
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 10614–10627

July 9-14, 2023 ©2023 Association for Computational Linguistics

Unsupervised Open-domain Keyphrase Generation

Lam Thanh Do♠∗ Pritom Saha Akash♡ Kevin Chen-Chuan Chang♡∗
♠Hanoi University of Science and Technology, Viet Nam

♡University of Illinois at Urbana-Champaign, USA
lam.dt183573@sis.hust.edu.vn

{pakash2, kcchang}@illinois.edu

Abstract
In this work, we study the problem of unsu-
pervised open-domain keyphrase generation,
where the objective is a keyphrase genera-
tion model that can be built without using
human-labeled data and can perform consis-
tently across domains. To solve this problem,
we propose a seq2seq model that consists of
two modules, namely phraseness and informa-
tiveness module, both of which can be built in
an unsupervised and open-domain fashion. The
phraseness module generates phrases, while the
informativeness module guides the generation
towards those that represent the core concepts
of the text. We thoroughly evaluate our pro-
posed method using eight benchmark datasets
from different domains. Results on in-domain
datasets show that our approach achieves state-
of-the-art results compared with existing unsu-
pervised models, and overall narrows the gap
between supervised and unsupervised meth-
ods down to about 16%. Furthermore, we
demonstrate that our model performs consis-
tently across domains, as it overall surpasses
the baselines on out-of-domain datasets.1.

1 Introduction

Keyphrases are short word sequences that describe
the core concepts of the text. The prediction of
keyphrases for a text is a task that has received
much attention recently. It is a crucial prob-
lem as its outputs can be useful for a variety of
downstream tasks such as building digital libraries
(Gutwin et al., 1999; Witten et al., 2009), document
summarization (Litvak and Last, 2008), document
visualization (Chuang et al., 2012) and so on.

There are mainly two approaches to keyphrase
prediction, namely keyphrase extraction (Mihal-
cea and Tarau, 2004; Florescu and Caragea, 2017a;
Bennani-Smires et al., 2018) and keyphrase gener-
ation (Meng et al., 2017; Chen et al., 2019; Yuan

∗Work done while visiting Cazoodle Inc.
1Code and data will be available at https://github.

com/ForwardDataLab/UOKG.

et al., 2020; Shen et al., 2022). Keyphrase ex-
traction highlights keyphrases that appear within
the text. On the other hand, keyphrase generation
generates keyphrases based on the understanding
of the given text and therefore allows predicting
absent keyphrases alongside present ones (Meng
et al., 2017). This ability has made keyphrase gen-
eration receive more attention than keyphrase ex-
traction in recent years, as human also tend to use
keyphrases that are absent from the text.

Most of the existing keyphrase generation mod-
els use manually labeled data for training (Meng
et al., 2017; Chen et al., 2018, 2019; Yuan et al.,
2020; Ahmad et al., 2021). However, obtaining
labeled data is often the most expensive component
of any machine learning model, and this is the same
for keyphrase generation. Compared to labeled
data, access to unlabeled data is easier and mostly
available. For example, the arXiv dataset (Clement
et al., 2019) containing metadata (e.g., title, ab-
stract) of 1.7 million research articles is readily
available on Kaggle. Therefore, it is more desirable
to construct a keyphrase generation model in an un-
supervised fashion. Furthermore, in practice, the
model may have to encounter texts that come from
various domains or even unseen ones. Therefore,
another attractive property of a keyphrase gener-
ation model is the ability to handle open-domain
documents.

Considering the above scenario, we propose
a new problem called Unsupervised Open-
domain Keyphrase Generation. Similar to every
keyphrase generation methods, the model of our
objective is given a text x as input, and as output,
it generates a set of keyphrases {y}. Both x and y
are word sequences. Furthermore, the model of our
objective should satisfy two requirements: 1) it can
be built using only an unlabeled corpus, denoted as
D; 2) it can effectively handle inputs from across
domains.

This is a challenging task because we do not

10614

https://github.com/ForwardDataLab/UOKG
https://github.com/ForwardDataLab/UOKG


Encoder Decoder Sent2vec

model
finite

...
<EOS>

Sent2vec Sent2vecSent2vec

Extended
word
vocab

Output

pitman-yor process

We describe latent
Dirichlet allocation
(LDA), a generative
probabilistic model for
collections of
discrete data such as
text corpora...

mixture model

Source
text

References

Inputs

Informativeness
module

Phraseness module

Pointwise multiplication

Dot product and normalize

Concatenate

Operations

Figure 1: Overview of our proposed model

have access to labeled data from which to learn the
patterns for keyphrases. Additionally, we also need
our model to work across domains. This is diffi-
cult because there might exist different patterns for
keyphrases for different domains. None of the exist-
ing work addresses these challenges. For instance,
supervised keyphrase generation models (Meng
et al., 2017; Chen et al., 2018, 2019; Yuan et al.,
2020; Ahmad et al., 2021) not only require manu-
ally labeled data for training but are also known to
perform poorly when being moved out-of-domain.
On the other hand, (Shen et al., 2022) propose Au-
toKeyGen, which uses pseudo-labeled data to train
a seq2seq model in a weakly-supervised fashion,
thereby removing the need for human annotation
effort. However, similar to supervised models, the
weakly-supervised approach taken by AutoKeyGen
does not enable it to maintain performance in un-
seen domains.

Therefore, to solve our problem, we propose an
unsupervised keyphrase generation model that can
work across domains. The key idea is to modular-
ize a seq2seq model into two modules. The moti-
vation for modularizing is to decompose keyphrase
generation into two simpler problems where each
of which can be addressed in an unsupervised and
open-domain setting. The first module, named the
phraseness module, is responsible for generating
phrases, while the second module, named the infor-
mativeness module, guides the generation toward
the phrases that represent the most crucial concepts
of the text.

The phraseness module is a retrieval-augmented
seq2seq model, where the retriever assists the
seq2seq component in generating absent phrases
alongside present ones. This module can be built
in an unsupervised fashion because it leverages
noun phrases to index the retriever and to train the
seq2seq model, which can easily be obtained us-
ing open-sourced software libraries such as NLTK
(Bird et al., 2009), and therefore does not require
human annotation effort. Furthermore, the phrase-
ness module can also be built in an open-domain
fashion, thanks to 1) the part-of-speech informa-
tion incorporated into the seq2seq model, which
allows copying words to form grammatically cor-
rect noun phrases regardless of domains; 2) the
fact that the retriever can be further indexed with
domain-relevant information, to provide reliable
references.

The informativeness module is another seq2seq
model, where a phrase is likely to be generated if
it contains words that are informative to the given
text. Inspired by embedding-based unsupervised
keyphrase extraction (UKE) methods, we quantify
informativeness of a word and a text based on their
closeness in meaning, which is measured via the
similarity between their embeddings. We choose
this method of evaluating informativeness over
other UKE methods (e.g. graph-based, statistics
based) since it supports not only present phrases,
but also absent ones. Similar to the phraseness
module, the informativeness module can also be
built in an unsupervised and open-domain fashion.

10615



This is obtained by using a domain-general, un-
supervised text embedding model (e.g. Sent2Vec
(Pagliardini et al., 2018)).

We summarize the contributions of our paper.
Firstly, we propose a new problem called unsu-
pervised open-domain keyphrase generation. Sec-
ondly, we design a model for solving the problem.
Our proposed model is a seq2seq model that con-
sists of two modules, one is responsible for gener-
ating phrases and the other guides the generation
towards the phrases that represent the core con-
cepts of the text. Finally, we conduct extensive
experiments on multiple datasets across domains
to demonstrate the effectiveness of our model as
we contrast it against multiple strong baselines.

2 Proposed method

Figure 1 illustrates our proposed framework. We
propose a seq2seq model that consists of two mod-
ules, namely phraseness and informativeness mod-
ule. We adopt the two terms phraseness and infor-
mativeness from (Tomokiyo and Hurst, 2003), to
describe the desirable criteria a keyphrase should
satisfy. Phraseness refers to the degree to which a
word sequence is considered a phrase, and informa-
tiveness refers to how well the phrase illustrates the
core concepts of the text. Each of the two modules
guarantees a criterion mentioned above. In particu-
lar, the phraseness module generates (present and
absent) phrases, while the informativeness module
guides the generation toward phrases that describe
the core concepts of the text. In the following
sections, we will describe in detail the two mod-
ules, as well as how they are combined to generate
keyphrases.

Phrases Context embedding Cosine similarity Nearest k and thresholding

pitman-yor process
mixture modelReferences

Source text Text embedding

We describe latent Dirichlet
allocation (LDA), a

generative probabilistic
model for collections of

discrete data such as text
corpora...

Figure 2: Illustration of the retrieval of references.

2.1 Phraseness module
In order to generate keyphrases, it is crucial to
know how to first generate phrases. We emphasize
the difference between a keyphrase and a phrase

- the former needs to be informative to the given
text, while the latter does not. It has been shown
that keyphrases mostly take the form of noun
phrases (Chuang et al., 2012). Also, recent work
on keyphrase generation has shown that absent
keyphrases can often be retrieved from other texts
(Ye et al., 2021), suggesting that absent phrases can
be found similarly. Therefore, a simple solution
to obtaining phrases is to extract noun phrases as
present phrases and retrieve related noun phrases
as absent ones.

However, this simple solution may not be op-
timal. Since the retrieved phrases are originally
used in other texts, they may not be suitable to
describe the concepts of the given text. We demon-
strate this limitation using the example in Figure
3a. In this example, the absent phrases obtained via
retrieval describe concepts related to “topic mod-
eling”. However, our desired outputs need to also
describe concepts related to “author modeling”.

The above problem could be mitigated if we also
consider the given text alongside the retrieved noun
phrases. In the example above, relevant phrases
such as “author topic distributions” can be gen-
erated by combining “author”, which is from the
given text, and “topic distributions”, which is one
of the retrieved phrases. With this in mind, we
employ a retrieval-augmented seq2seq model as
the phraseness module. First, a set of related but
absent noun phrases is retrieved, which we will
now refer to as references. Then, a seq2seq model
generates noun phrases based on both the text and
the references.

2.1.1 Retriever
Figure 2 describes the retrieval of references given
a text. To obtain references for the input, we lever-
age existing noun phrases observed in other doc-
uments. We assume that a noun phrase is related
to a text if it occurs in contexts similar to that text.
With this in mind, we collect noun phrases from
documents in the unlabeled corpus D to form a
phrase bank B. We index each noun phrase z ∈ B
with a context embedding, denoted as cz, which
is obtained by averaging the embeddings of the
documents in which z appears in. We obtain the
embeddings of texts by using Sent2Vec (Pagliardini
et al., 2018), an unsupervised sentence embedding
model. To retrieve references for a text x, we first
use Sent2Vec to compute its embedding, denoted as
vx, and then retrieve the top-k phrases z based on
the following retrieval score Rx(z) = cos(cz, vx).

10616



Input: We introduce the author-topic model, a generative model for documents that extends Latent 
Dirichlet Allocation (LDA; Blei, Ng, & Jordan, 2003) to include authorship information. Each author is 
associated with a multinomial distribution over topics and each topic is associated with a multinomial 
distribution over words. A document with multiple authors is modeled as a distribution over topics that is 
a mixture of the distributions associated with the authors. We apply the model to a collection of 1,700 
NIPS conference papers and 160,000 CiteSeer abstracts. Exact inference is intractable for these 
datasets and we use Gibbs sampling to estimate the topic and author distributions. We compare the 
performance with two other generative models for documents, which are special cases of the 
author-topic model: LDA (a topic model) and a simple author model in which each author is associated 
with a distribution over words rather than a distribution over topics. We show topics recovered by the 
author-topic model, and demonstrate applications to computing similarity between authors and entropy 
of author output. 

Retrieved noun phrases: topic distributions, word distribution, novel topic model, topic models, topic 
distribution, pitman-yor process, latent topics, hdp, statistical topic models, multinomial distributions, lda 
model, latent dirichlet allocation model, dirichlet distribution, hierarchical dirichlet process, collapsed 
gibbs

(a) Example of using retrieval to predict
absent phrases

Input: A framework for the analysis of error in global illumination algorithms. In this paper we identify 
sources of error in global illumination algorithms and derive bounds for each distinct category. Errors 
arise from three sources: inaccuracies in the boundary data, discretization, and computation. Boundary 
data consists of surface geometry, reflectance functions, and emission functions, all of which may be 
perturbed by errors in measurement or simulation, or by simplifications made for computational 
efficiency. Discretization error is introduced by replacing the continuous radiative transfer equation with a 
finite-dimensional linear system, usually by means of boundary elements and a corresponding projection 
method. Finally, computational errors perturb the finite-dimensional linear system through imprecise form 
factors, inner products, visibility, etc., as well as by halting iterative solvers after a finite number of steps. 
Using the error taxonomy introduced in the paper we examine existing global illumination algorithms and 
suggest new avenues of research.

EmbedRank: discretization error, discretization, global illumination algorithms, computational errors, 
finite-dimensional linear system, computation, iterative solvers, continuous radiative transfer equation, 
error taxonomy, error

TextRank: error, computational errors, form, projection, linear, functions, boundary, illumination, radiative 
transfer, computation

Groundtruth: discretization, boundary elements, global illumination, reflectance functions

(b) Example of EmbedRank and TextRank’s prediction,
along with the groundtruth keyphrases

Figure 3: Examples

Furthermore, in order to prevent retrieving unre-
liable references, we filter those whose retrieval
scores are smaller than a threshold τ . We denote
the set of references for x as Zx.

As mentioned above, we can further index the
retriever with other corpora, denoted as D′, from
different domains. To do this, all we need to do is to
update the phrase bank B with new phrases from
D′ and update the context embeddings of every
phrase that occur in both D and D′.

2.1.2 Seq2Seq model

Input representation. The seq2seq model takes
as inputs not only the source text x but also its
references Zx, to generate phrases. The text and
its references are combined into a single input x̃,
defined as

x̃ = [BOS] x [BOR] Zx [EOR] [EOS] (1)
where [BOS] and [EOS] are respectively the

beginning and end of sentence token. The two
tokens [BOR] and [EOR] signals the start and end
of the reference block. In addition, the references
are separated by a [SEP] token.

Model architecture. We employ Transformer
(Vaswani et al., 2017) with copy mechanism (Gu
et al., 2016; See et al., 2017) as the architecture of
our seq2seq model. First, the encoder receives the
word embeddings of the tokens in x̃, producing a
sequence of encoder hidden states h = {hi}|x̃|i=1.
The decoder takes the embeddings of the previously
generated words y<t and the encoder hidden states,
outputting the decoder hidden state st. For each
input, we build an extended vocabulary Vx̃, which
is the union of the decoder’s vocabulary V and the
words in the augmented input x̃. Finally, we com-
pute the phraseness probability of predicting a word
from Vx̃ as Ppn(yt|y<t, x̃) = pgenP

V
pn(yt|y<t, x̃)+

(1− pgen)P
C
pn(yt|y<t, x̃). Here, P V

pn(yt|y<t, x̃) =

softmax(W V st) is the distribution over the word
vocabulary V , pgen = sigmoid(W g

s st+W
g
y yt−1)

is the soft switch between generating and copy. All
the W terms are trainable parameters, and we omit
the bias terms for less cluttered notation.

We incorporate part-of-speech information
to copy words from x̃. More formally,
PC

pn(yt = w|y<t, x̃) =
∑

x̃i=w ati, where ati =

softmax(eti), and eti = FFh(h̃i
T
)FFs(s̃t). Here,

h̃i = concat(hi, lx̃i) is the encoder hidden state
of x̃i enhanced with its part-of-speech embedding
lx̃i . Similarly, s̃t = concat(st, lyt) is the decoder
hidden state enhanced with the part-of-speech em-
bedding of the previously generated word. FFh

and FFs denotes the feedforward neural networks,
whose purposes are to help project h̃i and s̃t into
the same semantic space.

Model training. For every document xi ∈ D,
we maximize logPpn(y = z|x̃), where

Ppn(y = z|x̃) =
T∏

t=1

Ppn(yt = zt|y<t, x̃) (2)

for the phrases z = {zt}, which include the
present noun phrases and the references. To encour-
age the model to generate absent phrases instead of
just copying it from the references, we randomly
mask some references and train the model to gen-
erate them.

2.2 Informativeness module

Knowing to generate phrases is not sufficient to
obtain keyphrases. It is also important to guide
the generation towards the phrases that are infor-
mative to the input. Previous work on unsuper-
vised keyphrase extraction offer multiple classes of
methods, namely graph-based, statistics-based and
embedding-based, for evaluating informativeness

10617



of phrases (for more details, see Section 5). Graph-
based and statistics-based methods are not suitable
in our setting. These methods utilize only in-text
information and therefore cannot determine the in-
formativeness of absent phrases. On the other hand,
embedding-based methods evaluate informative-
ness of a phrase based on its closeness in meaning
with the input text. As a result, these methods can
support both present and absent phrases. We there-
fore adopt the idea of embedding-based methods
in building our informativeness module.

Let us define S(a, b) = max(0, vTa vb) as the
similarity score between two pieces of text, where
va, vb are embeddings obtained using Sent2Vec.
Using this score, we define the informativeness
distribution Pin(y|x), by decomposing it into
conditional distributions of each word given the
previous context. More formally, Pin(y|x) =∏T

t=1 Pin(yt|y<t,x), where

Pin(yt = w|y<t,x) ∝
{
S(w,x), if w ̸= [EOS]
S(y<t,x), otherwise

(3)
The probability Pin(yt = w|y<t,x) is normal-

ized over the extended word vocabulary Vx̃, which
is the same one used by the phraseness module.
Intuitively, a word has high probability of being
generated if that word has close meaning to the
text. The [EOS] token is likely to be generated if
the currently generated phrase y<t already form an
informative phrase.

2.3 Combining phraseness and
informativeness

Generating keyphrases require us to enforce both
phraseness and informativeness on the output se-
quence. A simple solution is to adopt the ap-
proaches taken by existing unsupervised keyphrase
extraction methods, which enforce the two crite-
ria sequentially. In particular, they either 1) form
phrases first, then choose those that are most in-
formative as keyphrases; or 2) choose informative
words first, then form keyphrases using these words.
However, both approaches may not be optimal. The
first approach may include uninformative words in
the prediction, while the second rigidly assume that
a keyphrase should only contain keywords. We il-
lustrate the limitation of these approaches using an
example, shown in Figure 3b. Here, we show the
predictions of EmbedRank (Bennani-Smires et al.,
2018), which takes approach 1) and TextRank (Mi-
halcea and Tarau, 2004), which takes approach 2).

Both of them fail to predict the golden keyphrase
“global illumination”. EmbedRank redundantly in-
clude the word “algorithms”, while TextRank only
outputs “illumination”, as “global” is not predicted
as a keyword.

This problem could be alleviated if both phrase-
ness and informativeness is considered when form-
ing the keyphrase. In the example above, the word
“algorithms” should be excluded, since it neither
contributes to the informativeness of the phrase,
nor it is required to make the phrase understand-
able. On the other hand, the word “global” may
not be among the most informative words to the
text, however, this word is essential as excluding it
results in a phrase with a different concept.

In light of this, we propose to generate
keyphrases, one word at a time, where each word
is generated if it is predicted by both the phrase-
ness and informativeness module. To this end, we
propose to combine the two modules in a product-
of-experts fashion (Hinton, 2002). In particular, the
conditional distribution of a keyphrase given a text
is defined as follows

Pkp(y|x) ∝ Ppn(y|x̃)λ · Pin(y|x)

∝
T∏

t=1

Ppn(yt|y<t, x̃)
λ · Pin(yt|y<t,x)

(4)
where λ is a hyperparameter for balancing the

two modules.
The idea of combining two language models

using the product-of-experts has previously been
studied for the task of unsupervised abstractive
summarization (Zhou and Rush, 2019). To the best
of our knowledge, we are the first to use this idea
in unsupervised keyphrase generation. In the above
paragraphs, we also discussed why it is a suitable
choice.

2.4 Keyphrase decoding

To decode keyphrases, we employ beam search
to search for keyphrases based on s(y) =
− logPkp(y|x). As beam search tend to favor
shorter keyphrases, we employ the length normal-
ization strategy similarly to that described in (Sun
et al., 2019), which is to divide s(y) by |y| + α,
where α is a length penalty factor.

It has been shown in previous work that posi-
tional information is useful for the prediction of
present keyphrases (Florescu and Caragea, 2017b;
Gallina et al., 2020). Therefore, it is desirable to in-
corporate this feature into our model. Furthermore,

10618



Dataset name Language Type valid/test docs #kps/doc %absent %overlap
SemEval English Scientific 144/100 15.4 58.2 38.8
Inspec English Scientific 1500/500 9.7 22.7 40
NUS English Scientific 50/161 11.6 53.1 53.3
Krapivin English Scientific 1844/460 5.3 50.5 53.5

StackExchange English
Technical
Question

16000/16000 2.7 48.9 45.1

DUC-2001 English News 50/268 8.1 2.7 14.7
KPTimes English News 10000/20000 5 46.2 7.5
OpenKP English News 6616/6614 2.2 10.9 12.7

Table 1: Statistics of testing datasets.

we found that the model tends to generate absent
keyphrases that are entirely new. This behavior
may not be desirable for downstream tasks such
as document retrieval, where we need to associate
documents with common keyphrases. Based on the
above discussion, we propose to rerank the beam
search results using the following score

ŝ(y) =
s(y)

|y|+ α
× b(y) (5)

b(y) =





β, if y is absent and y ∈ B

1, if y is absent and y ̸∈ B
log2(1+Px(y))

log2(1+Px(y))+1 , if y is present

(6)
where b(y) is an adjustment weight, β is a hyper-

parameter for adjusting the scores of absent phrases
that exist in the phrase bank B (β < 1 indicates
that we favor y ∈ B), and Px(y) is the word offset
position of the phrase y in the text x. Intuitively,
b(y) favors present keyphrases that appear earlier
in the text, and absent keyphrases that exist in the
phrase bank B.

3 Experiments

3.1 Datasets

We use the documents from the training set of
KP20K (Meng et al., 2017) to train our model
and to index the retriever in the training phase.
It contains the abstracts and titles of 514k scien-
tific articles. In the testing phase, we utilize 8
datasets, namely SemEval (Kim et al., 2013), In-
spec (Hulth, 2003), NUS (Nguyen and Kan, 2007),
Krapivin (Krapivin et al., 2009), DUC-2001 (Wan
and Xiao, 2008), OpenKP (Xiong et al., 2019),
StackExchange (Yuan et al., 2020) and KPTimes
(Gallina et al., 2019). The title and abstract of an
article are concatenated to form a testing document.

The testing datasets are categorized into in-
domain and out-of-domain, by measuring the per-
centage of keyphrase overlap with the training cor-
pus, i.e. the percentage of golden keyphrases in the
testing dataset that also appear in some documents
in KP20K. We choose the mean value of ∼ 33 as
a threshold to classify the testing datasets. As a

result, the in-domain datasets include SemEval, In-
spec, NUS, Krapivin and StackExchange, while
the other three are out-of-domain.

In the testing phase, besides using KP20K, we
also use the training set of StackExchange (300k
documents) and KPTimes (260k documents) to fur-
ther index the phrase bank and the retriever. The
purpose of adding these additional sources in the
testing phase is to test whether or not our model
can easily integrate additional information to work
in domains unseen during training, without having
it re-trained.

3.2 Baselines & evaluation metrics

Baselines. We adopt five unsupervised keyphrase
extraction (UKE) algorithms, namely TF-IDF, Tex-
tRank2 (Mihalcea and Tarau, 2004), MultiPartit-
eRank3 (Boudin, 2018), EmbedRank (Bennani-
Smires et al., 2018) and Global-Local Rank4 (Liang
et al., 2021) as baselines.

We also compare our model with AutoKeyGen
(Shen et al., 2022), which is the only previous work
on unsupervised keyphrase generation. With the
permission from the authors, we implemented and
report the AutoKeyGen-Copy version. Further-
more, we present CopyRNN (Meng et al., 2017) as
a supervised baseline. We employ the Transformer-
based pointer-generator network for both AutoKey-
Gen and CopyRNN, with the same settings as de-
scribed in A.1. Both AutoKeyGen and CopyRNN
are trained using KP20K.

Evaluation metrics. We follow the widely-used
strategy and separate the evaluation of present and
absent keyphrase generation. We employ macro-
average F1 and macro-average Recall for evaluat-
ing present and absent keyphrase generation, re-
spectively. We evaluate present keyphrases at top 3
and 5 predictions; and absent keyphrases at top 5
and 10. The predictions as well as the groundtruths
are stemmed using Porter Stemmer5 (Porter, 1980)
and duplicates are removed before evaluation.

3.3 Results

3.3.1 Keyphrase generation for in-domain
cases

Table 2 illustrates the performance of our proposed
model and the baselines for the five in-domain

2https://github.com/boudinfl/pke
3See footnote 1
4https://github.com/xnliang98/uke_ccrank
5https://github.com/nltk/nltk/blob/develop/

nltk/stem/porter.py

10619

https://github.com/boudinfl/pke
https://github.com/xnliang98/uke_ccrank
https://github.com/nltk/nltk/blob/develop/nltk/stem/porter.py
https://github.com/nltk/nltk/blob/develop/nltk/stem/porter.py


Present keyphrase generation
SemEval Inspec NUS Krapivin StackExchange Average

F1@3 F1@5 F1@3 F1@5 F1@3 F1@5 F1@3 F1@5 F1@3 F1@5 F1@3 F1@5
TF-IDF 19 23.9 18.7 24.8 22.7 25.9 15.9 15.7 18.8 16.5 19 21.4
TextRank 13.8 17.2 17.7 25 14.9 18.9 11.1 13.3 8.5 8.4 13.2 16.6
MultipartiteRank 18.9 21.4 23.1 26.5 22.7 24.9 19.3 18.5 13.9 13.6 19.6 21
EmbedRank 17.9 21.2 26.2 32.6 17.5 20.8 13.5 15.2 11.8 12.6 17.4 20.5
Global-Local Rank 20.4 23.6 24.5 30.6 22.4 23.7 15 15.2 10.2 9.8 18.5 20.6
AutoKeyGen 16.64 22.14 19.42 23.13 23.24 25.73 19.57 20.65 148 14.96 18.53 21.32
Ours 19.18 22.29 19.88 23.311 26.47 27.84 22.28 21.49 27.21 25.12 234 244
Supervised - CopyRNN 26.14 29.75 19.15 22.85 35.513 37.94 30.39 30.16 24.16 22.45 276 28.63

Absent keyphrase generation
SemEval Inspec NUS Krapivin StackExchange Average

R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10
UKE methods 0 0 0 0 0 0 0 0 0 0 0 0
AutoKeyGen 0.72 1.23 1.72 2.84 12 1.95 2.42 3.85 1.22 1.91 1.41 2.32
Ours 1.42 2.34 2.12 32 1.88 3.15 4.55 72 4.61 6.32 2.92 4.32
Supervised - CopyRNN 2.13 2.73 3.73 5.33 4.44 6.47 7.92 10.77 2.32 3.53 4.11 5.73

Table 2: Keyphrase generation performance for in-domain datasets. The best and second-best results for each
category are bold and highlighted, respectively. For AutoKeyGen, CopyRNN and our model, we run experiments
five times with different random seeds and report the average. The subscript denotes the corresponding standard
deviation (e.g. 26.47 indicates 26.4± 0.7). We report both F1 and Recall in percentage points.

Present keyphrase generation
DUC-2001 KPTimes OpenKP Average

F1@3 F1@5 F1@3 F1@5 F1@3 F1@5 F1@3 F1@5
TF-IDF 8.4 11.3 21.2 21.5 13.5 12.9 14.4 15.2
TextRank 9.8 14 10.1 9.7 9.8 9.3 9.9 11
MultipartiteRank 13.7 18.7 18 18.7 12.7 11.9 14.8 16.4
EmbedRank 20 24.5 10 11.8 6.9 7.3 12.3 14.5
Global-Local Rank 14.6 21.8 10.3 10.7 11.7 10.1 12.2 14.2
AutoKeyGen 7.46 9.96 15.94 16.83 8.53 8.93 10.63 11.83
Ours 15.23 18.24 20.11 21.11 15.98 14.22 173 17.82
Supervised - CopyRNN 6.94 8.52 19.67 19.65 10.44 10.13 12.34 12.73

Absent keyphrase generation
DUC-2001 KPTimes OpenKP

R@5 R@10 R@5 R@10 R@5 R@10
UKE methods 0 0 0 0 0 0
AutoKeyGen - - 0.20 0.30 - -
Ours - - 31 3.60 - -
Supervised - CopyRNN - - 0.20 0.41 - -

Table 3: Results on out-of-domain datasets.

datasets. We also display the average performance
across datasets.

Present keyphrase generation. For predicting
present keyphrases, our model is best or second-
best on most datasets. On SemEval, our model is
slightly inferior to TF-IDF and Global-Local Rank.
The results on Inspec are worth noting, as our pro-
posed model is significantly outperformed by UKE
methods. This inferior performance may be due
to this dataset not favoring generative methods, as
even CopyRNN, the supervised baseline, failed to
compete with UKE methods on Inspec. This be-
havior has also been observed in a recent work
(Gallina et al., 2020). Although not being able to
outperform existing methods on all datasets, our
proposed model still achieves the best weighted-
average results, outperforming the second-best by
about 14% for top 3 predictions and 10% for top 5.

Absent keyphrase generation. For predicting

absent keyphrases, our proposed model outper-
forms existing work on all datasets. UKE methods
cannot be compared with our model, as they only
extract present keyphrases. When comparing with
AutoKeyGen, we observe that our proposed model
have significantly better performance, except for
the Inspec dataset where the results are on par. On
average, we outperform AutoKeyGen by nearly
twice for both top 5 and top 10 predictions.

3.3.2 Keyphrase generation for out-of-domain
cases

One important objective of this work is the
proposed model’s capability to perform in out-
of-domain settings. We show present and ab-
sent keyphrase generation performance for out-of-
domain datasets in table 3. For absent keyphrase
generation, we only report results on KPTimes, as
DUC-2001 and OpenKP mainly contain present
keyphrases.

Present keyphrase generation. Our model
achieves the best or second-best results on all out-
of-domain datasets. Similar to the in-domain cases,
our model achieves the best weighted-average re-
sults despite not being able to outperform all base-
lines on all datasets. Of the two unsupervised
keyphrase generation methods, our proposed model
achieves significantly better results than AutoKey-
Gen in the out-of-domain setting.

Absent keyphrase generation. In the out-of-
domain setting. It can be seen that AutoKeyGen
fails to generate absent keyphrases, with the re-

10620



In domain Out of domain

Title: Poset-valued sets or how to build models for linear logics.
Abstract: We describe a method for constructing models of linear logic based 
on the category of sets and relations. The resulting categories are 
non-degenerate in general; in particular they are not compact closed nor do 
they have biproducts. The construction is simple, lifting the structure of a poset 
to the new category. The underlying poset thus controls the structure of this 
category, and different posets give rise to differently-flavoured models. As a 
result, this technique allows the construction of models for both, intuitionistic or 
classical linear logic as desired. A number of well-known models, for example 
coherence spaces and hypercoherences, are instances of this method.

Title: 'Full horror' of cyclone in southeast Africa yet to emerge: Red Cross
Body:. MAPUTO/HARARE – Cyclone winds and floods that swept across 
southeastern Africa affected more than 2.6 million people and could rank as one 
of the worst weather-related disaster recorded in the southern hemisphere, 
U.N. officials said on Tuesday.
Rescue crews are still struggling to reach victims five days after Cyclone Idai 
raced in at speeds of up to 170 kph (105 mph) from the Indian Ocean into 
Mozambique, then its inland neighbors Zimbabwe and Malawi. ...

Present keyphrases

Groundtruth: linear logic
AutoKeyGen: linear logic, classical linear logic, models, poset, 
differently-flavoured models
Our model: sets, models, linear logics, logics, poset

Present keyphrases

Groundtruth: africa, disasters, mozambique, zimbabwe
AutoKeyGen: cyclone, africa, satellite images, people, mph
Our model: cyclone, floods, africa, mozambique, cyclone winds

Absent keyphrases

Groundtruth: categorical models
AutoKeyGen: linear models, category models, logic models, general linear 
models, linear method
Our model: linear models, intuitionistic linear logic, relational models, 
categorical models, kripke models

Absent keyphrases

Groundtruth: storms
AutoKeyGen: red world, cross world, water told, cyclone people, red cyclone
Our model: typhoon, flooding, devastation, storms, tropical cyclone

Figure 4: Two examples of the generated keyphrases from AutoKeyGen and our proposed model. We illustrate the
top 5 predictions. Correctly predicted keyphrases are underlined.

call of only 0.3% for top 10 predictions. On the
other hand, our model can recall 3.6% of absent
keyphrases. This improvement is significant con-
sidering that absent keyphrase generation has been
pointed out to be a “very challenging task” (Meng
et al., 2017).

3.3.3 Comparison to supervised baseline
Although not being able to compete with the super-
vised baseline on the in-domain datasets, our model
has narrowed the gap between supervised and un-
supervised keyphrase generation methods. In ad-
dition, our model shows remarkable performance
on out-of-domain datasets, while the supervised
baseline shows poor generalization. It can be seen
from Table 2 and 3 that the performance of the
supervised baseline plummets on out-of-domain
datasets. On the other hand, our model is able to
retain performance across domains.

3.4 Ablation study

We perform an ablation study to further understand
the role of the components of our proposed model.
In particular, we test our model with some com-
ponents removed, namely the adjustment weight
defined in Equation 6, the references and the part-
of-speech information. We report the results in
Table 4. For KPTimes and OpenKP, we sample
200 and 500 documents from their original valida-
tion and test set to perform the ablation study.

We observe that no model in the ablation study

achieve the best performance in all cases. However,
the full version of our model shows to be more
well-rounded compared to its ablations.

Firstly, the adjustment weight b(y) proves to be
crucial, as removing it cause our model’s perfor-
mance to drop in most cases. This confirms that
the positional information is useful in predicting
present keyphrases, as has been pointed out by pre-
vious work (Florescu and Caragea, 2017b; Gallina
et al., 2020). Moreover, prioritizing phrases that ex-
ist in the phrase bank also proves to be effective for
predicting absent keyphrases. Next, removing the
references shows to heavily affect absent keyphrase
generation, especially on the out-of-domain dataset
KPTimes. On the other hand, present keyphrase
generation seems not to be affected without using
references. Finally, the version of our model with-
out part-of-speech information is able to maintain
present keyphrase generation performance for the
in-domain dataset (Krapivin), but slightly wors-
ens when being moved out-of-domain. For absent
keyphrase generation, it seems that part-of-speech
information does not help for KPTimes. A possi-
ble explanation is that KPTimes mostly contains
single-word keyphrases and therefore grammatical
information can offer little help in this case.

4 Case study

We display two examples of generated keyphrases
from AutoKeyGen and our proposed model in Fig-

10621



Present keyphrase generation
Krapivin DUC-2001 KPTimes OpenKP
F1@5 F1@5 F1@5 F1@5

No adjustment weight 17.4 19.3 21.3 10
No references 20.7 18.8 21.4 14.6
No POS 21.1 17.6 21.5 13.1
Full 20.5 18.2 21.8 14

Absent keyphrase generation
Krapivin DUC-2001 KPTimes OpenKP
R@10 R@10 R@10 R@10

No adjustment weight 5.8 - 2.5 -
No references 5.5 - 1 -
No POS 7.1 - 3.5 -
Full 7.2 - 3.2 -

Table 4: Ablation study.

ure 4. The first example is from Krapivin, an in-
domain dataset, while the second one is from KP-
Times, an out-of-domain dataset. For the first ex-
ample, we observe that both the proposed model
and AutoKeyGen correctly predict the groundtruth
(present and absent) keyphrases. However, it can
be seen that, for generating absent keyphrases, Au-
toKeyGen only reorders words that are present in
the given text. On the other hand, our model can
generate keyphrases whose component words are
absent, such as “relational models”, “categorical
models” and “kripke models”.

In the second example, it is clear that our model
predicts more correct keyphrases. We observe that
the absent keyphrases generated by AutoKeyGen
are highly irrelevant. On the other hand, our model
successfully predicts “storms” and also outputs
other absent keyphrases that are relevant, although
not being within the ground truth keyphrases. This
example help shows that our model is better at han-
dling documents from different domains.

5 Related work

5.1 Unsupervised keyphrase extraction

Unsupervised keyphrase extraction (UKE) aims
at identifying keyphrases within the text. Cur-
rently, there are three main classes of UKE meth-
ods, namely statistics-based, graph-based and
embedding-based. Statistics-based methods (Cam-
pos et al., 2018) employ features such as TF-IDF,
word position and casing aspect, to determine the
relevance of a candidate phrase.

Graph-based methods typically build a graph
from the source text, where a node could be a
word or a phrase. Then, different graph-theoretic
measures are used to estimate the importance of
nodes, and finally phrases are formed based on the
top ranked nodes. TextRank (Mihalcea and Tarau,

2004) builds a word graph where a link between
two words exists if they co-occur within a window.
SingleRank (Wan and Xiao, 2008), CiteTextRank
(Gollapalli and Caragea, 2014) employs related
documents to better measure similarity between
word nodes. TopicRank (Bougouin et al., 2013),
Topical PageRank (Liu et al., 2010) incorporate
topical information in the graph ranking algorithm.
Positional information is used in PositionRank (Flo-
rescu and Caragea, 2017a) to favor keyphrases that
appear earlier in the text. (Boudin, 2018) utilizes
the structure of multi-partite graphs to extract di-
verse keyphrases.

Embedding-based methods utilize embedding
spaces to measure informativeness of candidates.
EmbedRank (Bennani-Smires et al., 2018) rank
candidates by measuring their distance to the
source text in a pretrained sentence embedding
space, then an optional diversification step is per-
formed using maximal-marginal relevance to en-
sure diversity of extracted keyphrases. (Liang et al.,
2021) jointly models local and global context of
the document when ranking candidates.

5.2 Unsupervised keyphrase generation

Keyphrase generation aims at predicting both
present and absent keyphrases for the source text.
To our best knowledge, AutoKeyGen (Shen et al.,
2022) is currently the only unsupervised keyphrase
generation method. AutoKeyGen trains a seq2seq
model on automatically generated silver labeled
document-keyphrase pairs. The silver keyphrases
are both present and absent, where present ones are
extracted, and the absent ones are constructed from
the words present in the text.

6 Conclusions

In this paper, we propose a new problem called
unsupervised open-domain keyphrase generation.
We propose a seq2seq model that consists of two
modules, one is responsible for generating phrases
while the other guides the generation towards
phrases that reflect the core concepts of the given
text. Our experiments on eight benchmark datasets
from multiple domains demonstrate that our model
outperforms existing unsupervised methods and
narrows the gap between unsupervised and super-
vised keyphrase generation models. Furthermore,
we demonstrate that the proposed model can per-
form consistently across domains.

10622



Limitations

One limitation of the proposed method is that it
does not consider domain-specific information to
evaluate informativeness. The phraseness module
has access to domain-specific knowledge, which
are the phrases that occur in similar contexts, i.e.
the references. On the other hand, the informa-
tiveness module only employs a domain-general
sentence embedding model to measure informative-
ness of phrases. Therefore, the integration of both
domain-specific and domain-general information
for the evaluation of informativeness may be worth
further investigation.

Another limitation of this work is that we only
tested the proposed method on short texts. There-
fore, it is uncertain of the proposed framework’s
performance on long text documents. Handling
long texts could be significantly more difficult than
short text, as long texts contain much more infor-
mation (can discuss a variety of topics).

The final limitation of this work is the absence
of experiments on using different sentence embed-
ding models to construct the informativeness mod-
ule. Therefore, it might be useful to explore the
impact of different sentence embedding models on
keyphrase generation performance. We leave this
for future work.

References
Wasi Ahmad, Xiao Bai, Soomin Lee, and Kai-Wei

Chang. 2021. Select, extract and generate: Neu-
ral keyphrase generation with layer-wise coverage
attention. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1389–1404, Online. Association for Computa-
tional Linguistics.

Kamil Bennani-Smires, Claudiu Musat, Andreea Hoss-
mann, Michael Baeriswyl, and Martin Jaggi. 2018.
Simple unsupervised keyphrase extraction using sen-
tence embeddings. In Proceedings of the 22nd Con-
ference on Computational Natural Language Learn-
ing, pages 221–229, Brussels, Belgium. Association
for Computational Linguistics.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. " O’Reilly Media,
Inc.".

Florian Boudin. 2018. Unsupervised keyphrase extrac-
tion with multipartite graphs. In Proceedings of the
2018 Conference of the North American Chapter of

the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 2 (Short Pa-
pers), pages 667–672, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Adrien Bougouin, Florian Boudin, and Béatrice Daille.
2013. Topicrank: Graph-based topic ranking for
keyphrase extraction. In International joint con-
ference on natural language processing (IJCNLP),
pages 543–551.

Ricardo Campos, Vítor Mangaravite, Arian Pasquali,
Alípio Mário Jorge, Célia Nunes, and Adam Jatowt.
2018. Yake! collection-independent automatic key-
word extractor. In European Conference on Informa-
tion Retrieval, pages 806–810. Springer.

Jun Chen, Xiaoming Zhang, Yu Wu, Zhao Yan, and
Zhoujun Li. 2018. Keyphrase generation with corre-
lation constraints. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4057–4066, Brussels, Belgium.
Association for Computational Linguistics.

Wang Chen, Yifan Gao, Jiani Zhang, Irwin King,
and Michael R Lyu. 2019. -guided encoding for
keyphrase generation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33,
pages 6268–6275.

Jason Chuang, Christopher D Manning, and Jeffrey
Heer. 2012. “without the clutter of unimportant
words” descriptive keyphrases for text visualization.
ACM Transactions on Computer-Human Interaction
(TOCHI), 19(3):1–29.

Colin B. Clement, Matthew Bierbaum, Kevin P.
O’Keeffe, and Alexander A. Alemi. 2019. On the
use of arxiv as a dataset.

Corina Florescu and Cornelia Caragea. 2017a. Posi-
tionrank: An unsupervised approach to keyphrase
extraction from scholarly documents. In Proceed-
ings of the 55th annual meeting of the association for
computational linguistics (volume 1: long papers),
pages 1105–1115.

Corina Florescu and Cornelia Caragea. 2017b. Posi-
tionRank: An unsupervised approach to keyphrase
extraction from scholarly documents. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1105–1115, Vancouver, Canada. Association
for Computational Linguistics.

Ygor Gallina, Florian Boudin, and Beatrice Daille.
2019. Kptimes: A large-scale dataset for keyphrase
generation on news documents. arXiv preprint
arXiv:1911.12559.

Ygor Gallina, Florian Boudin, and Béatrice Daille. 2020.
Large-scale evaluation of keyphrase extraction mod-
els. In Proceedings of the ACM/IEEE Joint Confer-
ence on Digital Libraries in 2020, pages 271–278.

10623

https://doi.org/10.18653/v1/2021.acl-long.111
https://doi.org/10.18653/v1/2021.acl-long.111
https://doi.org/10.18653/v1/2021.acl-long.111
https://doi.org/10.18653/v1/K18-1022
https://doi.org/10.18653/v1/K18-1022
https://doi.org/10.18653/v1/N18-2105
https://doi.org/10.18653/v1/N18-2105
https://doi.org/10.18653/v1/D18-1439
https://doi.org/10.18653/v1/D18-1439
http://arxiv.org/abs/1905.00075
http://arxiv.org/abs/1905.00075
https://doi.org/10.18653/v1/P17-1102
https://doi.org/10.18653/v1/P17-1102
https://doi.org/10.18653/v1/P17-1102


Sujatha Das Gollapalli and Cornelia Caragea. 2014. Ex-
tracting keyphrases from research papers using cita-
tion networks. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 28.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K. Li.
2016. Incorporating copying mechanism in sequence-
to-sequence learning. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1631–
1640, Berlin, Germany. Association for Computa-
tional Linguistics.

Carl Gutwin, Gordon Paynter, Ian Witten, Craig Nevill-
Manning, and Eibe Frank. 1999. Improving browsing
in digital libraries with keyphrase indexes. Decision
Support Systems, 27(1-2):81–104.

Geoffrey E Hinton. 2002. Training products of experts
by minimizing contrastive divergence. Neural com-
putation, 14(8):1771–1800.

Anette Hulth. 2003. Improved automatic keyword ex-
traction given more linguistic knowledge. In Pro-
ceedings of the 2003 conference on Empirical meth-
ods in natural language processing, pages 216–223.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and Tim-
othy Baldwin. 2013. Automatic keyphrase extraction
from scientific articles. Language resources and eval-
uation, 47(3):723–742.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Mikalai Krapivin, Aliaksandr Autaeu, and Maurizio
Marchese. 2009. Large dataset for keyphrases extrac-
tion.

Xinnian Liang, Shuangzhi Wu, Mu Li, and Zhoujun Li.
2021. Unsupervised keyphrase extraction by jointly
modeling local and global context. In Proceedings of
the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 155–164, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Marina Litvak and Mark Last. 2008. Graph-based key-
word extraction for single-document summarization.
In Coling 2008: Proceedings of the workshop Multi-
source Multilingual Information Extraction and Sum-
marization, pages 17–24, Manchester, UK. Coling
2008 Organizing Committee.

Zhiyuan Liu, Wenyi Huang, Yabin Zheng, and Maosong
Sun. 2010. Automatic keyphrase extraction via topic
decomposition. In Proceedings of the 2010 confer-
ence on empirical methods in natural language pro-
cessing, pages 366–376.

Rui Meng, Sanqiang Zhao, Shuguang Han, Daqing He,
Peter Brusilovsky, and Yu Chi. 2017. Deep keyphrase
generation. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 582–592, Vancouver,
Canada. Association for Computational Linguistics.

Rada Mihalcea and Paul Tarau. 2004. TextRank: Bring-
ing order into text. In Proceedings of the 2004 Con-
ference on Empirical Methods in Natural Language
Processing, pages 404–411, Barcelona, Spain. Asso-
ciation for Computational Linguistics.

Thuy Dung Nguyen and Min-Yen Kan. 2007.
Keyphrase extraction in scientific publications. In
International conference on Asian digital libraries,
pages 317–326. Springer.

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi.
2018. Unsupervised learning of sentence embed-
dings using compositional n-gram features. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 528–540, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Martin F Porter. 1980. An algorithm for suffix stripping.
Program.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Xianjie Shen, Yinghan Wang, Rui Meng, and Jingbo
Shang. 2022. Unsupervised deep keyphrase genera-
tion. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 36(10):11303–11311.

Zhiqing Sun, Jian Tang, Pan Du, Zhi-Hong Deng, and
Jian-Yun Nie. 2019. Divgraphpointer: A graph
pointer network for extracting diverse keyphrases.
In Proceedings of the 42nd International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, pages 755–764.

Takashi Tomokiyo and Matthew Hurst. 2003. A lan-
guage model approach to keyphrase extraction. In
Proceedings of the ACL 2003 Workshop on Multi-
word Expressions: Analysis, Acquisition and Treat-
ment, pages 33–40, Sapporo, Japan. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Xiaojun Wan and Jianguo Xiao. 2008. Single document
keyphrase extraction using neighborhood knowledge.
In AAAI, volume 8, pages 855–860.

10624

https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/2021.emnlp-main.14
https://doi.org/10.18653/v1/2021.emnlp-main.14
https://aclanthology.org/W08-1404
https://aclanthology.org/W08-1404
https://doi.org/10.18653/v1/P17-1054
https://doi.org/10.18653/v1/P17-1054
https://aclanthology.org/W04-3252
https://aclanthology.org/W04-3252
https://doi.org/10.18653/v1/N18-1049
https://doi.org/10.18653/v1/N18-1049
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.1609/aaai.v36i10.21381
https://doi.org/10.1609/aaai.v36i10.21381
https://doi.org/10.3115/1119282.1119287
https://doi.org/10.3115/1119282.1119287


Ian H Witten, David Bainbridge, and David M Nichols.
2009. How to build a digital library. Morgan Kauf-
mann.

Lee Xiong, Chuan Hu, Chenyan Xiong, Daniel Cam-
pos, and Arnold Overwijk. 2019. Open domain
web keyphrase extraction beyond language modeling.
arXiv preprint arXiv:1911.02671.

Jiacheng Ye, Ruijian Cai, Tao Gui, and Qi Zhang. 2021.
Heterogeneous graph neural networks for keyphrase
generation. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2705–2715, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Xingdi Yuan, Tong Wang, Rui Meng, Khushboo Thaker,
Peter Brusilovsky, Daqing He, and Adam Trischler.
2020. One size does not fit all: Generating and evalu-
ating variable number of keyphrases. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7961–7975, On-
line. Association for Computational Linguistics.

Jiawei Zhou and Alexander Rush. 2019. Simple unsu-
pervised summarization by contextual matching. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5101–
5106, Florence, Italy. Association for Computational
Linguistics.

A Implementation details

A.1 Phraseness module

Retriever. We extract noun phrases for the doc-
uments in the training set of KP20K, StackEx-
change and KPTimes; and form the phrase bank
by keeping the noun phrases that occur in at least
5 documents. For obtaining embeddings of docu-
ments, we employ the Sent2Vec pretrained model
named sent2vec_wiki_unigrams6, a 600-
dimensional sentence embedding model trained
on English Wikipedia. We utilize Faiss7 (Johnson
et al., 2019) for indexing the phrases and their con-
text embeddings.

Seq2seq model. Both the encoder and decoder
of the seq2seq model contains 3 layers. The model
dimensionality and the word embedding size are
both set to 256, and the part-of-speech embedding
size is set to 64. The seq2seq model employs at-
tention with 8 heads. The encoder and decoder
have separate vocabularies, both contain 40000
words. The encoder and decoder vocabulary con-
tains the frequent words in the unlabeled corpus
and among the extracted noun phrases, respectively.

6https://github.com/epfml/sent2vec
7https://github.com/facebookresearch/faiss

1st run 2nd run 3rd run 4th run 5th run
SemEval -1 -1 -0.5 -1 -1
Inspec -1 -1 -1 -0.75 -1
NUS -0.75 -0.75 -0.25 -0.25 -0.5
Krapivin -0.25 -0.5 -0.25 -0.25 -0.5
StackExchange 1 1 1 1 1
DUC-2001 -1 -1 -1 -1 -1
KPTimes 0.5 0.5 0.75 0.5 1
OpenKP 0.5 -0.25 0.25 -0.25 -0.25

Table 5: Best length penalty values for each dataset in
each run.

The seq2seq model is optimized using Adam opti-
mizer (Kingma and Ba, 2014), with a learning rate
of 0.0001, gradient clipping = 0.1 and a dropout
rate of 0.1. We trained our model in 15 epochs.
After every 3 training epoch, the learning rate is
reduced by 10%. The seq2seq model contains 34M
trainable parameters, and training it for 15 epochs
took about 7 hours on a single NVIDIA A40 GPU.
We roughly estimate that conducting our experi-
ments, which include training the baseline models,
took a total of 150 GPU hours.

A.2 Informativeness module
For the informativeness module, we also
employ the pretrained Sent2vec model
sent2vec_wiki_unigrams, to obtain
embeddings of words and texts.

A.3 Keyphrase decoding
We employ beam search with beam size = 100 and
beam depth = 6. The balancing hyperparameter λ
is set to 0.75. Considering the adjustment weight
in Equation 6, we set β = 5/6 to favor existing
phrases in the phrase bank B. For each text, we re-
trieve 15 references, some of which can be filtered
out by the threshold τ , which is set to 0.7.

We use the validation set of each testing dataset
to select the value for the length penalty factor α.
In particular, we choose α ∈ {-1, -0.75, -0.5, -0.25,
0, 0.25, 0.5, 0.75, 1} that maximizes the geometric
mean of the evaluation metrics, i.e. F1 at top 3 and
5 for present keyphrases and Recall at top 5 and
10 for absent keyphrases. Since the value range
of these metrics are different from one another,
we divide each metric by its maximum value (that
can be found as we try different values of α) for
normalization before taking the geometric mean.
Table 5 provide the best α values for each dataset
in each run in our experiment.

10625

https://doi.org/10.18653/v1/2021.emnlp-main.213
https://doi.org/10.18653/v1/2021.emnlp-main.213
https://doi.org/10.18653/v1/2020.acl-main.710
https://doi.org/10.18653/v1/2020.acl-main.710
https://doi.org/10.18653/v1/P19-1503
https://doi.org/10.18653/v1/P19-1503
https://github.com/epfml/sent2vec
https://github.com/facebookresearch/faiss


ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Yes, it’s in the "Limitation" section after section 6.

�7 A2. Did you discuss any potential risks of your work?
In our paper, we aim to address the keyphrase generation task. We cannot think of any potential risks
of our work.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Section 1 Introduction

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Left blank.

�3 B1. Did you cite the creators of artifacts you used?
Section 3.1

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Yes, we cite the source to the software and dataset that we used for reproducing previous work’s
results in the footnote in Section 3.2 and the footnote in appendix A.1.

�7 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No, because the licenses for software and datasets are well known, standard licenses, which allow
use of the artifacts in work like ours.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No, since the dataset we applied is a commonly used open-source benchmark datasets in the field of
keyphrase generation.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Yes, in section 3.1, table 1

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Yes, in section 3.1, table 1

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

10626

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


C �3 Did you run computational experiments?
Left blank.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
In appendix A.1

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
In appendix A.3

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
In section 3.3, Table 2.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Yes, in Section 3.2 (mention using Porter Stemmer for preprocessing).

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

10627


