@inproceedings{tang-etal-2023-multilingual,
title = "Multilingual Knowledge Graph Completion with Language-Sensitive Multi-Graph Attention",
author = "Tang, Rongchuan and
Zhao, Yang and
Zong, Chengqing and
Zhou, Yu",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.586/",
doi = "10.18653/v1/2023.acl-long.586",
pages = "10508--10519",
abstract = "Multilingual Knowledge Graph Completion (KGC) aims to predict missing links with multilingual knowledge graphs. However, existing approaches suffer from two main drawbacks: (a) alignment dependency: the multilingual KGC is always realized with joint entity or relation alignment, which introduces additional alignment models and increases the complexity of the whole framework; (b) training inefficiency: the trained model will only be used for the completion of one target KG, although the data from all KGs are used simultaneously. To address these drawbacks, we propose a novel multilingual KGC framework with language-sensitive multi-graph attention such that the missing links on all given KGs can be inferred by a universal knowledge completion model. Specifically, we first build a relational graph neural network by sharing the embeddings of aligned nodes to transfer language-independent knowledge. Meanwhile, a language-sensitive multi-graph attention (LSMGA) is proposed to deal with the information inconsistency among different KGs. Experimental results show that our model achieves significant improvements on the DBP-5L and E-PKG datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tang-etal-2023-multilingual">
<titleInfo>
<title>Multilingual Knowledge Graph Completion with Language-Sensitive Multi-Graph Attention</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rongchuan</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multilingual Knowledge Graph Completion (KGC) aims to predict missing links with multilingual knowledge graphs. However, existing approaches suffer from two main drawbacks: (a) alignment dependency: the multilingual KGC is always realized with joint entity or relation alignment, which introduces additional alignment models and increases the complexity of the whole framework; (b) training inefficiency: the trained model will only be used for the completion of one target KG, although the data from all KGs are used simultaneously. To address these drawbacks, we propose a novel multilingual KGC framework with language-sensitive multi-graph attention such that the missing links on all given KGs can be inferred by a universal knowledge completion model. Specifically, we first build a relational graph neural network by sharing the embeddings of aligned nodes to transfer language-independent knowledge. Meanwhile, a language-sensitive multi-graph attention (LSMGA) is proposed to deal with the information inconsistency among different KGs. Experimental results show that our model achieves significant improvements on the DBP-5L and E-PKG datasets.</abstract>
<identifier type="citekey">tang-etal-2023-multilingual</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.586</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.586/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>10508</start>
<end>10519</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multilingual Knowledge Graph Completion with Language-Sensitive Multi-Graph Attention
%A Tang, Rongchuan
%A Zhao, Yang
%A Zong, Chengqing
%A Zhou, Yu
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F tang-etal-2023-multilingual
%X Multilingual Knowledge Graph Completion (KGC) aims to predict missing links with multilingual knowledge graphs. However, existing approaches suffer from two main drawbacks: (a) alignment dependency: the multilingual KGC is always realized with joint entity or relation alignment, which introduces additional alignment models and increases the complexity of the whole framework; (b) training inefficiency: the trained model will only be used for the completion of one target KG, although the data from all KGs are used simultaneously. To address these drawbacks, we propose a novel multilingual KGC framework with language-sensitive multi-graph attention such that the missing links on all given KGs can be inferred by a universal knowledge completion model. Specifically, we first build a relational graph neural network by sharing the embeddings of aligned nodes to transfer language-independent knowledge. Meanwhile, a language-sensitive multi-graph attention (LSMGA) is proposed to deal with the information inconsistency among different KGs. Experimental results show that our model achieves significant improvements on the DBP-5L and E-PKG datasets.
%R 10.18653/v1/2023.acl-long.586
%U https://aclanthology.org/2023.acl-long.586/
%U https://doi.org/10.18653/v1/2023.acl-long.586
%P 10508-10519
Markdown (Informal)
[Multilingual Knowledge Graph Completion with Language-Sensitive Multi-Graph Attention](https://aclanthology.org/2023.acl-long.586/) (Tang et al., ACL 2023)
ACL