@inproceedings{wan-etal-2023-joint,
title = "Joint Document-Level Event Extraction via Token-Token Bidirectional Event Completed Graph",
author = "Wan, Qizhi and
Wan, Changxuan and
Xiao, Keli and
Liu, Dexi and
Li, Chenliang and
Zheng, Bolong and
Liu, Xiping and
Hu, Rong",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.584",
doi = "10.18653/v1/2023.acl-long.584",
pages = "10481--10492",
abstract = "We solve the challenging document-level event extraction problem by proposing a joint exaction methodology that can avoid inefficiency and error propagation issues in classic pipeline methods. Essentially, we address the three crucial limitations in existing studies. First, the autoregressive strategy of path expansion heavily relies on the orders of argument role. Second, the number of events in documents must be specified in advance. Last, unexpected errors usually exist when decoding events based on the entity-entity adjacency matrix. To address these issues, this paper designs a Token-Token Bidirectional Event Completed Graph (TT-BECG) in which the relation eType-Role1-Role2 serves as the edge type, precisely revealing which tokens play argument roles in an event of a specific event type. Exploiting the token-token adjacency matrix of the TT-BECG, we develop an edge-enhanced joint document-level event extraction model. Guided by the target token-token adjacency matrix, the predicted token-token adjacency matrix can be obtained during the model training. Then, extracted events and event records in a document are decoded based on the predicted matrix, including the graph structure and edge type decoding. Extensive experiments are conducted on two public datasets, and the results confirm the effectiveness of our method and its superiority over the state-of-the-art baselines.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wan-etal-2023-joint">
<titleInfo>
<title>Joint Document-Level Event Extraction via Token-Token Bidirectional Event Completed Graph</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qizhi</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Changxuan</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Keli</namePart>
<namePart type="family">Xiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dexi</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenliang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bolong</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiping</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rong</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We solve the challenging document-level event extraction problem by proposing a joint exaction methodology that can avoid inefficiency and error propagation issues in classic pipeline methods. Essentially, we address the three crucial limitations in existing studies. First, the autoregressive strategy of path expansion heavily relies on the orders of argument role. Second, the number of events in documents must be specified in advance. Last, unexpected errors usually exist when decoding events based on the entity-entity adjacency matrix. To address these issues, this paper designs a Token-Token Bidirectional Event Completed Graph (TT-BECG) in which the relation eType-Role1-Role2 serves as the edge type, precisely revealing which tokens play argument roles in an event of a specific event type. Exploiting the token-token adjacency matrix of the TT-BECG, we develop an edge-enhanced joint document-level event extraction model. Guided by the target token-token adjacency matrix, the predicted token-token adjacency matrix can be obtained during the model training. Then, extracted events and event records in a document are decoded based on the predicted matrix, including the graph structure and edge type decoding. Extensive experiments are conducted on two public datasets, and the results confirm the effectiveness of our method and its superiority over the state-of-the-art baselines.</abstract>
<identifier type="citekey">wan-etal-2023-joint</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.584</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.584</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>10481</start>
<end>10492</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Joint Document-Level Event Extraction via Token-Token Bidirectional Event Completed Graph
%A Wan, Qizhi
%A Wan, Changxuan
%A Xiao, Keli
%A Liu, Dexi
%A Li, Chenliang
%A Zheng, Bolong
%A Liu, Xiping
%A Hu, Rong
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F wan-etal-2023-joint
%X We solve the challenging document-level event extraction problem by proposing a joint exaction methodology that can avoid inefficiency and error propagation issues in classic pipeline methods. Essentially, we address the three crucial limitations in existing studies. First, the autoregressive strategy of path expansion heavily relies on the orders of argument role. Second, the number of events in documents must be specified in advance. Last, unexpected errors usually exist when decoding events based on the entity-entity adjacency matrix. To address these issues, this paper designs a Token-Token Bidirectional Event Completed Graph (TT-BECG) in which the relation eType-Role1-Role2 serves as the edge type, precisely revealing which tokens play argument roles in an event of a specific event type. Exploiting the token-token adjacency matrix of the TT-BECG, we develop an edge-enhanced joint document-level event extraction model. Guided by the target token-token adjacency matrix, the predicted token-token adjacency matrix can be obtained during the model training. Then, extracted events and event records in a document are decoded based on the predicted matrix, including the graph structure and edge type decoding. Extensive experiments are conducted on two public datasets, and the results confirm the effectiveness of our method and its superiority over the state-of-the-art baselines.
%R 10.18653/v1/2023.acl-long.584
%U https://aclanthology.org/2023.acl-long.584
%U https://doi.org/10.18653/v1/2023.acl-long.584
%P 10481-10492
Markdown (Informal)
[Joint Document-Level Event Extraction via Token-Token Bidirectional Event Completed Graph](https://aclanthology.org/2023.acl-long.584) (Wan et al., ACL 2023)
ACL
- Qizhi Wan, Changxuan Wan, Keli Xiao, Dexi Liu, Chenliang Li, Bolong Zheng, Xiping Liu, and Rong Hu. 2023. Joint Document-Level Event Extraction via Token-Token Bidirectional Event Completed Graph. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 10481–10492, Toronto, Canada. Association for Computational Linguistics.