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Abstract

Generative modeling has been the dominant
approach for large-scale pretraining and zero-
shot generalization. In this work, we challenge
this convention by showing that discriminative
approaches perform substantially better than
generative ones on a large number of NLP
tasks. Technically, we train a single discrimi-
nator to predict whether a text sample comes
from the true data distribution, similar to GANs.
Since many NLP tasks can be formulated as
selecting from a few options, we use this dis-
criminator to predict the concatenation of in-
put and which option has the highest probabil-
ity of coming from the true data distribution.
This simple formulation achieves state-of-the-
art zero-shot results on the T0 benchmark, out-
performing T0 by 16.0%, 7.8%, and 11.5% re-
spectively on different scales. In the finetuning
setting, our approach also achieves new state-
of-the-art results on a wide range of NLP tasks,
with only 1/4 parameters of previous meth-
ods. Meanwhile, our approach requires mini-
mal prompting efforts, which largely improves
robustness and is essential for real-world ap-
plications. Furthermore, we also jointly train
a generalized UD in combination with gener-
ative tasks, which maintains its advantage on
discriminative tasks and simultaneously works
on generative tasks.

1 Introduction

Generative modeling has been the dominant
approach for large-scale pretraining and zero-
shot generalization (Brown et al., 2020; Artetxe
et al., 2021; Rae et al., 2021). Combined with
prompts (Brown et al., 2020), most of the natural
language processing (NLP) tasks can be formulated
into the fill-in-the-blank format and perform gen-
erative language modeling. Based on the unified
generative formulation, pretrained models such as
GPT-3 (Brown et al., 2020), BERT (Devlin et al.,

*Corresponding authors.
†Our code is available at https://github.com/Rafa-zy/UD.

Figure 1: Average zero-shot performance over 11 zero-
shot tasks for our Universal Discriminator and T0 (Sanh
et al., 2021). Our universal discriminator significantly
outperforms T0 across three different scales.

2019; Schick and Schütze, 2020), T5 (Raffel et al.,
2019), can perform zero-shot inference on new
tasks.

More recent work (Sanh et al., 2021) proposed
to further pretrain a generative T5 (Raffel et al.,
2019) with multitask prompted datasets and has
substantially enhanced the performance of zero-
shot generalization. In contrast, methods based
on discriminative modeling (Devlin et al., 2019)
have not been able to achieve state-of-the-art per-
formance on zero-shot learning. The adoption of
discriminative approaches for zero-shot learning
has been limited in the literature.

In this work, we challenge the convention of
zero-shot learning and propose to study and im-
prove discriminative approaches. This is motivated
by the fact that many NLP tasks can be framed as
selecting from a few options; e.g., telling whether
sentence A entails sentence B, or predicting which
answer is correct for a given question. We call
these tasks discriminative tasks. As we will dis-
cuss in later sections, a significant portion of NLP
tasks is in fact discriminative tasks. We hypothe-
size that discriminative approaches perform better
for discriminative tasks.

To verify the hypothesis, we propose the uni-
versal discriminator (UD), which substantially
improves zero-shot generalization over the previ-
ous generative state-of-the-art (SOTA) (Sanh et al.,

10559

https://github.com/Rafa-zy/UD


2021), as Figure 1 shows. The main idea is to
train a single discriminator to predict whether a
text sample comes from the true data distribution
of natural language, similar to GANs (Goodfellow
et al., 2014). Given a set of training tasks with
labeled data, we construct a dataset with positive
and negative examples, where positive ones are in-
distribution natural language samples and negative
ones are out-of-distribution. There are two major
types of discriminative tasks. The first type is tasks
with multiple options, such as multi-choice ques-
tion answering and news classification. We fill the
options into the sentences and the ones with correct
options are considered positive samples. The sec-
ond type is tasks with yes/no options, which can be
formulated as a binary discrimination problem it-
self. For example, natural language inference aims
to predict whether a premise entails a hypothesis.
In this case, we use a prompt to concatenate the
premise A and the hypothesis B into a sentence
“Premise: A. Hypothesis: B.” If entailment holds,
this sample is treated as positive in-distribution
samples and otherwise negative out-of-distribution
ones.

For the performance of zero-shot generalization,
our approach achieves new state-of-the-art on the
T0 benchmark, outperforming T0 by 16.0%, 7.8%,
and 11.5% respectively on different scales. UD
also achieves state-of-the-art performance on a
wide range of supervised NLP tasks, using only
1/4 parameters of previous methods. Compared
with the previous generative prompt-based meth-
ods, our universal discriminator requires minimal
prompting, which is simple, robust, and applicable
in real-world scenarios.

In addition, we also generalize UD to a larger
scope of tasks, such that UD can perform discrimi-
native and generative tasks at the same time. Specif-
ically, we extend UD to the encoder-decoder archi-
tecture for training on generative tasks, and restrict
the model’s prediction on "yes"/"no" tokens for
jointly training discriminative tasks. Results prove
that generalized UD maintains UD’s advantages
on discriminative tasks and achieves comparable
results on generative tasks (See § 3.4).

2 Related Work

2.1 Zero-Shot Generalization Using PLMs

Pretrained language models (PLM) can transfer
knowledge from training data to downstream tasks.
Prompting methods further narrow the gap between

training data and downstream tasks. Schick and
Schütze (2020) reformulate NLP tasks into cloze
filling using prompts so that PLMs can conduct
zero-shot inference by generating tokens given
prompted inputs. Meng et al. (2022) use PLMs to
generate class-conditioned texts with the guidance
of prompts without seeing any task-specific data.
Most recently, researchers have introduced natural
language prompts to unify various kinds of tasks
and propose a multi-task prompted training frame-
work to achieve great zero-shot performance even
faced with unseen downstream tasks (Wei et al.
(2021); Sanh et al. (2021); Chung et al. (2022)).
However, zero-shot learning has been dominated
by generative approaches.

2.2 Prompt-based and Prompt-free Methods
in NLP

Prompting is the method of reformatting NLP
tasks using natural language templates to adapt
to downstream tasks (Raffel et al., 2019; Schick
and Schütze, 2020). To reduce the instability and
labor costs brought by prompting, researchers have
tried various approaches (Liu et al. (2021a); He
et al. (2021a)) to learn continuous prompts.

Recently, prompt-free methods are also being ex-
plored. Mahabadi et al. (2022) adopts task-specific
adapters to learn task descriptions implicitly for
few-shot learning with PLMs. It has also been indi-
cated that using null prompts without task-specific
templates can achieve decent performance com-
pared with manually-designed prompts on various
tasks (Logan IV et al. (2021)).

Our work further shows that those widely used
lengthy instructive prompts are not necessary for
zero-shot learning. Actually, minimal prompting
performs better with our discriminative formulation
in the multi-task zero-shot learning setting.

2.3 Discriminative Models in NLP

PLMs trained with masked language modeling
(MLM) (Devlin et al., 2019; Liu et al., 2019) can
be finetuned in a discriminative manner for down-
stream tasks. ELECTRA (Clark et al., 2020) trains
a discriminator to detect whether a token has been
replaced. WKLM (Xiong et al., 2019) employs an
entity-centric approach for pretraining and predicts
whether an entity has been replaced. However, fine-
tuning for these methods is usually based on one
separate CLS head per task, which is not suitable
for zero-shot generalization.

10560



Recently, prompting has been combined with
token-level discriminators based on ELECTRA for
few-shot learning (Yao et al., 2022; Xia et al., 2022).
While these are also discriminative approaches,
there are a few key differences from our approach.
The biggest difference between them and us is that:
we unify all discriminative tasks into one single
task with minimal prompting, showing extremely
good zero-shot generalization. Moreover, these
methods are specific to ELECTRA-like pretraining,
while our approach accepts arbitrary pretrained en-
coders. In our experiments, we will also make a
direct comparison with these approaches to demon-
strate our effectiveness.

3 Approach

Previous works (Sanh et al., 2021; Wei et al., 2021)
have shown that prompted multi-task training can
greatly improve zero-shot performance on unseen
tasks. One intuitive reason behind the validity of
this improvement is that all the NLP tasks share a
common ability that allows LMs to solve unseen
tasks based on the data from other training tasks. To
test this idea and even enhance zero-shot general-
ization, a direct way is explicitly defining what this
"common ability" is. Here, we define this "com-
mon ability" by designing a new general task of
“discriminating whether a text sample comes from
the true data distribution of natural language”.

We will first formulate the learning problem
(§ 3.1), and then define the concept discrimina-
tive tasks (§ 3.2), followed by describing how we
transform discriminative tasks into our shared for-
mulation. In § 3.3 and § 3.4, we will study our UD,
respectively on discriminative tasks and on a gener-
alized scope of both discriminative and generative
tasks.

3.1 Multi-Task Training for Zero-Shot
Generalization

Now we describe the learning problem we aim to
solve in this work. We adopt the same setting as in
Sanh et al. (2021). The input to our problem is a set
of training tasks with labeled data, and the goal is
to train a model that generalizes to unseen test tasks.
The training and test tasks are constrained to have
distinct task types for the evaluation of cross-task-
type generalization. A pre-trained model is jointly
trained on the set of training tasks and directly
evaluated on the set of test tasks in a zero-shot
manner.

3.2 Discriminative Tasks

We use the term “discriminative tasks” to refer to
tasks that can be framed as selecting from a few
options.

More concretely, there are two types of discrimi-
native tasks. The first type is tasks with multiple op-
tions, such as multi-choice question answering and
news classification. The problem can be framed
as selecting the right option from multiple ones,
where the options are either customized for each
sample (e.g., multi-choice question answering) or
shared within the task (e.g., news classification).
The second type is tasks with yes/no options, such
as paraphrase identification and natural language
inference. Given a sample of these tasks, a model
is asked to predict a yes/no (or true/false) answer.

It is important to notice that discriminative tasks
constitute a significantly large portion of modern
NLP research tasks. For example, all of the test
tasks of the T0 benchmark (Sanh et al., 2021), Su-
perGLUE (Wang et al., 2019a), GLUE (Wang et al.,
2019b), and 85+% tasks in BBH benchmark (Suz-
gun et al., 2022) are discriminative tasks.

Also note that our definition of discriminative
tasks has a larger scope compared to the con-
ventional notion of “classification” which usually
refers to tasks with a non-customized, fixed set
of labels. In contrast, discriminative tasks might
have sample-customized options, e.g., multi-choice
question answering and coreference resolution.

3.3 A Universal Discriminator

Given a text sample x, let P (true|x) be the prob-
ability that x is sampled from the true data distri-
bution of natural language. We train a universal
discriminator (UD), denoted as D(x), to estimate
the probability P (true|x) for each text sample x.
From another perspective of contrastive learning
(Oord et al., 2018), this problem can also be viewed
as learning a partial order of the probability distri-
bution. Specifically, for two text samples x1 and x2,
if P (true|x1) > P (true|x2), the UD is expected to
predict D(x1) > D(x2). This contrastive view is
essential for tasks with multiple options, i.e., learn-
ing to select from a few options based on the partial
order given by UD.

Figure 2 compares the multi-task prompted for-
mulation of T0 and the formulation of our UD. In
the following, we will show how we use this for-
mulation of UD to unify and solve discriminative
tasks.
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Figure 2: An overview that compares the multi-task prompted formulation of T0 (Sanh et al., 2021) and the formu-
lation of our universal discriminator. The underlines mark natural language prompts. The universal discriminator
uses a shared formulation of the discriminative tasks—determining whether a sample comes from the true data
distribution of natural language.

3.3.1 Unifying Discriminative Tasks
We assume that for any task, the concatenation
of input and the correct option follows the true
data distribution of natural languages, while the
concatenation of input and the other wrong options
deviates much from the true data distribution.

Given this assumption, we claim that almost
all discriminative tasks are equivalent to our de-
fined task (i.e., estimating P (true|x)) above. Here,
“equivalent” has bi-directional meanings: on one
hand, there exists a reduction* from UD’s task (say,
task U) to any discriminative task (say, task A):
given a piece of labeled training data for task A,
we can generate several pieces of labeled training
data for task U.

On the other hand, there exists another reduction
from any discriminative task A to UD’s task U:
given a piece of testing data for task A, we can
generate several pieces of testing data for task U
such that by first predicting D(·) on them and then
using a mapping from task U’s outputs to task A’s
outputs, we can generate the answer for task A.

Based on the definition of discriminative tasks in
§ 3.2, there are two main categories, multi-choice
tasks and yes/no tasks. We will discuss each cat-
egory in detail as follows (also see Table 6 in ap-
pendix for specifics).

Multi-Choice Tasks For multi-choice tasks, we
concatenate the text input xin with each choice
{ci}Nc

i=1 to form samples. For example, for multi-
choice question answering, we concatenate the

*In complexity theory, a reduction is an algorithm trans-
forming one problem A into another problem B such that a
solution for problem B could also be used to solve problem A.

given paragraph and question with each answer
candidate. See Table 6 for more task formulations.
During training, the concatenated samples with the
correct choice are given label 1 (true) for UD and
the other incorrect ones are given label 0 (false).
During testing, similarly, we concatenate the text
input xin with each choice {ci}Nc

i=1 to form several
samples {(xin, ci)}Nc

i=1 and ask UD for their D(·)
scores. We then select the sample with the maximal
D(·) score and output its corresponding choice.

Tasks with Yes/No Choices For yes/no tasks,
we directly treat the text input xin as a sample and
assign its 0/1 label based on its yes/no label. During
training, we use xin with its assigned 0/1 label as
UD’s training data. During testing, we first get
the output of UD on xin, D(xin), and then output
answer yes/no based on whether D(xin) > 0.5†.

Empirical experiments suggest that unifying
tasks with Yes/No choices in such a new way can
produce better zero-shot performance than using
the same method for Multi-Choice Tasks. We pro-
vide two justifications here: First, the Yes/No an-
swer tokens here don’t contain specific information
and thus the model cannot benefit from concatena-
tion. Second, the two tokens Yes/No are asymmet-
ric in the training dataset which may result in the
model uniformly assigning higher scores for one
of them no matter what the task input is.

Minimal Prompting A key principle we follow
for task formulation is minimal prompting. From
Table 6, one can see that our prompts are min-

†We note that more delicate threshold search might be
possible, but we find it performs well using a constant 0.5.
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imal in the sense that they are mostly just con-
catenations of different elements from the raw in-
put, discarding most of the previously instructive
prompting words. This is very different from T0
(Sanh et al., 2021) and other generative approaches
(Brown et al., 2020; Schick and Schütze, 2020)
that add lengthy task descriptions with different
wordings into the prompts.

We argue that there are two major benefits of
minimal prompting. First, previous work (Liu et al.,
2021b) has shown that zero-shot and few-shot per-
formances are very sensitive to the prompts used
for inference. Minimal prompting is more robust
and requires less prompt engineering efforts at test
time. This is especially important for true zero-shot
real-world applications as there is no data available
for choosing the right prompt. Second, as we will
show in our experiments, UD performs much bet-
ter with minimal prompts than lengthy descriptive
prompts, while generative approaches do not work
well with minimal prompts. This is also consistent
with our motivation that all the NLP tasks share
a common ability: “discriminating whether a text
sample comes from the true data distribution” and
UD is attempting to learn “what kind of concate-
nation between input and option makes it look like
the true language?”, which does not rely much on
the descriptions for each task. On the other hand,
T0 attempts to generate the answer directly basing
on all the information it gets, so prompts provide
an extra source of information and are helpful. See
§ 4.4.1 for our ablation study on minimal prompts.

Note that it is also important to use minimal
prompts to resolve ambiguity in some cases. For
example, consider the natural language inference
(NLI) task that predicts whether a premise A entails
a hypothesis B. Simply concatenating A and B is
ambiguous, because the model cannot tell which is
the premise. The model also is not aware that this
is an NLI task. To resolve this kind of ambiguity,
we use a minimal prompt “Premise: A. Hypothesis:
B.” instead, as shown in Table 6.

3.3.2 Architecture
UD can use any pre-trained encoder model as the
backbone. In this work, we experiment with the T5
encoder and DeBERTa (He et al., 2021b). Since
T5 is an encoder-decoder model, we only use the
encoder part. For the T5 backbone, we perform
mean pooling over the last-layer encoder features,
followed by a dropout layer and a linear layer to
predict a scalar logit. For the DeBERTa backbone,

we use the last-layer feature of the first token, fol-
lowed by a two-layer perceptron with dropout to
also output a scalar logit. We train UD with the
binary cross entropy loss.

3.4 A Generalized Universal Discriminator

To further study how the discriminative approaches
work in combination with generative tasks, we also
propose to experiment with a generalized version
of UD (denoted as generalized UD).

Different from the previous UD that only uses
an encoder as the backbone model, the general-
ized UD employs an encoder-decoder architec-
ture. In the following, we experiment with the
T5 model. Generalized UD takes both discrimina-
tive and generative tasks into consideration, and is
jointly trained over both types of tasks at the same
time.

For discriminative tasks, they are reformulated
into binary classification tasks through minimal
prompting, as is described in § 3.3.1. Specifically,
it takes the minimal prompted texts into the en-
coder and uses the decoder to predict over {“Yes”,
“No”}. In such cases, generalized UD is optimized
with the binary cross-entropy loss. For generative
tasks, they take the form of “input-and-target” pairs.
Generalized UD is fed with the textual inputs, and
generates the targets through decoding. For gener-
ative tasks, generalized UD is trained to optimize
the cross-entropy loss.

4 Experiments

4.1 Experimental Setup

We performed extensive experiments to validate
the performance of the zero-shot generalization of
our UD. We follow the same zero-shot setting as
T0 (Sanh et al., 2021) by training on multi-task
datasets and evaluating a held-out set of tasks that
are never seen during training.

Datasets The original T0 training set consists
of 38 tasks of 8 different types. There are in to-
tal 21/38 discriminative training tasks, with which
we train the UD. The evaluation set covers four
types of tasks, including natural language infer-
ence (RTE (Candela et al., 2006), CB (De Marn-
effe et al., 2019), ANLI/R1-R3 (Nie et al., 2020)),
coreference resolution (WSC (Levesque et al.,
2012), Winogrande (Sakaguchi et al., 2020)),
sentence completion (COPA (Roemmele et al.,
2011), StoryCloze (Mostafazadeh et al., 2017),
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(a) On 11 discriminative test tasks following the T0 benchmark.

Base Model Method #Params
Natural Language Inference Sentence Completion Coreference WSD

Avg.
RTE CB ANLI1 ANLI2 ANLI3 COPA Hella. Story. WSC Wino. WiC

Decoder-only GPT-3 175B 63.5 46.4 34.6 35.4 34.5 91.0 78.9 83.2 65.4 70.2 - -
Decoder-only GLaM 137B 56.3 39.3 39.7 35.5 34.1 90.0 76.7 81.1 82.1 71.3 50.6 59.7
MoE Decoder-only GLaM 64B 66.8 33.9 40.9 38.2 40.9 90.0 77.1 82.5 83.5 73.4 50.5 61.6
Decoder-only PaLM 540B 72.9 51.8 48.0 44.2 45.7 93.0 83.4 84.6 89.1 81.1 59.1 68.5
Decoder-only FLAN 137B 78.3 64.1 47.7 43.9 47.0 90.6 56.4 92.2 80.8 67.3 - -

ELECTRA
PE-CLS 335M 60.2 57.4 34.1 34.4 36.4 92.7 44.1 96.0 62.8 56.3 50.7 56.8
PE-PROB 335M 54.0 49.2 32.3 33.3 33.5 81.9 36.7 89.5 64.3 50.7 50.9 52.4
PE-REP 335M 69.0 61.3 36.1 35.0 39.4 91.2 47.0 96.8 70.0 56.2 51.1 58.5

DeBERTaV3 UD (ours) 304M 71.1 76.8 43.8 41.3 45.7 96.0 60.7 97.4 66.4 83.6 53.3 66.9

T5-Large
T0 ⋆ 800M 75.1 55.5 32.9 32.3 33.7 84.6 28.2 94.0 63.0 54.6 51.2 55.0
UD (ours) 400M 83.8 80.4 36.8 34.2 42.2 90.0 56.1 96.4 68.3 62.9 54.6 64.1

T5-XL
T0 † 3B 64.6 45.4 33.8 33.1 33.3 72.4 27.3 84.0 65.1 51.0 50.7 51.0
T0 ⋆ 3B 79.7 68.9 43.1 38.5 42.3 94.1 31.5 97.5 68.8 61.3 54.1 61.8
UD (ours) 1.5B 78.7 73.2 41.2 36.3 45.4 94.0 70.1 97.9 72.1 70.6 53.0 66.6

T5-XXL

T0 † 11B 80.8 70.1 43.6 38.7 41.3 90.0 33.6 92.4 61.5 59.9 56.6 60.8
T0 ⋆ 11B 85.8 73.3 47.3 42.0 46.1 94.4 31.5 98.4 62.8 72.8 56.0 64.6
UD (ours) 5.5B 80.5 87.5 49.0 42.9 48.8 95.0 77.4 98.6 73.1 82.2 57.1 72.0
UD+ (ours) 5.5B 82.0 89.3 53.4 48.1 51.0 96.0 78.9 96.7 75.0 86.4 58.5 74.1

(b) On 13 discriminative BigBench tasks following the T0 benchmark

Model T0-Large UD-large T0-XL UD-XL T0-XXL UD-XXL UD+-XXL

BigBench (Avg.) 39.6 43.5 44.8 48.9 47.4 55.5 58.7

(c) On 22 discriminative BBH tasks

Model T0-Large Flan-T5-Large UD-Large T0-XL Flan-T5-XL UD-XL T0-XXL Flan-T5-XXL UD-XXL UD+-XXL

BBH (Avg.) 38.9 39.5 44.2 40.4 44.6 47.3 45.0 49.4 51.3 56.7

Table 1: Zero-shot performance of our UD and baselines. Results in the first block are reported by previous work,
respectively from GPT-3 (Brown et al., 2020), GLaM (Du et al., 2022), PaLM (Chowdhery et al., 2022), and
FLAN (Wei et al., 2021). Note that we provide these reported results for reference, and do not compare directly.
Some of the reported tasks are evaluated on the test split, while we follow the better baseline method T0 to report on
validation splits. Results with † are reported by Sanh et al., and results with ⋆ are reproduced in our framework. We
reproduced the three variants of prompting ELECTRA (Xia et al., 2022) under our setting, denoted as “PE-CLS”,
“PE-PROB”, “PE-REP”. Results for Flan-T5-Large/Xl/XXL (Chung et al., 2022) are reproduced by testing zero-shot
performance on their released checkpoints. In the same group, T0 and Flan-T5 has 2x model parameters compared
to UD. For abbreviation, we denote UD based on T5-XX as “UD-XX”, e.g., UD-XL refers to UD based on the
T5-XL model.

Hellaswag (Zellers et al., 2019)), and word sense
disambiguation (WiC (Pilehvar and Camacho-
Collados, 2018)). Following T0, we use accuracy
on the validation split as the evaluation metric. For
prompt-based baselines, we report the average ac-
curacy over multiple prompts for each test task. Be-
sides, we also evaluate zero-shot performance on
13 BigBench (Srivastava et al., 2022) tasks, which
are also adopted by T0 (Sanh et al., 2021), and 22
BBH tasks (Suzgun et al., 2022), which are adopted
by Flan-T5 (Chung et al., 2022).

Baselines We primarily compare our method
with T0 (Sanh et al., 2021), which is a generative
approach. Another baseline is prompting ELEC-
TRA (Xia et al., 2022) which is a recent work on

discriminative modeling. Since it was proposed
in a different setting (i.e., a few-shot setting or di-
rect zero-shot inference without any finetuning),
we reproduced their method under our multitask
zero-shot setting for comparison.

For a fair comparison, we follow T0 to use the
T5-V1.1-LM-Adapted (Raffel et al., 2019) as the
backbone model, and we experimented with three
different scales, respectively 800M, 3B, and 11B.
For UD, it only makes use of the encoder of T5-
v1.1 and additionally replaces the output layer with
a classification head.

In addition, we provide reported zero-shot re-
sults of several large language models (with hun-
dreds of billions of parameters) for reference, in-
cluding GPT-3 (Brown et al., 2020), GLaM (Du

10564



Dataset SOTA UD+-XXL

QQP 90.60 90.44
DREAM 91.80 94.95
QuAIL 87.20 88.13
IMDB 97.30 97.44
AgNews 95.58 95.56
OBQA 87.20 89.20
STSB 92.30 92.90
CSQA 84.90 84.68
SST-2 97.30 97.48
QNLI 96.50 96.56
AbductiveNLI 89.80 93.20
VitaminC 91.10 92.62
MNLI 92.10 92.03
MCScript 97.30 98.03
MCScript 2.0 97.90 98.01
AdversarialNLI (r3) 53.50 67.83
COLA 71.50 71.42

Avg. 89.05 90.62

Table 2: Results on fully-supervised tasks for UD, which
is based on the encoder of T5-xxl. Previous sota model
(Tay et al., 2022) has 4x model parameters compared to
UD.

et al., 2022), PaLM (Chowdhery et al., 2022), and
FLAN (Wei et al., 2021). We also reproduce zero-
shot results of a recent work Flan-T5 (Chung et al.,
2022) by evaluating their released checkpoints on
BBH tasks‡. Note that Flan-T5’s training data sets
are much broader than ours, so results for Flan-T5
here are only for reference but not a fair compari-
son.

Training During training, we truncate the input
sequence to 256 tokens and use a batch size of
256. For optimization, we use the Adam optimizer
with a fixed learning rate of 1e-5 and a dropout
rate of 0.1. Each experiment is trained with 10, 8,
and 5 epochs respectively for 800M, 3B, and 11B
models.

4.2 Main Results on Zero-Shot Tasks

UD Zero-Shot Results The main results are pre-
sented in Table 1. We compare methods of similar
scales. Results in Table 1(a) show that our UD sub-
stantially outperforms the T0 baseline on average
by a large margin of around 9, 5, and 7 points re-
spectively at Large, XL, and XXL scales. Compar-
ing the results of UD-T5-Large, UD-DeBERTaV3,
and prompting ELECTRA, both variants of UD
also substantially outperform prompting ELEC-
TRA by more than 6 points. On BIG-Bench
datasets, results in Table 1(b) show that our UD

‡T0 test sets are included in Flan-T5’s training data sets,
so we can’t test its zero-shot performance on those data sets.

outperforms the T0 baseline by a margin of around
4-8 points. Besides T0 benchmark, we also test UD
on BBH datasets, which are very different from
T0 training sets, results in Table 1(c) show that
our UD constantly outperforms T0 and Flan-T5
by a margin of around 2-5 points, even though our
UD is only trained on a small fraction of Flan-T5’s
training sets. Overall, these results demonstrate the
advantages of UD at every scale, and a broad range
of tasks compared with baselines.

Another interesting finding is that the advantages
of UD significantly increase along with scaling.
When scaling from Large-scale to XL-scale (i.e.,
around 3.75x of the parameters), the average per-
formance improves by around 2 points. However,
when scaling from XL-scale to XXL-scale (i.e.,
3.6x of the parameters), the improvements of av-
erage zero-shot performance enlarge to 8 points.
Based on the observation, we hypothesize that UD
can achieve even better performance of zero-shot
generalization if further scaling to an even larger
models, which we leave to future work.

To further boost the zero-shot performance, we
also train a new variant of UD at 11B scale by scal-
ing to more training tasks, including the discrim-
inative English tasks used in Wang et al. (2022),
and the discriminative English tasks used in Tay
et al. (2022). The new model is denoted as UD+.
UD+ achieves the highest average accuracy among
all the zero-shot evaluation tests.

Generalized UD Zero-Shot Results The zero-
shot results of generalized UD on 11 T0 discrim-
inative test tasks and on 13 Big-Bench tasks are
respectively reported in Table 7(a) and Table 7(b)
We also select the top 15 uncommon generative
tasks from BigBench basing on ascending order of
data size, results are in Table 7(c). We assume that
tasks with smaller data sizes are less common and
more likely to be unrelated to our training data and
more suitable for zero-shot tests.

Analyses are as follows. First, comparing the
results of generalized UD and T0, generalized UD
still holds significant improvements on discrimi-
native tasks. Second, comparing generalized UD
with our previous UD (in Table 1), we observe
there is a slight decrease in average performance,
proving that adding generative tasks into training
could have impacted a little bit, in trade for capa-
bility for handling generative tasks. Third, on 15
generative tasks, both generalized UD and T0 show
comparable results.
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Natural Language Inference Sentence Completion Coreference WSD Avg.RTE CB ANLI1 ANLI2 ANLI3 COPA Hella. Story. WSC Wino. WiC

UD (Minimal) 83.8 80.4 36.8 34.2 42.2 90.0 56.1 96.4 68.3 62.9 54.6 64.1
UD (Instructive) 72.2 64.5 37.0 33.4 39.7 85.3 45.2 96.0 65.4 53.9 50.9 58.5

T0 (Minimal) 61.6 57.8 30.6 30.3 33.4 67.2 33.8 66.6 60.9 52.8 51.7 49.7
T0 (Instructive) 75.1 55.5 32.9 32.3 33.7 84.6 28.2 94.0 63.0 54.6 51.2 55.0

Table 3: Zero-shot performance for UD and T0 respectively with instructive and minimal prompts. Instructive
prompts are lengthy descriptions of tasks (Sanh et al., 2021), while minimal prompts use a simple concatenation of
input data.

(a) On 11 discriminative test tasks following the T0 benchmark.

Method
Natural Language Inference Sentence Completion Coreference WSD

Avg.
RTE CB ANLI1 ANLI2 ANLI3 COPA Hella. Story. WSC Wino. WiC

T0-XL 79.7 68.9 43.1 38.5 42.3 94.1 31.5 97.5 68.8 61.3 54.1 61.8
GenUD-XL 71.5 80.4 43.1 39.5 42.6 94.0 55.8 96.7 63.5 75.5 52.8 65.0

(b) On 13 discriminative Big-Bench tasks following the T0 benchmark.

Model code
desc.

conce
-ptual

known
unknowns

logic
grid

logic
deduction

miscon
-ceptions

novel
concepts

strate
-gyqa

wino
-why

syllo
-gisms

movie
dialog

lang
-uage_id

vita
-minc Avg.

T0-XL 23.4 48.1 64.6 42.5 50.1 52.7 25.0 53.1 45.4 50.2 47.7 19.0 60.0 44.8
GenUD-XL 60.0 64.1 69.6 38.2 52.8 48.9 44.1 57.1 46.5 50.4 50.9 15.5 66.8 48.9

(c) On 15 generative tasks from Big-Bench

Model
auto

debugging
simple
arith

-metic

repeat
copy
logic

sufficient
information

simple
text

editing

scientific
press

release
code

names
emoji

movies

penguins
in a
table

few
shot
nlg

operators tense
geometric

shapes

chinese
remainder
theorem

temporal
sequences Avg.

T0-XL 11.2 6.7 25.8 33.8 7.5 6.7 44.8 8.7 11.4 17.4 10.5 80.7 0.0 0.0 14.0 18.6
GenUD-XL 15.5 6.7 8.2 34.4 12.6 6.4 25.1 0.0 8.1 20.5 3.7 80.9 0.0 0.0 33.5 17.0

Table 4: Zero-shot performance for generalized UD and T0 on discriminative and generative tasks. We select the
top 15 uncommon generative tasks from BigBench basing on ascending order of data size. (We assume that datasets
with smaller sizes are less common, and more suitable for zero-shot tests.) The metrics are respectively accuracy for
discriminative tasks and ROUGE1 for generative tasks. “GenUD” denotes our generalized UD method.

4.3 SOTA Results on Finetuned Tasks

To explore how UD performs on fully-supervised
tasks, we finetuned UD for a wide range of down-
stream tasks and reported their results in Table
2. For each finetuning experiment, the maximum
training epoch is set to be 10. We search a hyper-
parameter space with learning rate in {2e-5, 1e-5,
5e-6}, batch size in {32, 64, 128}. We select the
best checkpoint using a validation set with early
stopping.

From results in Table 2, we find that UD can
achieve remarkable performance on most of the
downstream tasks. We achieve state-of-the-art per-
formance on 12 out of the 17 tasks we evaluated.
The results also show that more challenging tasks
(tasks that require more knowledge) will benefit
more from the multi-task training period, especially
some QA tasks.

4.4 Ablation Study
We have also conducted ablation studies to further
explore how several factors affect the performance
of zero-shot generalization. Please see appendix
for further ablation studies on UD with different
base models (§ C.1)

4.4.1 Instructive Prompts vs Minimal
Prompts

UD employs minimal prompts that use simple
concatenation, while previous approaches rely on
lengthy instructive prompts to provide more de-
tailed instructions (Sanh et al., 2021; Wei et al.,
2021; Brown et al., 2020). Statistically, we count
the average number of prompt words (exclud-
ing raw input) for both minimal and instructive
prompts, and statistics are respectively 0.4 versus
> 10. We compare these two types of prompts in
the following experiment. We adopt the instructive
prompts from T0 and apply them on UD without
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Setting Accuracy

True Data vs Manually-Generated Data 80.0
True Data vs Model-Generated Data 74.4

Table 5: The accuracy of UD discriminating real data
and generated data. We feed UD with a real sample
x from the real-world data distribution, and a sample
x′ from manual generation or model-based generation.
If UD assigns higher score to x than x′ (i.e., D(x) >
D(x′)), it is considered an accurate prediction.

changing the discriminator formulation. To con-
struct minimal prompts for T0, we remove all the
instructive words similar to UD.

Results are shown in Table 3. We observe that
minimal prompts yield better performance for UD
than instructive prompts. In contrast, for T0, in-
structive prompts perform much better than mini-
mal prompts. These results are consistent with our
motivation that UD tends to unify the tasks better
with a shared discrimination formulation. As a re-
sult, task-specific instructions are not necessary and
might hurt generalization performance. Generative
approaches, on the other hand, rely on instructive
prompts to better distinguish different tasks and
generate specific answers directly.

4.5 How Well UD Generalizes to a Broader
Domain?

Our discrimination problem formulation is in fact
more general than solving supervised labeled tasks
and can be applied to a broader domain of natural
language. We conduct the following experiment to
see how UD generalizes.

To test whether a model discriminates against
the true data distribution, a straightforward way of
verification is to compare the probability of real
data with that of some generated, fake data. This
form of verification is not specific to any down-
stream task and can be viewed as generalizing to
a broader domain. Formally, given a text sample
x, let D(x) be the output of UD, which estimates
the probability that x is sampled from the true data
distribution, i.e., P (true|x). Given a true data sam-
ple x and a generated data sample x′, we expect a
well-trained UD to predict D(x) > D(x′).

Specifically, we randomly select 2,600 real data
samples x from the validation set of the T0 training
data and generate the data x′ in two different ways:
model-based generation and manual generation.

For a model-based generation, we utilize the T0-

Large model with a paraphrase prefix “Paraphrase
the sentence:” to generate data x′. It is expected
that the generated samples x′ are similar to true
samples x to some extent but demonstrate some
flaws that are unique to generated data. For a man-
ual generation, we manually create some conflict
or contradiction in the real sample x. Specifically,
we manually attach wrong answers to the original
data and obtain x′ , which is similar to what we
have done in constructing negative samples in our
main framework.

We then use our universal discriminator based on
T5-Encoder Large to compute the probability D(x)
and D(x′) for both real and generated data. As
displayed in Table 5, we find that the universal dis-
criminator assigns a higher score for x than x′ 80%
of the time for manually-generated data. When
tested with model-generated data, UD assigns a
high probability for real data in 74% of the cases.
This is probably because manually generated data
are more paradoxical and logically incoherent and
thus are easier for UD to discriminate. Overall,
these results demonstrate that the discrimination
ability of UD is not limited to the downstream tasks
on which it was trained, but is also generalizable
to a broader domain of text data. This indicates a
possibility of extending UD to other scenarios such
as model pretraining and generation tasks.

5 Conclusions

Universal Discriminator is a discriminating model
for predicting whether a sample comes from the
true data distribution, which is a new formulation
for all discriminative NLP tasks. Experiments show
that UD sets the new state-of-the-art for zero-shot
generalization on many benchmarks. UD is high-
performing with minimal prompting, and thus is
more robust and applicable in practice. A gener-
alized UD can also solve generative tasks at the
same time which keeps UD’s advantage on dis-
criminative tasks and has comparable performance
on generative tasks.

6 Limitation

Even though our generalized UD can get compa-
rable performance on some generative tasks, gen-
eralized UD may not handle certain complex gen-
eration tasks very well (e.g., summarization) We
leave expanding UD to solve a broader range of
generative tasks and achieve greater performance
advantage as our future work.
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A Examples of Minimal Prompt

Here we provide Table 6 for some examples of how to construct minimal prompted data according to
§ 3.3.1.

Category Task Type Our Minmal Prompt Label

yes/no

Paraphrase
Identification

John is Lily’s husband. Lily is John’s wife 1

John is Lily’s husband. Lily is John’s mother. 0

Natural
Language
Inference

Premise: Dana Reeve, the widow of the actor Christopher Reeve, has died of lung cancer at
age 44. Hypothesis: Dana Reeve had an accident.

1

Premise: Dana Reeve, the widow of the actor Christopher Reeve, has died of lung cancer at
age 44. Hypothesis: Christopher Reeve had an accident.

0

multi-choice

Coreference
Resolution

Jane gives Joan candy because Joan was hungry. 1

Jane gives Joan candy because Jane was hungry. 0

Question
Answer

The earth moves around the sun. What is the earch to the sun? Planet 1

The earth moves around the sun. What is the earch to the sun? Satellite 0

Topic
Classification

Open Source Apps Developer SugarCRM Releases Sugar.Sales 1.1. Science and technology 1

Open Source Apps Developer SugarCRM Releases Sugar.Sales 1.1. Sports 0

Sentence
Completion

A boy is running down a track. The boy lifts his body above the height of a pole. 1

A boy is running down a track. The boy stands on his hands and springs. 0

Sentiment
Classification

I really love this movie. Positive 1

I don’t like this movie. Negative 1

Table 6: Examples of how we unify discriminative tasks. The underlined text represents additional words not present
in raw inputs. Note that this is just our implementation of the UD formulation and there can be other ways of task
formulation under the UD framework. Some tasks can either be yes/no tasks or multi-choice tasks, depending on
how options are provided.

B Full Experiment Results

B.1 Evaluation on Big-Bench
Here we report the full results for 13 tasks in the Big-Bench Srivastava et al. (2022), which is also utilized
in original T0 paper (Sanh et al., 2021). All the tasks from BIG-Bench are ensured unseen in our training
set for the zero-shot setting. The results are displayed in Table 7, where UD outperforms T0 by 4-8 points
on different scales.

B.2 Evaluation on BBH
Here we report the full results for 22 discriminative tasks from BBH (Suzgun et al., 2022). For reference,
we reproduce Flan-T5(Chung et al., 2022)’s zero-shot performance on BBH tasks by evaluating their

Model code
desc.

conce
-ptual

known
unknowns

logic
grid

logic
deduction

miscon
-ceptions

novel
concepts

strate
-gyqa

wino
-why

syllo
-gisms

movie
dialog

lang
-uage_id

vita
-minc Avg.

UD-DeBERTaV3 76.7 64.1 76.1 39.9 54.9 50.2 50.0 59.9 45.8 50.4 57.7 13.3 61.5 53.9

T0-Large⋆ 14.1 40.4 60.4 38.0 41.2 50.0 10.0 52.3 49.7 50.3 46.8 16.0 46.2 39.6
UD-Large 51.7 54.4 47.8 33.4 34.6 50.2 26.5 47.0 45.7 50.6 51.7 16.3 55.8 43.5

T0-XL⋆ 23.4 48.1 64.6 42.5 50.1 52.7 25.0 53.1 45.4 50.2 47.7 19.0 60.0 44.8
UD-XL 53.3 73.8 65.2 37.2 37.8 48.0 35.3 53.1 45.3 50.4 50.1 22.9 63.7 48.9

T0-XXL† 36.7 62.5 63.0 39.6 55.4 52.5 15.6 52.7 47.4 51.8 53.8 20.7 64.7 47.4
UD-XXL 61.7 71.8 76.1 38.0 59.1 49.3 61.8 61.3 45.9 50.1 57.3 21.6 67.2 55.5
UD+-XXL 63.3 82.5 84.8 39.2 67.5 49.3 58.8 64.2 47.5 50.4 57.9 27.3 70.2 58.7

Table 7: Zero-shot performance of Universal Discriminator and T0 on Big-Bench test tasks used in T0 paper. Results
with † are reported by Sanh et al., and results with ⋆ are reproduced in our framework.
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Dataset T0-Large Flan-T5-Large UD-Large T0-XL Flan-T5-XL UD-XL T0-XXL Flan-T5-XXL UD-XXL UD+-XXL

boolean_expression 48.4 49.6 64.0 47.6 54.8 68.4 46.4 56.8 68.4 66.0
causal_judgement 56.2 59.4 61.5 58.8 59.9 63.6 62.0 60.9 65.2 63.6
data_understanding 30.4 18.8 30.4 38.8 34.8 41.2 63.2 56.8 51.6 53.2
disambiguation_qa 54.4 34.8 68.4 61.2 66.8 65.2 64.4 66.8 67.2 66.8
formal_fallacies 54.4 55.6 50.4 52.4 54.0 46.4 52.0 55.2 54.0 58.8
geometric_shapes 0.0 21.6 9.6 0.0 20.0 9.6 11.2 31.2 9.6 9.6
hyperbaton 72.0 59.6 71.2 52.4 58.8 66.8 63.2 70.8 68.0 82.0
logical_deduction_five_objects 34.8 40.0 32.8 38.8 48.0 39.2 46.4 53.6 58.4 65.2
logical_deduction_seven_objects 27.6 40.4 25.2 37.6 52.4 32.0 50.4 60.0 56.4 67.2
logical_deduction_three_objects 49.2 37.6 60.4 62.8 64.8 69.2 65.6 74.4 80.8 83.2
movie_recommendation 51.4 55.0 60.4 55.0 47.4 69.6 61.0 38.5 73.2 78.8
navigate 58.8 56.4 63.6 60.4 59.2 58.4 65.6 60.8 63.2 64.8
penguins_in_a_table 36.3 32.9 36.3 34.3 42.5 41.1 40.4 41.1 39.7 46.6
reasoning_about_colored_objects 39.2 40.4 36.4 41.6 47.2 54.4 56.8 61.6 57.2 63.2
ruin_names 23.0 22.6 44.4 21.8 33.5 24.4 17.8 34.7 35.6 68.8
snarks 48.3 56.1 74.7 45.5 55.6 73.0 55.1 72.5 75.3 82.0
sports_understanding 53.2 55.6 54.8 47.6 52.4 51.6 52.8 60.0 57.6 56.0
temporal_sequences 13.2 25.2 23.6 24.8 22.4 63.2 14.8 28.8 43.2 60.8
tracking_shuffled_objects_five_objects 12.8 12.4 12.0 12.8 12.0 13.2 12.0 15.2 12.4 20.0
tracking_shuffled_objects_seven_objects 7.6 8.4 9.6 8.8 9.2 8.4 8.0 13.2 8.4 14.0
tracking_shuffled_objects_three_objects 33.2 33.6 31.2 33.6 32.8 34.8 29.6 24.4 33.6 20.8
web_of_lies 51.2 52.4 51.2 51.2 52.4 47.6 50.8 50.0 50.4 56.8

Avg. 38.9 39.5 44.2 40.4 44.6 47.3 45.0 49.4 51.3 56.7

Table 8: Zero-shot performance of Universal Discriminator, T0, and Flan-T5 on BBH test tasks (Suzgun et al.,
2022).

public checkpoints. All the tasks from BBH are ensured unseen in our training set for the zero-shot setting.
The results are displayed in Table 8, where UD constantly performs better than T0 and Flan-T5 on all the
scales even though Flan-T5 is trained on a much broader scope of tasks than UD is.

C More Ablation Studies

C.1 Ablation on Base Models

Base Model
Natural Language Inference Sentence Completion Coreference WSD

Avg.
RTE CB ANLI1 ANLI2 ANLI3 COPA Hella. Story. WSC Wino. WiC

Encoder
DeBERTa-V3 (304M) 71.1 76.8 43.8 41.3 45.7 96.0 60.7 97.4 66.4 83.6 53.3 66.9
DeBERTa-V2 (1.5B) 77.6 80.4 43.2 39.3 44.8 95.0 67.2 98.2 74.0 82.1 56.0 68.9

Enc-Dec
T5-Encoder (400M) 75.1 55.5 32.9 32.3 33.7 84.6 28.2 94.0 63.0 54.6 51.2 55.0
T5-Encoder (1.5B) 79.7 68.9 43.1 38.5 42.3 94.1 31.5 97.5 68.8 61.3 54.1 61.8

Decoder GPT-XL (1.5B) 71.1 75.0 30.4 31.8 37.8 71.0 40.9 87.7 62.5 54.5 50.3 55.7

Table 9: Ablation study on different backbone models. We experiment with base models of different architectures
and scales. “Enc-Dec” refers to models that are pretrained in an encoder-decoder manner.

We also study the effects of using different backbone pretrained models. We experiment with three
backbone models of different types, respectively the encoder part of an encoder-decoder model, an encoder
model, and a decoder model. Specifically, we use the T5 encoder, DeBERTa (He et al., 2021b), and GPT
(Radford et al., 2018) respectively for these three types. It is noteworthy that though similar in architecture
for both T5 encoder and DeBERTa, they are pretrained with different self-supervised language modeling
tasks, which in fact leads to huge differences in zero-shot generalization, as we will show in Table 9.

Results of different backbone models are presented in Table 9. Among all three types of backbone
models, the encoder backbone models appear to be the most suitable type of backbone, where both
encoder models of two scales respectively achieve the best and the second best results, outperforming all
the others by more than 5 points.

Using the same number of parameters (i.e., 1.5B), both DeBERTa-V2 and T5-Encoder significantly out-
perform GPT-XL, which demonstrates that a bidirectional architecture works better than the unidirectional
architecture for the discriminator formulation. In addition, DeBERTa-V2 outperforms T5-Encoder by 7
points, implying that not only model architecture but also the self-supervised pretraining task determines

10572



the ability of UD discrimination. Models pretrained with masked language modeling tasks are more
suitable for UD.

The impacts of the architecture and pretraining tasks of backbone models are even larger than the
influence of scale, as we also observe that an encoder model with 300M parameters (i.e., DeBERTaV3)
achieves much better performance than the T5 encoder and GPT-XL with 1.5B parameters.

10573



ACL 2023 Responsible NLP Checklist

A For every submission:
� A1. Did you describe the limitations of your work?

Left blank.

� A2. Did you discuss any potential risks of your work?
Left blank.

� A3. Do the abstract and introduction summarize the paper’s main claims?
Left blank.

� A4. Have you used AI writing assistants when working on this paper?
Left blank.

B � Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
Left blank.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Left blank.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C � Did you run computational experiments?
Left blank.

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Left blank.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

10574

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Left blank.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Left blank.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Left blank.

D � Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Left blank.

10575


