive learn-
ing rate and momentum for training deep neural net-
works. arXiv.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In NeurIPS.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for
natural language understanding. In EMNLP.

Xiao Wang, Qin Liu, Tao Gui, Qi Zhang, Yicheng Zou,
Xin Zhou, Jiacheng Ye, Yongxin Zhang, Rui Zheng,
Zexiong Pang, et al. 2021. Textflint: Unified multi-
lingual robustness evaluation toolkit for natural lan-
guage processing. In ACL.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
TACL.

Ralph Weischedel, Martha Palmer, Mitchell Marcus, Ed-
uard Hovy, Sameer Pradhan, Lance Ramshaw, Nian-
wen Xue, Ann Taylor, Jeff Kaufman, Michelle Fran-
chini, et al. 2013. Ontonotes release 5.0 ldc2013t19.
Linguistic Data Consortium, Philadelphia, PA.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In NAACL.

Guodong Xu, Ziwei Liu, Xiaoxiao Li, and Chen Change
Loy. 2020. Knowledge distillation meets self-
supervision. In ECCV.

Zhewei Yao, Xiaoxia Wu, Conglong Li, Connor Holmes,
Minjia Zhang, Cheng Li, and Yuxiong He. 2022.
Random-ltd: Random and layerwise token dropping
brings efficient training for large-scale transformers.
arXiv.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu,
Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh.
2019. Large batch optimization for deep learning:
Training bert in 76 minutes. In ICLR.

Michael Zhang, James Lucas, Jimmy Ba, and Geof-
frey E Hinton. 2019. Lookahead optimizer: k steps
forward, 1 step back. In NeurIPS.

Minjia Zhang and Yuxiong He. 2020. Accelerating
training of transformer-based language models with
progressive layer dropping. In NeurIPS.

Zheng Zhang, Donglin Yang, Yaqi Xia, Liang Ding,
Dacheng Tao, Xiaobo Zhou, and Dazhao Cheng.
2023. Mpipemoe: Memory efficient moe for pre-
trained models with adaptive pipeline parallelism.

Zhilu Zhang and Mert Sabuncu. 2020. Self-distillation
as instance-specific label smoothing.

Zhuosheng Zhang, Hai Zhao, and Ming Zhou. 2022.
Instance regularization for discriminative language
model pre-training. In EMNLP.

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and
Dacheng Tao. 2022a. E2s2: Encoding-enhanced
sequence-to-sequence pretraining for language un-
derstanding and generation. arXiv.

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and
Dacheng Tao. 2022b. Panda: Prompt transfer meets
knowledge distillation for efficient model adaptation.
arXiv.

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and
Dacheng Tao. 2023a. Self-evolution learning for dis-
criminative language model pretraining. In Findings
of ACL.

Qihuang Zhong, Liang Ding, Keqin Peng, Juhua Liu,
Bo Du, Li Shen, Yibing Zhan, and Dacheng Tao.
2023b. Bag of tricks for effective language model
pretraining and downstream adaptation: A case study
on glue. arXiv.

10401

Qihuang Zhong, Liang Ding, Li Shen, Peng Mi, Juhua
Liu, Bo Du, and Dacheng Tao. 2022c. Improving
sharpness-aware minimization with fisher mask for
better generalization on language models. In Find-
ings of EMNLP.

Qihuang Zhong, Liang Ding, Yibing Zhan, Yu Qiao,
Yonggang Wen, Li Shen, Juhua Liu, Baosheng Yu,
Bo Du, Yixin Chen, et al. 2022d. Toward efficient
language model pretraining and downstream adapta-
tion via self-evolution: A case study on superglue.
arXiv.

A Appendix

A.1 Details of Tasks and Datasets
In this work, we conduct extensive experiments
on parts of tasks from GLUE and SuperGLUE. In
addition, two widely-used commonsense question
answering tasks are also used. Here, we introduce
the descriptions of the used tasks and datasets in de-
tail. Firstly, we present the statistics of all datasets
in Table 7. Then, each task is described as:

CoLA Corpus of Linguistic Acceptabil-
ity (Warstadt et al., 2019) is a binary single-
sentence classification task to determine whether a
given sentence is linguistically “acceptable”.

MRPC Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005) is a task to predict
whether two sentences are semantically equivalent.

STS-B Semantic Textual Similarity (Cer et al.,
2017) is a task to predict how similar two sentences
are on a 1-5 scale in terms of semantic meaning.

RTE Recognizing Textual Entailment (Giampic-
colo et al., 2007), given a premise and a hypothesis,
is a task to predict whether the premise entails the
hypothesis.

MNLI The Multi-Genre Natural Language In-
ference Corpus (Williams et al., 2018) is a task to
predict whether the premise entails the hypothe-
sis, contradicts the hypothesis, or neither, given a
premise sentence and a hypothesis sentence.

SST-2 The Stanford Sentiment Treebank (Socher
et al., 2013) is a binary classification task to predict
the sentiment of a given sentence.

CB CommitmentBank (De Marneffe et al., 2019)
is a task that can be framed as three-class textual
entailment on a corpus of 1,200 naturally occurring
discourses.

BoolQ Boolean Question (Clark et al., 2019a)
is a question answering task where each sample
consists of a short passage and a yes/no question
about the passage.

MultiRC Multi-Sentence Reading Comprehen-
sion (Khashabi et al., 2018) is a QA task where

each example consists of a context paragraph, a
question about that paragraph, and a list of possible
answers. The model need to predict which answers
are true and which are false.

COPA Choice of Plausible Alterna-
tives(Roemmele et al., 2011) is a causal reasoning
task in which a system is given a premise sentence
and must determine either the cause or effect of
the premise from two possible choices.

SQuAD v1 The Stanford Question Answering
Dataset (Rajpurkar et al., 2016) is a popular read-
ing comprehension benchmark, where the answer
to each question is a segment of text from the cor-
responding reading passage.

SQuAD v2 The latest version of the Stanford
Question Answering Dataset (Rajpurkar et al.,
2018) is one of the most widely-used reading com-
prehension benchmarks that require the systems to
acquire knowledge reasoning ability.

A.2 Hyper-parameters of Fine-tuning
For fine-tuning, we use the BERT models as the
backbone PLMs and conduct experiments using the
open-source toolkit fairseq13 and transformers14.
Notably, we apply the same hyper-parameters to
all PLMs for simplicity. The training epochs/steps,
batch size, and learning rate for each downstream
task are listed in Table 7.

13https://github.com/facebookresearch/fairseq
14https://github.com/huggingface/transformers

10402

https://github.com/facebookresearch/fairseq
https://github.com/huggingface/transformers

Task #Train #Dev #Class LR BSZ Epochs/Steps

GLUE

CoLA 8.5K 1,042 2 2e-5 32 2,668 steps
MRPC 3.7K 409 2 1e-5 32 1,148 steps
STS-B 5.7K 1,501 - 2e-5 32 1,799 steps
RTE 2.5K 278 2 1e-5 16 2,036 steps
MNLI 392K 9,815 3 1e-5 256 15,484 steps
SST-2 63.3K 873 2 1e-5 64 10,467 steps

SuperGLUE

BoolQ 9.4K 3,270 2 1e-5 16 10 epochs
CB 250 57 2 2e-5 16 20 epochs
MultiRC 5.1K 953 2 2e-5 32 10 epochs
COPA 400 100 2 2e-5 16 10 epochs

Commonsense QA
SQuAD v1 87.6K 10,570 - 3e-5 12 2 epochs
SQuAD v2 130K 11,873 - 3e-5 12 2 epochs

Table 7: Data statistics and fine-tuning hyper-parameters of all used tasks in this paper. “Class” refers to the label
class, “LR” means the learning rate and “BSA” denotes the batch size.

10403

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section 6

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 4

�3 B1. Did you cite the creators of artifacts you used?
Section 4

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 4

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4 and Appendix A1

C �3 Did you run computational experiments?
Section 4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

10404

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Not applicable. Left blank.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

10405

