
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 10596–10613

July 9-14, 2023 ©2023 Association for Computational Linguistics

GreenKGC: A Lightweight Knowledge Graph Completion Method

Yun-Cheng Wang1, Xiou Ge1, Bin Wang2, C.-C. Jay Kuo1

1University of Southern California, Los Angeles, California, USA
2National University of Singapore, Singapore

{yunchenw, xiouge, jckuo}@usc.edu, bwang28c@gmail.com

Abstract

Knowledge graph completion (KGC) aims to
discover missing relationships between entities
in knowledge graphs (KGs). Most prior KGC
work focuses on learning embeddings for en-
tities and relations through a simple scoring
function. Yet, a higher-dimensional embedding
space is usually required for a better reasoning
capability, which leads to a larger model size
and hinders applicability to real-world prob-
lems (e.g., large-scale KGs or mobile/edge
computing). A lightweight modularized KGC
solution, called GreenKGC, is proposed in this
work to address this issue. GreenKGC consists
of three modules: representation learning, fea-
ture pruning, and decision learning, to extract
discriminant KG features and make accurate
predictions on missing relationships using clas-
sifiers and negative sampling. Experimental
results demonstrate that, in low dimensions,
GreenKGC can outperform SOTA methods in
most datasets. In addition, low-dimensional
GreenKGC can achieve competitive or even
better performance against high-dimensional
models with a much smaller model size. We
make our code publicly available.1

1 Introduction

Knowledge graphs (KGs) store human knowledge
in a graph-structured format, where nodes and
edges denote entities and relations, respectively. A
(head entity, relation, tail entity) factual triple, de-
noted by (h, r, t), is a basic component in KGs. In
many knowledge-centric artificial intelligence (AI)
applications, such as question answering (Huang
et al., 2019; Saxena et al., 2020), information ex-
traction (Hoffmann et al., 2011; Daiber et al., 2013),
and recommendation (Wang et al., 2019; Xian et al.,
2019), KG plays an important role as it provides
explainable reasoning paths to predictions. How-
ever, most KGs suffer from the incompleteness

1https://github.com/yunchengwang/Gree
nKGC

Figure 1: MRR versus the number of free parameters in
KGE methods against FB15K-237 (left) and YAGO3-10
dataset (right). When a model has fewer parameters, its
performance is poorer. Also, the larger dataset, YAGO3-
10, demands more parameters than the smaller dataset,
FB15k-237, to achieve satisfactory results.

problem; namely, a large number of factual triples
are missing, leading to performance degradation
in downstream applications. Thus, there is grow-
ing interest in developing KG completion (KGC)
methods to solve the incompleteness problem by
inferring undiscovered factual triples based on ex-
isting ones. Knowledge graph embedding (KGE)
methods have been widely used to solve the in-
completeness problem. Embeddings for entities
and relations are stored as model parameters and
updated by maximizing triple scores among ob-
served triples while minimizing those among neg-
ative triples. The number of free parameters in
a KGE model is linear to the embedding dimen-
sion and the number of entities and relations in
KGs, i.e. O((|E|+ |R|)d), where |E| is the num-
ber of entities, |R| is the number of relations, and
d is the embedding dimension. Since KGE mod-
els usually require a higher-dimensional embed-
ding space for a better reasoning capability, they re-
quire large model sizes (i.e. parameter numbers) to
achieve satisfactory performance as demonstrated
in Fig. 1. To this end, it is challenging for them
to handle large-scale KGs with lots of entities and
relations in resource-constrained platforms such
as mobile/edge computing. A KGC method that

10596

https://github.com/yunchengwang/GreenKGC
https://github.com/yunchengwang/GreenKGC

has good reasoning capability in low dimensions is
desired (Kuo and Madni, 2022).

The requirement of high-dimensional embed-
dings for popular KGE methods comes from
the over-simplified scoring functions (Xiao et al.,
2015). Thus, classification-based KGC methods,
such as ConvE (Dettmers et al., 2018), aim to in-
crease the reasoning capabilities in low dimensions
by adopting neural networks (NNs) as powerful
decoders. As a result, they are more efficient in pa-
rameter scaling than KGE models (Dettmers et al.,
2018). However, NNs demand longer inference
time and more computation power due to their
deep architectures. The long inference time of
the classification-based methods also limits their
applicability to some tasks that require real-time
inference. Recently, DualDE (Zhu et al., 2022) ap-
plied Knowledge Distillation (KD) (Hinton et al.,
2015) to train powerful low-dimensional embed-
dings. Yet, it demands three stages of embedding
training: 1) training high-dimensional KGE, 2)
training low-dimensional KGE with the guidance
of high-dimensional KGE, and 3) multiple rounds
of student-teacher interactions. Its training process
is time-consuming and may fail to converge when
the embeddings are not well-initialized.

Here, we propose a new KGC method that works
well under low dimensions and name it GreenKGC.
GreenKGC consists of three modules: 1) represen-
tation learning, 2) feature pruning, and 3) decision
learning. Each of them is trained independently. In
Module 1, we leverage a KGE method, called the
baseline method, to learn high-dimensional entity
and relation representations. In Module 2, a feature
pruning process is applied to the high-dimensional
entity and relation representations to yield discrim-
inant low-dimensional features for triples. In ad-
dition, we observe that some feature dimensions
are more powerful than others in different relations.
Thus, we group relations with similar discriminant
feature dimensions for parameter savings and bet-
ter performance. In Module 3, we train a binary
classifier for each relation group so that it can pre-
dict triple’s score in inference. The score is a soft
prediction between 0 and 1, which indicates the
probability of whether a certain triple exists or not.
Finally, we propose two novel negative sampling
schemes, embedding-based and ontology-based,
for classifier training in this work. They are used
for hard negative mining, where these hard nega-
tives cannot be correctly predicted by the baseline

KGE methods.
We conduct extensive experiments and compare

the performance and model sizes of GreenKGC
with several representative KGC methods on link
prediction datasets. Experimental results show that
GreenKGC can achieve good performance in low
dimensions, i.e. 8, 16, 32 dimensions, compared
with SOTA low-dimensional methods. In addi-
tion, GreenKGC shows competitive or better per-
formance compared to the high-dimensional KGE
methods with a much smaller model size. We
also conduct experiments on a large-scale link pre-
diction datasets with over 2.5M entities and show
that GreenKGC can perform well with much fewer
model parameters. Ablation studies are also con-
ducted to show the effectiveness of each module in
GreenKGC.

2 Related Work

2.1 KGE Methods

Distance-based KGE methods model relations as
affine transformations from head entities to tail en-
tities. For example, TransE (Bordes et al., 2013)
models relations as translations, while RotatE (Sun
et al., 2019) models relations as rotations in the
complex embedding space for better expressive-
ness on symmetric relations. Recent work has
tried to model relations as scaling (Chao et al.,
2021) and reflection (Zhang et al., 2022) oper-
ations in order to handle particular relation pat-
terns. Semantic-matching KGE methods, such as
RESCAL (Lin et al., 2015) and DistMult (Bor-
des et al., 2014), formulate the scoring functions
as similarities among head, relation, and tail em-
beddings. ComplEx (Trouillon et al., 2016) ex-
tends such methods to a complex space for bet-
ter expressiveness on asymmetric relations. Re-
cently, TuckER (Balazevic et al., 2019) and Au-
toSF (Zhang et al., 2020) allow more flexibility
in modeling similarities. Though KGE methods
are simple, they often require a high-dimensional
embedding space to be expressive.

2.2 Classification-based KGC Methods

NTN (Socher et al., 2013) adopts a neural ten-
sor network combined with textual representations
of entities. ConvKB (Nguyen et al., 2018) uses
1 × 3 convolutional filters followed by several
fully connected (FC) layers to predict triple scores.
ConvE (Dettmers et al., 2018) reshapes entity and
relation embeddings into 2D images and uses 3× 3

10597

convolutional filters followed by several FC lay-
ers to predict the scores of triples. Though NN-
based methods can achieve good performance in
a lower dimension, they have several drawbacks,
such as long inference time and large model. KG-
Boost (Wang et al., 2022b) is a classification-based
method that doesn’t use NNs. Yet, it assigns one
classifier for each relation so it’s not scalable to
large-scale datasets.

2.3 Low-dimensional KGE Methods

Recently, research on the design of low-
dimensional KGE methods has received attention.
MuRP (Balažević et al., 2019) embeds entities and
relations in a hyperbolic space due to its effective-
ness in modeling hierarchies in KGs. AttH (Chami
et al., 2020) improves hyperbolic KGE by leverag-
ing hyperbolic isometries to model logical patterns.
MulDE (Wang et al., 2021b) adopts Knowledge
Distillation (Hinton et al., 2015) on a set of hy-
perbolic KGE as teachers to learn powerful em-
beddings in low dimensions. However, embed-
dings in hyperbolic space are hard to be used in
other downstream tasks. In Euclidean space, Du-
alDE (Zhu et al., 2022) adopts Knowledge Distil-
lation to learn low-dimensional embeddings from
high-dimensional ones for smaller model sizes and
faster inference time. Yet, it requires a long training
time to reduce feature dimension. GreenKGC has
two clear advantages over existing low-dimensional
methods. First, it fully operates in the Euclidean
space. Second, it does not need to train new low-
dimensional embeddings from scratch, thus requir-
ing a shorter dimension reduction time.

3 Methodology

GreenKGC is presented in this section. It con-
sists of three modules: representation learning,
feature pruning, and decision learning, to obtain
discriminant low-dimensional triple features and
predict triple scores accurately. An overview of
GreenKGC is given in Fig. 2. Details of each mod-
ule will be elaborated below.

3.1 Representation Learning

We leverage existing KGE models, such as
TransE (Bordes et al., 2013) and RotatE (Sun et al.,
2019), to obtain good initial embeddings for enti-
ties and relations, where their embedding dimen-
sions can be high to be expressive. Yet, the initial
embedding dimension will be largely reduced in

the feature pruning module. In general, GreenKGC
can build upon any existing KGE models. We re-
fer to the KGE models used in GreenKGC as our
baseline models. We include the training details
for baseline models in Appendix A as they are not
the main focus of this paper.

3.2 Feature Pruning

In this module, a small subset of feature dimensions
in high-dimensional KG representations from Mod-
ule 1 are preserved, while the others are pruned, to
form low-dimensional discriminant KG features.

Discriminant Feature Test (DFT). DFT is a
supervised feature selection method recently pro-
posed in Yang et al. (2022). All training samples
have a high-dimensional feature set as well as the
corresponding labels. DFT scans through each di-
mension in the feature set and computes its dis-
criminability based on sample labels. DFT can be
used to reduce the dimensions of entity and rela-
tion embeddings while preserving their power in
downstream tasks such as KGC.

Here, we extend DFT to the multivariate setting
since there are multiple variables in each triple. For
example, TransE (Bordes et al., 2013) has 3 vari-
ables (i.e. h, r, and t) in each feature dimension.
First, for each dimension i, we learn a linear trans-
formation wi to map multiple variables [hi, ri, ti]
to a single variable xi in each triple, where hi, ri, ti
represents the i-th dimension in the head, relation,
and tail representations, respectively. Such a linear
transformation can be learned through principal
component analysis (PCA) using singular value
decomposition (SVD). As a result, wi is the first
principal component in PCA. However, linear trans-
formations learned from PCA are unsupervised and
cannot separate observed triples from negatives
well. Alternatively, we learn the linear transforma-
tion through logistic regression by minimizing the
binary cross-entropy loss

L = − y log(σ(wi[hi, ri, ti]
T))

− (1− y) log(1− σ(wi[hi, ri, ti]
T)),

(1)

where y = 1 for observed triples (h, r, t) and
y = 0 for corrupted triples (h′, r, t′). Afterward,
we can apply the standard DFT to each dimension.

DFT adopts cross-entropy (CE) to evaluate the
discriminant power of each dimension as CE is
a typical loss for binary classification. Dimen-
sions with lower CE imply higher discriminant

10598

[0, 1] soft labels

B
inary

classifier

Low-dimensional
triple features

Feature pruning

[0, 1] soft labelsFeature pruning

[0, 1] soft labelsFeature pruning

High-dimensional
entity / relation
representations

KG partitioning

B
inary

classifier
B

inary
classifier

(a) (b) (c)

Figure 2: An overview of GreenKGC, which consists of three modules: (a) representation learning, (b) feature
pruning, and (c) decision learning.

Cluster # Relations

0 _derivationally_related_form
_also_see
_member_meronym
_has_part
_verb_group
_similar_to

1 _hypernym
_instance_hypernym
_synset_domain_topic_of

2 _member_of_domain_usage
_member_of_domain_region

Table 1: Relation grouping results on WN18RR when
applying k-Means on relation embeddings when k = 3.

power. We preserve the feature dimensions with
the lowest CE and prune the remaining to obtain
low-dimensional features. Details for training DFT
are given in Appendix B.

KG partitioning. Given that relations in KGs
could be different (e.g. symmetric v.s. asymmetric
and films v.s. sports), a small subset of feature di-
mensions might not be discriminant for all relations.
Thus, we first partition them into disjoint relations
groups, where relations in each group have simi-
lar properties. Then, we perform feature pruning
within each relation group and select the powerful
feature dimensions correspondingly.

We hypothesize that relations that have similar
properties are close in the embedding space. There-
fore, we use k-Means to cluster relation embed-

Figure 3: Average cross-entropy for different numbers
of KG partitions in FB15k-237.

dings into relation groups. To verify our hypothe-
size, we show the grouping results on WN18RR in
Table 1. Without categorizing relations into differ-
ent logical patterns explicitly, relations of similar
patterns can be clustered together in the embedding
space. For example, most relations in cluster #0
are symmetric ones. All relations in the cluster #1
are N-to-1. The remaining two relations in cluster
#2 are 1-to-N with the highest tail-per-head ratio.
While we observe cardinality-based grouping for
relations in WN18RR, which mostly contains ab-
stract concepts, for FB15k-237 and YAGO3-10,
relations with similar semantic meanings are often
grouped after KG partitioning.

Furthermore, we evaluate how different num-
bers of relation groups, k, can affect the feature
pruning process. In Fig. 3, as the lower CE re-
flects more discriminant features, we can obtain

10599

more powerful features when k becomes larger, i.e.
partitioning KG into more relation groups. Thus,
for each dataset, we select the optimal k when the
average CE starts to converge. We elaborate on
the high-level intuition on why combining feature
pruning and KG partitioning works with KGE mod-
els. First, KGE models are isotropic, meaning each
dimension can be handled by DFT independently.
Second, some feature dimensions are more pow-
erful than others in different relations. Thus, we
group relations that with the same discriminant fea-
ture dimensions for parameter savings.

3.3 Decision Learning

We formulate KGC as a binary classification prob-
lem in each relation group. We adopt binary classi-
fiers as decoders since they are more powerful than
simple scoring functions. The binary classifiers
take pruned triple features as inputs and predict
soft probabilities (between 0 and 1) of triples as
outputs. We also conduct classifier training with
hard negative mining so as to train a powerful clas-
sifier.

Binary classification. The binary classifiers,
g(∗), take a low-dimensional triple feature x and
predict a soft label ŷ = g(x) ∈ [0, 1]. The label
y = 1 for the observed triples and y = 0 for the
sampled negatives. We train a binary classifier by
minimizing the following negative log-likelihood
loss:

l(y, ŷ) = − y log(ŷ)

− (1− y) log(1− ŷ),
(2)

In general, we select a nonlinear classifier to ac-
commodate nonlinearity in sample distributions.

Negative sampling. Combining KGE with clas-
sifiers is non-trivial because it’s challenging to ob-
tain high-quality negative samples for classifier
training, given that negative samples are not ex-
plicitly labeled in the KGs. Therefore, it is desired
to mine hard negative cases for baseline KGE mod-
els so as to train a powerful classifier. We propose
two negative sampling schemes for classifier train-
ing. First, most KGE models can only capture
the coarse entity type information. For example,
they may predict a location given the query (Mary,
born_in, ?) yet without an exact answer. Thus,
we draw negative samples within the entity types
constrained by relations (Krompaß et al., 2015)
to enhance the capability to predict the exact an-
swer. Such a negative sampling scheme is called

Dataset # ent. # rel. # triples (train / valid / test)

WN18RR 40,943 11 86,835 / 3,034 / 3,134
FB15k-237 14,541 237 272,115 / 17,535 / 20,466
YAGO3-10 123,143 37 1,079,040 / 4,978 / 4,982

ogbl-wikikg2 2,500,604 535 16,109,182 / 429,456 / 598,543

Table 2: Dataset statistics.

ontology-based negative sampling. We also inves-
tigate the sampling of hard negatives that cannot
be trivially obtained from original KGE methods.
Negatives with higher embedding scores fr(hi, ti)
tend to be predicted wrongly in the baseline meth-
ods. To handle it, we rank all randomly sampled
negative triples and select the ones with higher em-
bedding scores as hard negatives for classifier train-
ing. Such a negative sampling strategy is called
embedding-based negative sampling.

4 Experiments

4.1 Experimental Setup

Datasets. We consider four link prediction datasets
for performance benchmarking: FB15k-237 (Bor-
des et al., 2013; Toutanova and Chen, 2015),
WN18RR (Bordes et al., 2013; Dettmers et al.,
2018), YAGO3-10 (Dettmers et al., 2018), and
ogbl-wikikg2 (Hu et al., 2020). Their statistics are
summarized in Table 2. FB15k-237 is a subset of
Freebase (Bollacker et al., 2008) that contains real-
world relationships. WN18RR is a subset of Word-
Net (Miller, 1995) containing lexical relationships
between word senses. YAGO3-10 is a subset of
YAGO3 (Mahdisoltani et al., 2014) that describes
the attributes of persons. ogbl-wikikg2 is extracted
from wikidata (Vrandečić and Krötzsch, 2014) cap-
turing the different types of relations between enti-
ties in the world. Among the four, ogbl-wikikg2 is
a large-scale dataset with more than 2.5M entities.

Implementation details. We adopt TransE (Bor-
des et al., 2013) and RotatE (Sun et al., 2019) as
the baseline models and learn 500 dimensions ini-
tial representations for entities and relations. The
feature dimensions are then reduced in the feature
pruning process. We compare among GreenKGC
using RotatE as the baseline in all ablation studies.
To partition the KG, we determine the number of
groups k for each dataset when the average cross-
entropy of all feature dimensions converges. As a
result, k = 3 for WN18RR, k = 5 for FB15k-237
and YAGO3-10, and k = 20 for ogbl-wikikg2.

For decision learning, we consider several

10600

FB15k-237 WN18RR YAGO3-10
Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
KGE Methods
TransE (Bordes et al., 2013) 0.270 0.177 0.303 0.457 0.150 0.009 0.251 0.387 0.324 0.221 0.374 0.524
RotatE (Sun et al., 2019) 0.290 0.208 0.316 0.458 0.387 0.330 0.417 0.491 0.419 0.321 0.475 0.607
Classification-based Methods
ConvKB (Nguyen et al., 2018) 0.232 0.157 0.255 0.377 0.346 0.300 0.374 0.422 0.311 0.194 0.368 0.526
ConvE (Dettmers et al., 2018) 0.282 0.201 0.309 0.440 0.405 0.377 0.412 0.453 0.361 0.260 0.396 0.559
Low-dimensional Methods
MuRP (Balažević et al., 2019) 0.323 0.235 0.353 0.501 0.465 0.420 0.484 0.544 0.230 0.150 0.247 0.392
AttH (Chami et al., 2020) 0.324 0.236 0.354 0.501 0.466 0.419 0.484 0.551 0.397 0.310 0.437 0.566
DualDE (Zhu et al., 2022) 0.306 0.216 0.338 0.489 0.468 0.419 0.486 0.560 - - - -
TransE + GreenKGC (Ours) 0.331 0.251 0.356 0.493 0.342 0.300 0.365 0.413 0.362 0.265 0.408 0.537
RotatE + GreenKGC (Ours) 0.345 0.265 0.369 0.507 0.411 0.367 0.430 0.491 0.453 0.361 0.509 0.629

Table 3: Results of link prediction in low dimensions (d = 32), where the best and the second best numbers are in
bold and with an underbar, respectively.

tree-based binary classifiers, including Decision
Trees (Breiman et al., 2017), Random For-
est (Breiman, 2001), and Gradient Boosting Ma-
chines (Chen and Guestrin, 2016), as they match
the intuition of the feature pruning process and can
accommodate non-linearity in the sample distribu-
tion. The hyperparameters are searched among:
tree depth l ∈ {3, 5, 7}, number of estimators
n ∈ {400, 800, 1,200, 1,600, 2,000}, and learning
rate lr ∈ {0.05, 0.1, 0.2}. The best settings are
chosen based on MRR in the validation set. As a
result, we adopt Gradient Boosting Machine for all
datasets. l = 5, n = 1200, lr = 0.2 for FB15k-
237 and YAGO3-10, l = 3, n = 1600, lr = 0.1
for WN18RR, and l = 7, n = 2000, lr = 0.05
for ogbl-wikikg2. We adopt ontology-based nega-
tive sampling to train classifiers for FB15k-237,
YAGO3-10, and ogbl-wikikg2, and embedding-
based negative sampling for WN18RR. Baseline
KGEs are trained on NVIDIA Tesla P100 GPUs
and binary classifiers are trained on AMD EPYC
7542 CPUs.

Evaluation metrics. For the link prediction task,
the goal is to predict the missing entity given a
query triple, i.e. (h, r, ?) or (?, r, t). The correct
entity should be ranked higher than other candi-
dates. Here, several common ranking metrics are
used, such as MRR (Mean Reciprocal Rank) and
Hits@k (k=1, 3, 10). Following the convention
in Bordes et al. (2013), we adopt the filtered set-
ting, where all entities serve as candidates except
for the ones that have been seen in training, valida-
tion, or testing sets.

Figure 4: Embedding dimension d to MRR curves in
log-scale for various methods on FB15k-237. d = 8, 16,
32, 64, 128, 256.

4.2 Main Results

Results in low dimensions. In Table 3, we com-
pare GreenKGC with KGE, classification-based,
and low-dimensional KGE methods in low dimen-
sions, i.e. d = 32. Results for other methods in
Table 3 are either directly taken from (Chami et al.,
2020; Zhu et al., 2022) or, if not presented, trained
by ourselves using publicly available implementa-
tions with hyperparameters suggested by the origi-
nal papers. KGE methods cannot achieve good per-
formance in low dimensions due to over-simplified
scoring functions. Classification-based methods
achieve performance better than KGE methods
as they adopt NNs as complex decoders. Low-
dimensional KGE methods provide state-of-the-art
KGC solutions in low dimensions. Yet, GreenKGC
outperforms them in FB15k-237 and YAGO3-10 in
all metrics. For WN18RR, the baseline KGE meth-

10601

FB15k-237 WN18RR YAGO3-10
Baseline Dim. MRR H@1 #P (M) MRR H@1 #P (M) MRR H@1 #P (M)

TransE

500 0.325 0.228 7.40 0.223 0.013 20.50 0.416 0.319 61.60

100
0.274 0.186 1.48 0.200 0.009 4.10 0.377 0.269 12.32

↓ 15.7% ↓ 18.5% (0.20x) ↓ 10.3% ↓ 30.8% (0.20x) ↓ 9.4% ↓ 16.7% (0.20x)
100 0.338 0.253 1.76 0.407 0.361 4.38 0.455 0.358 12.60

(Ours) ↑ 4.0% ↑ 9.6% (0.24x) ↑ 82.5% ↑ 176.9% (0.21x) ↑ 9.4% ↑ 12.2% (0.20x)

RotatE

500 0.333 0.237 14.66 0.475 0.427 40.95 0.478 0.388 123.20

100
0.296 0.207 2.93 0.437 0.385 8.19 0.432 0.340 24.64

↓ 11.1% ↓ 12.7% (0.20x) ↓ 8% ↓ 9.8% (0.20x) ↓ 9.6% ↓ 12.4% (0.20x)
100 0.348 0.266 3.21 0.458 0.424 8.47 0.467 0.378 24.92

(Ours) ↑ 4.5% ↑ 12.2% (0.22x) ↓ 3.6% ↓ 0.7% (0.21x) ↓ 2.3% ↓ 3.6% (0.20x)

Table 4: Results on the link prediction task, where we show the performance gain (or loss) in terms of percentages
with an up (or down) arrow and the ratio of the model size within the parentheses against those of respective
500-dimensional models.

Method #P (M) Val. MRR Test MRR
TransE (d = 500) 1,250 (5×) 0.427 0.426
RotatE (d = 250) 1,250 (5×) 0.435 0.433
TransE (d = 100) 250 (1×) 0.247 0.262
TransE + GreenKGC (d = 100) 250 (1×) 0.339 0.331
RotatE (d = 50) 250 (1×) 0.225 0.253
RotatE + GreenKGC (d = 50) 250 (1×) 0.341 0.336

Table 5: Link prediction performance on obgl-wikikg2
dataset.

ods perform poorly in low dimensions. GreenKGC
is built upon KGEs, so this affects the performance
of GreenKGC in WN18RR. Thus, GreenKGC is
more suitable for instance-based KGs, such as Free-
base and YAGO, while hyperbolic KGEs, such as
MuRP and AttH model the concept-based KGs,
such as WordNet, well.

We show the performance curves of various
methods as a function of embedding dimensions in
Fig. 4. We see that the performance of KGE meth-
ods (i.e. TransE and RotatE) drops significantly
as the embedding dimension is lower. For Con-
vKB, although its performance is less influenced
by dimensions due to a complex decoder, it per-
forms poorly compared to other methods in general.
For ConvE, although it claims it’s more efficient
in parameter scaling (Dettmers et al., 2018), its
performance actually degrades significantly in di-
mensions lower than 64. In addition, it also doesn’t
perform well when the dimension is larger. Thus,
the performance of ConvE is sensitive to the em-
bedding dimension. MuRP, AttH, and GreenKGC
are the only methods that can offer reasonable per-
formance as the dimension goes to as low as 8
dimensions.

Comparison with baseline KGE. One unique
characteristic of GreenKGC is to prune a high-

dimensional KGE into low-dimensional triple fea-
tures and make predictions with a binary classifier
as a powerful decoder. We evaluate the capability
of GreenKGC in saving the number of parame-
ters and maintaining the performance by pruning
original 500-dimensional KGE to 100-dimensional
triple features in Table 4. As shown in the table,
GreenKGC can achieve competitive or even better
performance with around 5 times smaller model
size. Especially, Hits@1 is retained the most and
even improved compared to the high-dimensional
baselines. In addition, GreenKGC using TransE
as the baseline can outperform high-dimensional
TransE in all datasets. Since the TransE scoring
function is simple and fails to model some relation
patterns, such as symmetric relations, incorporat-
ing TransE with a powerful decoder, i.e. a binary
classifier, in GreenKGC successfully overcomes
deficiencies of adopting an over-simplified scor-
ing function. For all datasets, 100-dimensional
GreenKGC could generate better results than 100-
dimensional baseline models.

We further compare GreenKGC and its baseline
KGEs on a large-scale dataset, ogbl-wikikg2. Table
5 shows the results. We reduce the feature dimen-
sions from 500 to 100 for RotatE and 250 to 50
for TransE and achieve a 5x smaller model size
while retaining around 80% of the performance.
Compared with the baseline KGEs in the same fea-
ture dimension, GreenKGC can improve 51.6% in
MRR for RotatE and 37.2% in MRR for TransE.
Therefore, the results demonstrate the advantages
in performance to apply GreenKGC to large-scale
KGs in a constrained resource.

10602

(a) Cross-entropy in DFT (b) 1 / Variance (c) Feature importance

Figure 5: Sorted discriminability for each feature dimension in different feature pruning schemes. For cross-entropy
and 1/variance, a lower value indicates a more discriminant feature. For feature importance, a higher value indicates
a more discriminant feature.

FB15k-237 WN18RR
MRR H@1 H@10 MRR H@1 H@10

w/o pruning 0.318 0.243 0.462 0.379 0.346 0.448
random 0.313 0.239 0.460 0.375 0.346 0.420
variance 0.315 0.239 0.465 0.381 0.348 0.455
feature importance 0.323 0.241 0.478 0.385 0.355 0.464
prune low CE 0.312 0.236 0.460 0.373 0.343 0.419
prune high CE (Ours) 0.345 0.265 0.507 0.411 0.367 0.491

Table 6: Performance for RotatE + GreenKGC in 32
dimensions with different feature pruning scheme.

4.3 Ablation Study

Feature pruning. We evaluate the effectiveness of
the feature pruning scheme in GreenKGC in Table
6. We use “w/o pruning" to denote the baseline 32
dimensions KGE directly followed by the decision
learning module. Also, we compare the following
feature pruning schemes: 1) random pruning, 2)
pruning based on variance, 3) pruning based on fea-
ture importance from a Random Forest classifier,
4) pruning dimensions with low CE (i.e. the most
discriminant ones), in DFT, and 5) pruning dimen-
sions with high CE (i.e. the least discriminant ones)
in DFT. As shown in the table, our method to prune
the least discriminant features in DFT achieves the
best performance on both datasets. In contrast,
pruning the most discriminant features in DFT per-
forms the worst. Thus, DFT module can effectively
differentiate the discriminability among different
features. Using variance to prune achieves simi-
lar results as “w/o pruning" and random pruning.
Pruning based on feature importance shows better
results than “w/o pruning", random and pruning,
and pruning based on variance, but performs worse
than DFT. In addition, feature importance needs to
consider all feature dimensions at once, while in
DFT, each feature dimension is processed individu-
ally. Thus, DFT is also more memory efficient than

calculating feature importance.
Fig. 5 plots the sorted discriminability of fea-

tures in different pruning schemes. From the figure,
the high variance region is flat, so it’s difficult to
identify the most discriminant features using their
variances. For feature importance, some of the
feature dimensions have zero scores. Therefore,
pruning based on feature importance might ignore
some discriminant features. In the DFT curve, there
is a “shoulder point" indicating only around 100
feature dimensions are more discriminant than the
others. In general, we can get good performance in
low dimensions as long as we preserve dimensions
lower than the shoulder point and prune all other
dimensions.

KG partitioning. Figure 6 shows GreenKGC
performance with different numbers of relation
groups k, where k = 1 means no KG partition-
ing. A larger k will give a better performance on
both FB15k-237 and WN18RR. Without using KG
partitioning performs much worse than using KG
partitioning. Note that with a larger k, GreenKGC
has more model parameters since we need more
classifiers. The model complexity is O(|E|d+kΘ),
where Θ is the model complexity for the classifier.
Thus, we can adjust k based on the tradeoff of
performance convergence and memory efficiency.

5 Conclusion and Future Work

A lightweight KGC method, called GreenKGC,
was proposed in this work to make accurate link
predictions in low dimensions. It consists of three
modules that can be trained individually: 1) repre-
sentation learning, 2) feature pruning, and 3) de-
cision learning. Experimental results in low di-
mensions demonstrate GreenKGC can achieve sat-
isfactory performance in as low as 8 dimensions.

10603

(a) FB15k-237

(b) WN18RR

Figure 6: Ablation study on number of relation groups
k to MRR.

In addition, experiments on ogbl-wikikg2 show
GreenKGC can get competitive results with much
fewer model parameters. Furthermore, the ablation
study shows the effectiveness of KG partitioning
and feature pruning.

Modularized GreenKGC allows several future
extensions. First, GreenKGC can be combined
with new embedding models as initial features. In
general, using a more expressive KGE model can
lead to better final performance. Second, individ-
ual modules can be fine-tuned for different appli-
cations. For example, since the feature pruning
module and the decision-learning module are super-
vised, they can be applied to various applications.
Finally, different negative sampling strategies can
be investigated in different applications.

Limitations

In this paper, we focus on efficiently and ac-
curately predicting missing links in KGs using
low-dimensional features and binary classifiers.
GreenKGC can achieve impressive efficiency dur-
ing the inference stage and can be applied to vari-
ous platforms with memory constraints because of
its superior performance in low-dimensional space.
However, the whole training process of GreenKGC

still requires high-dimensional pre-trained embed-
dings as initial features. Therefore, it may hin-
der GreenKGC from being trained on resource-
constrained platforms from scratch. In addition,
the current GreenKGC model is proposed under
a transductive setting, where we focus on a fixed
entity and relation set. The generalizability of the
few-shot learning capability on GreenKGC is yet
to be explored.

The above-mentioned two limitations can be ad-
dressed by leveraging textual information in KGs.
In recent years, text-based KGC models (Wang
et al., 2022a, 2021a,c), which take advantage of
entities’ names and descriptions to obtain fea-
tures, are more and more popular. We may ex-
tend GreenKGC using word embeddings from pre-
trained language models as initial features to over-
come the current limitations. In addition, continual
learning on the classifiers (Mai et al., 2021), which
aims at learning new training samples without for-
getting the old training samples, i.e. catastrophic
forgetting, is also an active research topic. Thus,
GreenKGC can incorporate such techniques to im-
prove its generalizability to new data.

Acknowledgment

The authors acknowledge the Center for Advanced
Research Computing (CARC) at the University
of Southern California for providing computing
resources that have contributed to the research
results reported within this publication. URL:
https://carc.usc.edu.

References
Ivana Balazevic, Carl Allen, and Timothy Hospedales.

2019. TuckER: Tensor factorization for knowledge
graph completion. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 5185–5194, Hong Kong, China. As-
sociation for Computational Linguistics.

Ivana Balažević, Carl Allen, Timothy Hospedales, and
First Last. 2019. Multi-relational poincaré graph
embeddings. Advances in Neural Information Pro-
cessing Systems, 32.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of
data, pages 1247–1250.

10604

https://carc.usc.edu
https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.18653/v1/D19-1522

Antoine Bordes, Xavier Glorot, Jason Weston, and
Yoshua Bengio. 2014. A semantic matching energy
function for learning with multi-relational data. Ma-
chine Learning, 94(2):233–259.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. Advances in neural information pro-
cessing systems, 26.

Leo Breiman. 2001. Random forests. Machine learning,
45(1):5–32.

Leo Breiman, Jerome H Friedman, Richard A Olshen,
and Charles J Stone. 2017. Classification and regres-
sion trees. Routledge.

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic
Sala, Sujith Ravi, and Christopher Ré. 2020. Low-
dimensional hyperbolic knowledge graph embed-
dings. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6901–6914, Online. Association for Computational
Linguistics.

Linlin Chao, Jianshan He, Taifeng Wang, and Wei Chu.
2021. PairRE: Knowledge graph embeddings via
paired relation vectors. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 4360–4369, Online. Association
for Computational Linguistics.

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on
knowledge discovery and data mining, pages 785–
794.

Joachim Daiber, Max Jakob, Chris Hokamp, and
Pablo N Mendes. 2013. Improving efficiency and
accuracy in multilingual entity extraction. In Pro-
ceedings of the 9th international conference on se-
mantic systems, pages 121–124.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d knowl-
edge graph embeddings. In Thirty-second AAAI con-
ference on artificial intelligence.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. 2015.
Distilling the knowledge in a neural network. In
NIPS Deep Learning and Representation Learning
Workshop.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S Weld. 2011. Knowledge-
based weak supervision for information extraction
of overlapping relations. In Proceedings of the 49th
annual meeting of the association for computational
linguistics: human language technologies, pages 541–
550.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong,
Hongyu Ren, Bowen Liu, Michele Catasta, and Jure
Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. Advances in neural
information processing systems, 33:22118–22133.

Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping
Li. 2019. Knowledge graph embedding based ques-
tion answering. In Proceedings of the twelfth ACM
international conference on web search and data min-
ing, pages 105–113.

Denis Krompaß, Stephan Baier, and Volker Tresp. 2015.
Type-constrained representation learning in knowl-
edge graphs. In International semantic web confer-
ence, pages 640–655. Springer.

C.-C. Jay Kuo and Azad M Madni. 2022. Green learn-
ing: Introduction, examples and outlook. Journal
of Visual Communication and Image Representation,
page 103685.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation embed-
dings for knowledge graph completion. In Twenty-
ninth AAAI conference on artificial intelligence.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian
Suchanek. 2014. Yago3: A knowledge base from
multilingual wikipedias. In 7th biennial conference
on innovative data systems research. CIDR Confer-
ence.

Zheda Mai, Ruiwen Li, Hyunwoo Kim, and Scott San-
ner. 2021. Supervised contrastive replay: Revisit-
ing the nearest class mean classifier in online class-
incremental continual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3589–3599.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen,
and Dinh Phung. 2018. A novel embedding model
for knowledge base completion based on convolu-
tional neural network. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 327–333, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Tara Safavi and Danai Koutra. 2020. CoDEx: A Com-
prehensive Knowledge Graph Completion Bench-
mark. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 8328–8350, Online. Association for
Computational Linguistics.

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar.
2020. Improving multi-hop question answering over
knowledge graphs using knowledge base embeddings.
In Proceedings of the 58th annual meeting of the as-
sociation for computational linguistics, pages 4498–
4507.

10605

https://doi.org/10.18653/v1/2020.acl-main.617
https://doi.org/10.18653/v1/2020.acl-main.617
https://doi.org/10.18653/v1/2020.acl-main.617
https://doi.org/10.18653/v1/2021.acl-long.336
https://doi.org/10.18653/v1/2021.acl-long.336
http://arxiv.org/abs/1503.02531
https://doi.org/10.18653/v1/N18-2053
https://doi.org/10.18653/v1/N18-2053
https://doi.org/10.18653/v1/N18-2053
https://doi.org/10.18653/v1/2020.emnlp-main.669
https://doi.org/10.18653/v1/2020.emnlp-main.669
https://doi.org/10.18653/v1/2020.emnlp-main.669

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural tensor
networks for knowledge base completion. Advances
in neural information processing systems, 26.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding by
relational rotation in complex space. In International
Conference on Learning Representations.

Zhiqing Sun, Shikhar Vashishth, Soumya Sanyal, Partha
Talukdar, and Yiming Yang. 2020. A re-evaluation of
knowledge graph completion methods. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 5516–5522, On-
line. Association for Computational Linguistics.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd workshop on
continuous vector space models and their composi-
tionality, pages 57–66.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Interna-
tional conference on machine learning, pages 2071–
2080. PMLR.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78–85.

Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, Ying
Wang, and Yi Chang. 2021a. Structure-augmented
text representation learning for efficient knowledge
graph completion. In Proceedings of the Web Confer-
ence 2021, pages 1737–1748.

Kai Wang, Yu Liu, Qian Ma, and Quan Z Sheng. 2021b.
Mulde: Multi-teacher knowledge distillation for low-
dimensional knowledge graph embeddings. In Pro-
ceedings of the Web Conference 2021, pages 1716–
1726.

Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming
Liu. 2022a. SimKGC: Simple contrastive knowledge
graph completion with pre-trained language models.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 4281–4294, Dublin, Ireland.
Association for Computational Linguistics.

Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan
He, Yixin Cao, and Tat-Seng Chua. 2019. Explain-
able reasoning over knowledge graphs for recommen-
dation. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pages 5329–5336.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021c.
Kepler: A unified model for knowledge embedding
and pre-trained language representation. Transac-
tions of the Association for Computational Linguis-
tics, 9:176–194.

Yun-Cheng Wang, Xiou Ge, Bin Wang, and C.-C. Jay
Kuo. 2022b. Kgboost: A classification-based knowl-
edge base completion method with negative sampling.
Pattern Recognition Letters, 157:104–111.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 28.

Yikun Xian, Zuohui Fu, Shan Muthukrishnan, Gerard
De Melo, and Yongfeng Zhang. 2019. Reinforcement
knowledge graph reasoning for explainable recom-
mendation. In Proceedings of the 42nd international
ACM SIGIR conference on research and development
in information retrieval, pages 285–294.

Han Xiao, Minlie Huang, Yu Hao, and Xiaoyan Zhu.
2015. Transa: An adaptive approach for knowledge
graph embedding. CoRR, abs/1509.05490.

Yijing Yang, Wei Wang, Hongyu Fu, and C.-C. Jay
Kuo. 2022. On supervised feature selection from
high dimensional feature spaces. arXiv preprint
arXiv:2203.11924.

Qianjin Zhang, Ronggui Wang, Juan Yang, and Lixia
Xue. 2022. Knowledge graph embedding by re-
flection transformation. Knowledge-Based Systems,
238:107861.

Yongqi Zhang, Quanming Yao, Wenyuan Dai, and Lei
Chen. 2020. Autosf: Searching scoring functions for
knowledge graph embedding. In 2020 IEEE 36th In-
ternational Conference on Data Engineering (ICDE),
pages 433–444. IEEE.

Yushan Zhu, Wen Zhang, Mingyang Chen, Hui Chen,
Xu Cheng, Wei Zhang, and Huajun Chen. 2022. Du-
alde: Dually distilling knowledge graph embedding
for faster and cheaper reasoning. In Proceedings of
the Fifteenth ACM International Conference on Web
Search and Data Mining, pages 1516–1524.

A Training Procedure for Baseline KGE
Models

To train the baseline KGE model as the initial en-
tity and relation representations, we adopt the self-
adversarial learning process in Sun et al. (2019) and
use this codebase2. That is, given an observed triple
(h, r, t) and the KGE model fr(h, t), we minimize
the following loss function

L = − log(σ(fr(h, t)))

−
n∑

i=1

p(h′i, r, t
′
i) log(σ(−fr(h

′
i, t

′
i))),

(3)

2https://github.com/DeepGraphLearning
/KnowledgeGraphEmbedding

10606

https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
https://doi.org/10.18653/v1/2020.acl-main.489
https://doi.org/10.18653/v1/2020.acl-main.489
https://doi.org/10.18653/v1/2022.acl-long.295
https://doi.org/10.18653/v1/2022.acl-long.295
http://arxiv.org/abs/1509.05490
http://arxiv.org/abs/1509.05490
https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding

where (h′i, r, t
′
i) is a negative sample and

p(h′j , r, t
′
j) =

exp(αfr(h
′
j , t

′
j))∑n

i=1 exp(αfr(h
′
i, t

′
i))

, (4)

where α is the temperature to control the self-
adversarial negative sampling. We summarize the
scoring functions for some common KGE models
and their corresponding number of variables per
dimension in Table 7. In general, GreenKGC can
build upon any existing KGE models.

Model ne nr nv fr(h, t)

TransE 1 1 3 −∥h+ r − t∥
DistMult 1 1 3 ⟨h, r, t⟩
ComplEx 2 2 6 Re(⟨h, r, t⟩)
RotatE 2 1 5 −∥h ◦ r − t∥2

Table 7: Popular KGE methods and their scoring func-
tions, where h, r, and t denote embeddings for a given
triple (h, r, t), d is the embedding dimension. ◦ denotes
the Hadamard product, and ⟨·, ·, ·⟩ is the generalized
dot product. ne is the number of entity variables in one
dimension, nr is the number of relation variables in one
dimension, and nv is the number of triple variables in
one dimension. nv = 2ne + nr.

B DFT Implementation Details

To calculate the discriminant power of each dimen-
sion, we iterate through each dimension in the high-
dimension feature set and calculate the discrimi-
nant power based on sample labels. More specifi-
cally, we model KGC as a binary classification task.
We assign label yi = 1 to the ith sample if it is an
observed triple and yi = 0 if it is a negative sam-
ple. For the dth dimension, we split the 1D feature
space into left and right subspaces and calculate
the cross-entropy in the form of

H(d) =
NLH

(d)
L +NRH

(d)
R

NL +NR
, (5)

where NL and NR are the numbers of samples in
the left and right intervals, respectively,

H
(d)
L = −PL,1 log(PL,1)− PL,0 log(PL,0), (6)

H
(d)
R = −PR,1 log(PR,1)− PR,0 log(PR,0), (7)

and where PL,1 = 1
NL

∑NL
i=1 yi, and PL,0 = 1 −

PL,1 and similarly for PR,1 and PR,0. A lower
cross-entropy value implies higher discriminant
power.

(a) Cross-entropy = 0.7348

(b) Cross-entropy = 0.9910

Figure 7: Histograms of PCA-transformed 1D triple
variables in two feature dimensions with (a) low and (b)
high cross-entropy.

Fig. 7 shows histograms of linearly transformed
1D triple variables in two different feature dimen-
sions. As seen in the figure, samples in Fig. 7 (a),
i.e. the feature dimension with the lower cross-
entropy, are more separable than that in Fig. 7 (b),
i.e. the feature dimension with the higher cross-
entropy. Therefore, a lower cross-entropy implies
a more discriminant feature dimension.

C KG Partitioning in FB15k-237

To verify the idea of relation clusters in the embed-
ding space for KG partitioning, we show the t-SNE
visualization of relation embeddings in FB15k-237
in Fig. 8. Relations within the same cluster are
assigned the same color. We do observe the clus-
tering structure in the t-SNE plot.

D Relation Categories

We further evaluate GreenKGC in different relation
categories. Following the convention in Wang et al.
(2014), we divide the relations into four categories:
1-to-1, 1-to-N, N-to-1, and N-to-N. They are char-
acterized by two statistical numbers, head-per-tail
(hpt), and tail-per-head (tph), of the datasets. If
tph < 1.5 and hpt < 1.5, the relation is treated
as 1-to-1; if tph < 1.5 and hpt ≥ 1.5, the relation

10607

Predicting Heads Predicting Tails
Model 1-to-1 1-to-N N-to-1 N-to-N 1-to-1 1-to-N N-to-1 N-to-N
TransE (Bordes et al., 2013) 0.374 0.417 0.037 0.217 0.372 0.023 0.680 0.322
RotatE (Sun et al., 2019) 0.468 0.431 0.066 0.229 0.463 0.057 0.725 0.336
AttH (Chami et al., 2020) 0.473 0.432 0.071 0.236 0.472 0.057 0.728 0.343
TransE + GreenKGC (Ours) 0.478 0.442 0.088 0.243 0.477 0.096 0.754 0.351
RotatE + GreenKGC (Ours) 0.483 0.455 0.134 0.245 0.486 0.112 0.765 0.353

Table 8: Performance on different relation categories in FB15k-237 under 32 dimensions.

Figure 8: t-SNE visualization of the KG partitioning
result in FB15k-237.

FB15k-237 WN18RR YAGO3-10
DualDE 03:30:50 01:50:00 09:28:20
GreenKGC (Ours) 00:10:50 00:06:02 00:23:35

Table 9: Comparison of required training time (Hour :
Minute : Second) to reduce the feature dimensions from
512 to 100 for TransE between DualDE, a knowledge-
distillation method, and GreenKGC.

is treated as 1-to-N; if tph ≥ 1.5 and hpt < 1.5,
the relation is treated as N-to-1; if tph ≥ 1.5 and
hpt ≥ 1.5, the relation is treated as N-to-N.

Table 8 summarizes the results for different re-
lation categories in FB15k-237 under 32 dimen-
sions. In the low-dimensional setting, GreenKGC
is able to outperform other methods in all relation
categories. Specifically, GreenKGC performs es-
pecially well for many-to-1 predictions (i.e. pre-
dicting heads for 1-to-N relations, and predicting
tails for N-to-1 relations). Such results demonstrate
the advantage of using classifiers to make accurate
predictions when there is only one valid target.

E Time Analysis on Feature Pruning

Table 9 shows the required training time for Du-
alDE (Zhu et al., 2022), a knowledge distillation
method, and GreenKGC, to reduce 512 dimen-
sions TransE embeddings to 100 dimensions. As

Figure 9: Prediction distribution of a query (38th
Grammy Awards, award_winner, ?) in FB15k-237. A
higher predicted score implies a higher chance of being
a valid triple.

shown in the table, GreenKGC achieves around
20x faster training time compared to DualDE, es-
pecially in YAGO3-10, which is a larger-scale
dataset. Besides, in knowledge distillation meth-
ods, low-dimensional embeddings are randomly
initialized and trained with the guidance of high-
dimensional embeddings. Thus, the quality of the
low-dimensional embeddings highly depends on
good initialization. On the contrary, the feature
pruning process in GreenKGC selects a subset
of powerful feature dimensions without learning
new features from scratch. In addition, it is also
memory-efficient since it only processes one fea-
ture dimension at once.

F Comparison with NN-based Methods

Inference time analysis. We compare GreenKGC
with two other NN-based methods in Table 10 in
terms of performance, number of free parameters,
and inference time. They are ConvKB (Nguyen
et al., 2018) and ConvE (Dettmers et al., 2018).
We adopt TransE as the baseline in GreenKGC
to match the number of parameters in the embed-

10608

FB15k-237 WN18RR
Model MRR H@1 H@3 H@10 #P (M) T (s) MRR H@1 H@3 H@10 #P (M) T (s)
ConvKB (Nguyen et al., 2018) 0.258 0.179 0.283 0.416 1.91 548.67 0.369 0.317 0.399 0.468 5.26 225.12
ConvE (Dettmers et al., 2018) 0.317 0.230 0.347 0.493 2.74 235.73 0.427 0.394 0.437 0.495 6.09 46.08
TransE + GreenKGC (Ours) 0.339 0.253 0.364 0.503 2.42 205.12 0.435 0.391 0.461 0.510 5.84 40.01

Table 10: Comparison on performance, number of model parameters, and total inference time (batch size = 8) with
other classification-based methods in 128 dimensions. We adopt TransE as the baseline for fair comparison in the
number of model parameters. The best numbers are in bold.

FB15k-237 WN18RR
Neg. sampling MRR H@1 H@10 MRR H@1 H@10
Random 0.283 0.197 0.452 0.407 0.361 0.481
Ontology 0.345 0.265 0.507 0.403 0.350 0.487
Embedding 0.316 0.232 0.471 0.411 0.367 0.491

Table 11: Ablation study on different negative sampling
methods for classifier training in 32 dimensions.

ding layer for a fair comparison. As compared
with ConvKB, GreenKGC achieves significantly
better performance with slightly more parame-
ters. As compared with ConvE, GreenKGC uses
fewer parameters and demands a shorter inference
time since ConvE adopts a multi-layer architec-
ture. GreenKGC also offers better performance
compared to ConvE.

Prediction distribution. It was reported in Sun
et al. (2020) that the predicted scores for all candi-
dates on FB15k-237 are converged to 1 with Con-
vKB (Nguyen et al., 2018). This is unlikely to
be true, given the fact that KGs are often highly
sparse. The issue is resolved after ConvKB is im-
plemented with PyTorch3, but the performance on
FB15k-237 is still not as good as ConvKB origi-
nally reported in the paper. The issue shows the
problem of end-to-end optimization. That is, it is
difficult to control and monitor every component
in the model. This urges us to examine whether
GreenKGC has the same issue. Fig. 9 shows the
sorted predicted scores of a query (38th Grammy
Awards, award_winner, ?) in FB15k-237. We see
from the figure that only very few candidates have
positive scores close to 1, while other candidates
receive negative scores of 0. The formers are valid
triples. The score distribution is consistent with the
sparse nature of KGs.

G Ablation on Negative Sampling

We evaluate the effectiveness of the two proposed
negative sampling (i.e., ontology- and embedding-

3https://github.com/daiquocnguyen/Con
vKB/issues/5

(a) Training/evaluation AUC-PR.

(b) Testing MRR.

Figure 10: Training/evaluation AUC-PR and testing
MRR to the number of training iterations.

based) methods in Table 11. In FB15k-237, both
are more effective than randomly drawn negative
samples. The ontology-based one gives better re-
sults than the embedding-based one. In WN18RR,
the embedding-based one achieves the best results.
Since there is no clear entity typing in WordNet, the
ontology-based one performs worse than the ran-
domly drawn one. We can conclude that to correct
failure cases in the baseline KGE, ontology-based
negative sampling is effective for KGs consisting
of real-world instances, such as FB15k-237, while
embedding-based negative sampling is powerful
for concept KGs such as WN18RR.

10609

https://github.com/daiquocnguyen/ConvKB/issues/5
https://github.com/daiquocnguyen/ConvKB/issues/5

Dataset # entities # relations # triples (train / valid / test) # negatives (valid / test)

CoDEx-S 2,034 42 32,888 / 1,827 / 1,828 1,827 / 1,828
CoDEx-M 17,050 51 185,584 / 10,310 / 10,311 10,310 / 10,311

Table 12: Statistics for triple classification datasets.

Figure 11: Scatter plot of predictions from GreenKGC (the y-axis) versus KGE (the x-axis).

CoDEx-S CoDEx-M
Models Acc. F1 #P (M) Acc. F1 #P (M)
RESCAL 0.843 0.852 12.06 0.818 0.815 22.09
TransE 0.829 0.837 1.04 0.797 0.803 8.73
ComplEx 0.836 0.846 2.08 0.824 0.818 17.46
ConvE 0.841 0.846 1.27 0.826 0.829 19.92
TuckER 0.840 0.846 135.26 0.823 0.816 142.95
GreenKGC 0.838 0.846 0.58 0.828 0.831 2.25

Table 13: Triple classification results. GreenKGC
adopts TransE as the baseline.

H Performance as Training Progresses

We plot the AUC-PR and MRR curve for train-
ing/validation, and testing in Fig. 10a and Fig. 10b,
respectively. We use AUC-PR to monitor the train-
ing of the classifiers. AUC-PR starts to converge
for both training and validation sets after 200 it-
erations. We record the link prediction results on
the testing set every 100 iterations. Though the
AUC-PR improves slightly after 200 iterations, the
MRR starts to converge after 600 iterations.

I Triple Classification

We evaluate GreenKGC on CoDEx (Safavi and
Koutra, 2020), which includes two triple classifica-
tion datasets, to demonstrate that the pipeline can
be easily generalized to another KGC task. The
dataset statistics are summarized in Table 12.

For the triple classification task, the goal is to
predict the plausibility (i.e. 0 or 1) of a query
triple, (h, r, t). Same as prior work, we find the

optimal score threshold for each relation using the
validation set, apply it to the testing set, and use
accuracy and the F1 score to evaluate the results.
We adopt TransE as the GreenKGC baseline in the
triple classification task.

Main results. Results on triple classification
are shown in Table 13. We adopt TransE as the
baseline KGe model and reduce it from 512 di-
mensions to 128 dimensions in GreenKGC. Per-
formance for other methods is taken from Safavi
and Koutra (2020), and the number of model pa-
rameters is calculated according to their settings in
the paper. Again, we see that GreenKGC is able
to achieve comparable or even better performance
with much fewer parameters. It is worthwhile to
emphasize that, since the number of parameters in
the classifier is invariant to the size of the dataset,
GreenKGC will have more savings in parameters
in larger datasets (e.g., CoDEx-M) than smaller
datasets (e.g., CoDEx-S). In addition, GreenKGC
is able to outperform other methods in CoDEx-
M, where composition and symmetry are the two
most prevalent relation patterns (Safavi and Koutra,
2020), with a smaller model size.

Qualitative analysis. We compare predictions
from GreenKGC and KGE methods on individ-
ual relations through scatter plots of the predicted
scores from two models in Fig. 11, where the verti-
cal axis shows the scores predicted by GreenKGC
and the horizontal axis shows the scores from KGE.
As shown in the figure, there are many samples

10610

lying between 0.2 and 0.6 with KGE predictions.
The overlapping of positive and negative samples
in that interval makes the binary classification task
more challenging. In contrast, predictions from
GreenKGC are closer to either 0 or 1. Thus, it is
easier for GreenKGC to differentiate positive sam-
ples from negative samples. This is especially true
for symmetric relations such as spouse and sibling.
They support our methodology in classification-
based link prediction, where Hits@1 can be im-
proved significantly.

10611

ACL 2023 Responsible NLP Checklist

A For every submission:
� A1. Did you describe the limitations of your work?

Left blank.

� A2. Did you discuss any potential risks of your work?
Left blank.

� A3. Do the abstract and introduction summarize the paper’s main claims?
Left blank.

� A4. Have you used AI writing assistants when working on this paper?
Left blank.

B � Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
Left blank.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Left blank.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C � Did you run computational experiments?
Left blank.

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Left blank.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

10612

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Left blank.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Left blank.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Left blank.

D � Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Left blank.

10613

