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Abstract
Text simplification research has mostly focused
on sentence-level simplification, even though
many desirable edits—such as adding relevant
background information or reordering content—
may require document-level context. Prior
work has also predominantly framed simplifica-
tion as a single-step, input-to-output task, only
implicitly modeling the fine-grained, span-level
edits that elucidate the simplification process.
To address both gaps, we introduce the SWIPE
dataset, which reconstructs the document-level
editing process from English Wikipedia (EW)
articles to paired Simple Wikipedia (SEW) ar-
ticles. In contrast to prior work, SWIPE lever-
ages the entire revision history when pairing
pages in order to better identify simplification
edits. We work with Wikipedia editors to anno-
tate 5,000 EW-SEW document pairs, labeling
more than 40,000 edits with proposed 19 cate-
gories. To scale our efforts, we propose several
models to automatically label edits, achieving
an F-1 score of up to 70.6, indicating that this is
a tractable but challenging NLU task. Finally,
we categorize the edits produced by several sim-
plification models and find that SWIPE-trained
models generate more complex edits while re-
ducing unwanted edits.

1 Introduction

Text simplification (TS) aims to make complex
documents accessible to larger audiences by lower-
ing the barrier of reading for children, non-native
speakers, and novice readers in technical domains.
TS has primarily been approached in a sentence-
level sequence-to-sequence (seq2seq) manner, fol-
lowing the methodology of mature NLG tasks such
as machine translation. Prior work framed at the
sentence level has focused on simplification edits
that occur within sentence units, such as lexical
replacements (Glavaš and Štajner, 2015) and sen-
tence splitting (Narayan and Gardent, 2015; Sulem
et al., 2018). Yet, many simplification operations,
such as background elaborations (Srikanth and Li,
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Figure 1: Sample from SWIPE, a Wikipedia-based
dataset for document-level simplification. Many edits
in SWIPE require document-level context.

2020) or content reordering (Zhong et al., 2020)
require document-level context.

A major roadblock to advances in document-
level simplification has been the lack of large-scale
and high-quality datasets. The two most popular
sources of data for the English language are either
the news-based Newsela which is not available pub-
licly or the combination of English Wikipedia (EW)
and Simple English Wikipedia (SEW)1, which is
large-scale but requires non-trivial processing to
align Wikipedia articles with their simplified ver-
sions (Jiang et al., 2020). The alignment task has
predominantly been framed as finding pairs of se-
mantically similar sentences within the latest revi-
sions of EW and SEW pages.

Our first contribution is to adapt the Wikipedia
content alignment task to document-level granu-
larity. We explore the entire revision history of
Wikipedia pages and match individual revisions of

1https://simple.wikipedia.org
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SEW pages with best-aligned EW revisions, rather
than rely on the most recent revisions which might
yield factually misaligned pairs due to outdated in-
formation. By applying our alignment method to
the entire revision history of SEW – and processing
two orders of magnitude more content – we create
the SWIPE dataset, a high-quality and large-scale
document-level simplification dataset. SWIPE con-
sists of 145,161 document pairs, which we pro-
cessed into an alignment sequence composed of
three operations: unchanged text, insertion, and
deletion. Figure 1 provides an illustrative align-
ment sequence of a SWIPE sample.

Our second contribution is a comprehensive anal-
ysis of edits that occur in SWIPE. We propose a
19-category edit taxonomy based on prior work and
expanded for document-level edits. The categories
are organized into four coarse-grained classes rep-
resenting simplification objectives: Lexical, Syn-
tactic, Semantic, and Discourse-level edits. We
collaborate with active SEW editors to annotate
5,000+ alignment sequences of SWIPE. The col-
lected annotations of around 40,000 edits reveal
that all four edit classes are prevalent in SWIPE
(each occurs in at least 40% of annotated docu-
ments). Document-level context is required for at
least 43% of edits, and diverse edits often co-occur
within documents, as SEW editors combine editing
strategies when producing SEW pages.

Our third contribution is to propose models that
can automatically identify edit categories and mod-
els that generate document-level simplified text.
For the task of edit identification, our best model
achieves a categorization F-1 score of 70.6, leav-
ing room for future improvement. When analyz-
ing simplification models based on the edits they
produce, we find that SWIPE-trained models can
produce more complex edits than prior work while
generating fewer undesirable edits that potentially
introduce factually incorrect content. We release
the SWIPE data, the models, and experimental
code publicly2.

2 Related Work

2.1 Simplification Datasets
Simple Wikipedia was leveraged by prior work to
create some of the first large-scale simplification
resources, such as PWKP (Zhu et al., 2010) and
SEW (Coster and Kauchak, 2011), which popu-
larized the field framed on sentence-level simpli-

2https://github.com/Salesforce/simplification

fication. Subsequent work found shortcomings in
initial datasets due to low-quality alignment (Xu
et al., 2015), and three main avenues for improve-
ment were proposed. First, some work proposed to
favor higher quality data sources such as Newsela
(Xu et al., 2015; Srikanth and Li, 2021). How-
ever, Newsela is only available under a restrictive
license, which has limited its accessibility within
the research community. Second, manual anno-
tation of smaller-scale but higher-quality evalua-
tion sets can complement existing resources, such
as HSplit (Sulem et al., 2018), TurkCorpus (Xu
et al., 2016), and ASSET (Alva-Manchego et al.,
2020). Finally, more advanced alignment methods
were proposed to improve the automatic creation
of Wikipedia-based datasets, creating Wiki-Auto
(Jiang et al., 2020) and CATS (Štajner et al., 2018).

Recent work has explored simplification beyond
sentence-level granularity, with some methods fo-
cused on the paragraph level (Devaraj et al., 2021;
Laban et al., 2021). The D-Wikipedia dataset (Sun
et al., 2021) is the closest in format to SWIPE, but
analysis in Section 3.4 reveals that it is of limited
quality due to a lack of filtering. With SWIPE, we
extend prior work by implementing an advanced
automatic alignment method to create a large-scale
dataset for document-level simplification.

2.2 Categorizing Simplification Edits

Given a simplification dataset, automatic alignment
methods enable the extraction of atomic edits that
simplify the complex text. Prior work has analyzed
such edits to gain insights and compare datasets.
The most common analysis revolves around mea-
suring the frequency of different editing operations
(i.e. insertions, deletions, replacements) (Coster
and Kauchak, 2011; Vásquez-Rodríguez et al.,
2021). Some work has proposed annotating the
operations with linguistically motivated categories
that give a reason for the edit. Since most simpli-
fication resources are at the sentence granularity,
edit categorizations have focused on lexical and
syntactic phenomena that frequently occur within
individual sentences (Aluísio et al., 2008; Scarton
and Specia, 2018; Cardon et al., 2022).

Some work has leveraged Newsela to study ed-
its that require document-level context, such as
elaborations (Srikanth and Li, 2020) and content
selection (Zhong et al., 2020). Other works such as
arxivEdits(Jiang et al., 2022), EditEval(Dwivedi-
Yu et al., 2022) or PEER(Schick et al., 2022) have
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Figure 2: SWIPE matching considers the entire revision
history of pages, enabling better page alignment.

studied the general problem of document editing,
and have either not considered simplification edits
or grouped all simplification edits within a single
category. Edit categories used in SWIPE are based
on existing categorization and expanded with ed-
its less frequently, studied such as discourse and
semantic edits that require document-level context.

2.3 Wikipedia Revision History
Wikipedia revision history has been used in NLP
resources, from automatic grammatical error cor-
rection (Boyd, 2018; Max and Wisniewski, 2010),
to vandalism detection (Chin et al., 2010; Heindorf
et al., 2015), paraphrase generation (Nelken and
Yamangil, 2008; Dutrey et al., 2010) or fact veri-
fication (Schuster et al., 2021). With SWIPE, we
show that Wikipedia’s revision history in conjunc-
tion with advanced alignment methods can be a
powerful tool to create simplification datasets.

3 Creating SWIPE

3.1 Page Matching
To create a simplification dataset based on
Wikipedia, pages from EW must be matched with
their counterpart simplified pages in SEW. We fol-
low prior work and leverage Wikidata (Jiang et al.,
2020), Wikimedia’s knowledge base, to extract
Wikidata entries with both EW and SEW Wikipedia
pages, and obtain a total of 226,861 page pairs,
which form the basis for our dataset.

3.2 Revision Matching
By design, each Wikipedia page is a living doc-
ument that is continuously updated and revised.
When an editor creates a SEW page, it is common
practice to select a particular revision of the corre-
sponding EW page as a starting point and introduce
a series of simplifying edits.

Most existing Wikipedia-based simplification
datasets rely on matching the latest revisions of
page pairs at the time of dataset creation, overlook-
ing page revision history. Considering that EW

pages are typically updated more frequently than
SEW pages, such approaches might lead to mis-
alignment in the created datasets, thus lowering
the data quality. In this work, we leverage the full
revision history of both the EW and SEW pages
with the goal of obtaining higher-quality examples
of document-level simplification. We propose the
task of automatic revision matching, illustrated in
Figure 2.

For the 226,861 page pairs, we obtain the entire
revision history of the EW and SEW pages and ex-
tract up to 200 full-text revisions using Wikipedia’s
API. We obtain 22 million revisions: on average
94 revisions per EW page, and 4 per SEW page.
The matching process consists of finding the EW
revision that aligns best with each SEW revision.
If a SEW page has multiple revisions, we include
several revisions in the dataset, as long as the SEW
revisions differ significantly and match distinct EW
revisions (i.e., Levenshtein similarity ≤0.3).

We manually annotated 2,000 revision pairs with
an alignment label (0/1) and conducted an ex-
ploratory study of several baseline models, with full
details in Appendix A. Based on the findings, we
select the NLI-based SummaC model (Laban et al.,
2022a), which was originally proposed for incon-
sistency detection in summarization, as the final
alignment model. The model achieved a strong per-
formance of 91.5 recall and 84.2 F-1 on a held-out
test set.

It is possible for SEW revisions to match none
of its paired EW revisions if the SummaC model
predicts that all pairs are unaligned. This occurs fre-
quently, for example when a SEW page is written
without being based on the relevant EW page. In to-
tal, matches occur for 133,744 page pairs, leading
to a total of 145,161 revision-pair matches.

In Section 4, Wikipedia editors participating
in SWIPE’s annotation could flag samples they
deemed unaligned. Of the roughly 5,000 annotated
samples, just 4% were flagged as unaligned, vali-
dating the high precision of the matching process.

3.3 SWIPE Statistics

We focus the dataset on the introduction section of
each Wikipedia page, as prior work has shown that
including all sections leads to a large imbalance in
terms of length (Xu et al., 2015).

The average compression ratio from EW to SEW
page in SWIPE document pairs is 0.87, suggesting
that SEW pages are not significantly shorter than
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their EW matches. In fact, 26% of document pairs
have a compression ratio larger than 1, indicating
that is not infrequent for the simplification of a
document to be longer than the original document.

3.4 Comparison with Prior Work

We perform an analysis of D-Wikipedia, an existing
document-level simplification dataset that was cre-
ated without considering the revision history and
without filtering pages based on alignment quality.

We find that of the 132,546 samples in the train-
ing portion of D-Wikipedia, only 49,379 (or 37%)
pass the alignment filtering we applied to create
SWIPE. Models trained on noisy datasets due to
low-quality alignment have been shown to exhibit
undesirable behavior, such as hallucinating facts
in summarization (Maynez et al., 2020; Kryściński
et al., 2020), which is likely to occur in simplifica-
tion as well. This analysis illustrates that match-
ing revisions from the entire revision history is an
essential step in creating large-scale, high-quality
simplification datasets based on Wikipedia.

4 Edit-Level Annotation

In upcoming sections, we use the term document
to refer to a particular page version. Given two
matched documents, they can be represented as a
single alignment sequence using a string-alignment
algorithm such as Levenshtein (Levenshtein, 1966).
An alignment sequence consists of a series of three
operations: unchanged text, inserted text, and re-
moved text, as illustrated in Figure 1. To understand
the types of edits that occur in SWIPE, we collab-
orated with Simple Wikipedia editors to annotate a
subset of the dataset.

4.1 Annotation Procedure Definition

The annotation procedure of a document pair con-
sists of selecting groups of edit operations (i.e.,
insertions and deletions) and assigning them to an
edit category from a predefined list. A document
pair is considered fully annotated once each edit
operation is assigned to at least one edit group.

Edit groups can consist of a single edit operation
(e.g. the Background Elaboration in Figure 1), or
multiple operations (e.g. four operations for the
syntactic edit). Operations can be part of multiple
groups, which enables group overlap (e.g., the sec-
ond to last deletion in Figure 1 is part of Semantic
Deletion and Discourse Reordering groups).

We choose to treat each operation as atomic and

Edit Category N %∃ #O %I %D %I+D

• Lexical Edit 6798 61.7 2.1 0.3 0.2 99.5
• Entity Edit 359 6.4 1.5 7.2 57.1 35.7

• Sentence Split 3010 43.8 2.3 42.0 0.3 57.7
• Sentence Fusion 334 6.0 2.4 5.7 29.0 65.3
• Syntactic Deletion 1889 28.1 1.1 0.2 98.1 1.7
• Syntactic Generic 2615 36.2 1.5 31.1 27.8 42.6

• Reordering 2379 34.6 2.5 0.6 0.4 99.0
• Anaphora Resolut. 302 5.4 1.8 21.9 7.9 70.2
• Anaphora Insert. 362 6.4 1.8 20.4 0.6 79.0

• Elaboration - Bkgrd 805 12.9 1.4 93.2 0.4 6.5
• Elaboration - Exple 139 2.4 1.5 95.7 0.0 4.3
• Elaboration - Generic 3195 36.0 1.2 95.9 1.1 2.9
• Semantic Deletion 12928 76.8 2.0 0.4 98.8 0.8
• Specific-to-General 332 5.7 2.1 0.0 6.9 93.1

• Format 2688 35.3 1.9 9.7 10.5 79.7
• Noise Deletion 693 10.6 1.6 2.2 93.7 4.2
• Fact Correction 290 5.0 2.3 4.5 2.8 92.8
• Extraneous Info 3028 36.5 2.2 99.4 0.1 0.5
• Miscellaneous 241 3.6 1.7 68.9 1.7 29.5

Table 1: Edit categories in SWIPE. Categories belong
to five classes: • lexical, • syntactic, • discourse, •
semantic, and • non-simpl. N: number of annotated
instances, %∃: percentage of documents with the edit,
#O: average group size, %I, %D, %I+D: distribution
over operation type (insert-only, delete-only, replace)

do not allow the annotator to manually split edit
operations further. Although this could be limiting
for longer edits, we believe this sets a common
ground for annotation, as work in extractive QA has
shown that disagreement of span boundaries affects
dataset quality (Rajpurkar et al., 2016). Analysis
in Section 4.4 examines the prevalence of overlap
and interleaving of edits in the dataset.

4.2 Edit Categorization

Edit categories were formalized by combining
prior-work categorizations (Siddharthan, 2014; Car-
don et al., 2022). Three of the authors then iter-
atively annotated common samples in batches of
10-20 and introduced new categories specific to
document-level simplification that did not arise in
sentence-level-based work. We measured inter-
annotator agreement at each iteration using Fleiss’
Kappa and halted once no new category was intro-
duced and the agreement level was above 0.7.

The final categories are organized into four
higher-level classes: Lexical edits that simplify
word units; Syntactic edits that simplify sentence
structure; Discourse edits that deal with multi-
sentence simplification; Semantic edits that add or
remove information within the document. An addi-
tional class handles all Non-Simplification edits.
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In-Domain
71,702 cats.

OOD
3 cats.

Train Valid Test Test

Manually Annotated 3,861 484 484 377
Silver Annotated 126k 7k 7k -

Table 2: Number of docs in each split of SWIPE

Each class is subdivided into categories, for a total
of 19 categories. For example, the Syntactic class
contains Sentence Splitting, Sentence Fusion, Syn-
tactic Deletion, and Syntactic Generic. Classes and
edit categories are listed in Table 1. A document
with a definition and a canonical example of each
category was prepared and later used to onboard
annotators (Appendix B).

4.3 Annotation Collaboration

We collaborated with active Simple Wikipedia edi-
tors to annotate SWIPE. We contacted the 50 all-
time top editors of Simple English Wikipedia on
their public Wikipedia talk pages3 with a high-level
description of our project and prompted them to
participate for a remuneration of US$25/hour.

In total, six SEW editors replied to the initial
message. They were given a 1-hour onboarding
task to attentively read through edit category defi-
nitions and annotate ten warm-up documents span-
ning all edit categories. The SEW editors were
invited to join a Slack channel to discuss borderline
and unclear examples. Upon completion, the au-
thors of the paper reviewed the warm-up document
annotations, and annotation errors were discussed
with the participants before proceeding with the
actual annotation.

In total, 3 SEW editors successfully completed
the onboarding, and we recruited an additional ed-
itor with a linguistic background recommended
by one of the editors (not an active SEW editor).
Over a period of two months, annotators identi-
fied edits in over 5,000 unique document alignment
sequences. During the annotation process, annota-
tions were periodically reviewed and feedback was
given to annotators. Annotating a single sequence
took an average of 1.3 minutes, and the annotation
effort cost approximately US$2,500.

To inspect annotation quality, 329 alignment se-
quences were annotated by several annotators. The
agreement level is measured using Fleiss’ Kappa
and averages 0.62 for the five category classes, in-

3https://en.wikipedia.org/wiki/Help:Talk_pages
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Figure 3: Summary of annotation analysis

dicating moderate agreement. Appendix C pro-
vides category-specific agreement levels, which
vary across categories. Even with clear edit cate-
gory definitions, there remains subjectivity in the
annotation procedure.

Wikipedia categories are assigned to pages that
identify page themes (e.g., Technology). In total,
71,705 Wikipedia categories appear in SWIPE. We
set aside three categories – Materials, Economics,
and Desserts – containing 377 pairs, which we fully
annotated as a more challenging out-of-domain
(OOD) test set. The rest of the annotation was per-
formed on a random sample of all other categories.
Table 2 summarizes the number of documents in
each portion of the dataset.

4.4 Annotation Analysis

Figure 3 summarizes SWIPE annotations statistics.
In Figure 3a, we break down the percentage of ed-
its that cross sentence boundaries by edit category.
Overall, 43% of edits are multi-sentence in nature,
confirming that sentence-level simplification over-
looks a large fraction of edits. This analysis likely
undercounts multi-sentence edits, as anaphora and
lexical consistency edits might be applied in a sin-
gle sentence but require implicit document context.

Each category class occurs in 40-85% of doc-
ument pairs (Fig. 3b). Semantic edits are most
common due to the widespread Semantic Dele-
tion category, with all other Semantic categories
occurring in 49.6% of documents. On average,
each annotated document has 15.2 edit operations
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(6.3 insertions, 8.9 deletions), which are consoli-
dated into 7.8 edit groups (see Figure 3c for the
full distribution). Non-simplification edits, which
correspond to undesirable edits related to format-
ting, the deletion of noise such as spam edits, or
the introduction of extraneous information occur
in 64.6% of document pairs, confirming the noisy
nature of Wikipedia-based datasets. In Section 5.4,
we explore an automated cleaning process to re-
move non-simplification edits.

To understand the diversity of edit categories
that occur within each simplified document, we
count how many of the four category classes occur
jointly in simplified documents. The distribution
is plotted in Figure 3d, revealing that a majority of
annotated documents contain edits from three or
four distinct category classes, confirming that SEW
editors combine diverse editing strategies when
simplifying EW pages into SEW pages.

We find that individual operations belong to a
single group roughly 95% of the time, meaning
that edit group overlap is rare, but find instances
of operations belonging to up to 4 groups. Cate-
gory pairs that overlap most often are (Reordering,
Phrasal Edit) and (Reordering, Sentence Splitting).

In summary, the annotated portion of SWIPE re-
veals that all four category classes are prevalent on
SEW, that at least 43% of edits require document-
level context, and that producing SEW pages often
requires combining edits from the full range of edit
categories.

5 Automatic Edit Identification

We investigate whether edits can be identified au-
tomatically, which could automate annotation of
the entire SWIPE dataset – estimated to require
2,900 hours of manual work – or facilitate analysis
of generative simplification models.

5.1 Task Definition

The input to the edit identification task is a doc-
ument pair’s alignment sequence, which is com-
posed of a series of edit operations (Figure 1); the
task is to group (potentially overlapping) edit op-
erations and assign each group to an edit category,
matching the format of the annotations.

Evaluation is performed with four metrics. Cat-
egory F-1 and Class F-1 evaluate the predicted cat-
egories (19 possible values) and associated higher-
level classes (5 possible values) for each edit op-
eration, irrespective of group. We use weighted,

Group 1 Group 3
BB

Group 3Group 1 Group 2

Sem. Delete

Elaboration

(a) Group-then-Categorize
Example: BI-CC

(b) Categorize-then-Group
Example: CT-Adjacent

(c) Joint Group-Categorize
Example: BIC

Syntactic

Lexical

Lexical

Category Classifier

B/I Tagger

Adjacent Category Grouper

Category Tagger

Alignment Sequence

B/I-Category Tagger

Alignment Sequence

B Reorder

B Lexical B Lexical

I Reorder

Alignment Sequence

Group 2

Group 2

Group 1 Group 3

B I

Edit operations
insert
delete
keep

Figure 4: Overview of edit identification models

multi-label F1 since an edit operation may belong
to multiple categories (e.g. for overlapping groups).

The other two metrics consider group assign-
ment and category jointly. %Exact is the percent-
age of reference groups for which there is an iden-
tical group in the predictions. %Partial is the per-
centage of reference groups for which a predicted
group of the same category has an operation set
overlap of at least 0.5 Jaccard index.

5.2 Edit Identification Models

We implemented three varieties of edit identifica-
tion models, illustrated in Figure 4 and described
below. Additional details on model architectures
are presented in Appendix D.1.

The Group-then-Categorize approach uses an
initial grouper model to propose category-agnostic
edit groups, and a second classification model to
assign a category to each group (Figure 4a). We
experiment with three grouper models. The oracle
grouper uses the groups available in the annotations.
The adjacency grouper applies the heuristic that
adjacent edit operations (with no unchanged text
between them) are within the same group. The BI
grouper is a learned sequence-tagging model that
segments edit operations into groups by outputting
B (Beginning of group) or I (Inside of group) for
each edit operation. In the next stage, each pre-
dicted group is passed to the Category Classifica-
tion (CC) model; the input group is represented as
an adjusted alignment sequence in which only the
edit operations of the group are included. We refer
to the three variants of this two-stage pipeline as
Oracle-CC, Adjacent-CC, and BI-CC.
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The Categorize-then-Group approach first pre-
dicts the category of each edit operation and then
groups operations based on the predicted categories
(Figure 4b). For the first stage, we propose Cate-
gory Tagger (CT), an NER-style sequence tagging
model that takes as input a formatted alignment se-
quence and predicts one or more categories for each
edit operation. For the second stage, we explore
three grouper models: the single grouper performs
no grouping, the adjacent grouper bundles adjacent
edit operations of the same category, and the rules
grouper applies category-specific rules detailed in
Appendix D.1. By combining the stages, we obtain
CT-single, CT-adjacent, and CT-rules.

In addition to two-stage models, we imple-
mented two joint models that simultaneously group
and categorize edit operations. BIC (Fig. 4c) is
a sequence tagger that combines the label space
of the BI and Category taggers; for each edit
operation, BIC outputs one or more categories,
each paired with a BI indicator for segmenting
groups within that category. This category-specific
BI notation supports richer forms of groupings,
e.g., interleaved groups as illustrated in Figure 4c.
The Seq2seq model is a fine-tuned sequence-
to-sequence model that takes as input an XML-
formatted alignment sequence and outputs an ex-
panded XML in which edit categories and groups
are identified. With all of the above models, we
use RoBERTa-large (Liu et al., 2019) and BART-
Large (Lewis et al., 2020) models for NLU and
NLG components, respectively. Training details
may be found in Appendix D.1.

The Op Majority baseline predicts the majority
class for each operation type: Semantic Deletion
for delete operations (54% of all deletions), and
Lexical for insert operations (20% of all insertions).

5.3 Results

All models were trained on the training set of anno-
tations, and hyperparameters were selected using
the validation set. Table 3 summarizes experimen-
tal results on the in-domain test set.

Overall, the joint BIC model – trained to pre-
dict grouping and categories together – achieved
the highest performance across the board, show-
ing the benefits of joint over multi-step approaches.
Appendix D.2 provides a category-specific break-
down of BIC model performance, revealing that
the model excels at identifying edits of common
categories (with top-5 F-1 performance coming in

Model Name Cat F1 Class F1 %Part %Exact

Op Majority 26.1 30.3 - -

Adjacent-CC 56.7 60.4 48.2 50.8
BI-CC 64.4 67.8 56.4 60.0
Oracle-CC 78.2 81.4 - -

CT-Single 69.7 74.1 27.8 27.8
CT-Adjacent 69.7 74.1 58.3 60.8
CT-Rules 69.7 74.1 58.4 62.1

BIC 70.6 74.0 59.7 64.7
Seq2Seq 51.3 55.4 42.5 45.7

Table 3: Edit identification results on in-domain test set

the seven most common categories), but struggles
with less common categories.

With the Group-then-Categorize models, as
grouping quality increases, performance improves
as well. When oracle groups are available, the cat-
egorization model achieves a 78.2 F-1 score at the
category level, indicating that categorizing isolated
edits is much less challenging than identifying over-
lapping edits in entire documents.

The Seq2seq model outperforms the majority
baseline, but trails other models, showing that the
added flexibility of generative modeling is not ben-
eficial to edit identification in this case.

We report results on the out-of-domain test set
in Appendix D.3. We do not observe a consistent
performance drop on the unseen Wikipedia cate-
gories, giving evidence that most models generalize
across categories. In Appendix D.3, we also bench-
mark the models’ computational efficiency and find
that BIC performs favorably compared to pipelined
approaches and can process 18.9 documents per
second on a single GPU, demonstrating another
benefit of joint modeling.

5.4 Dataset Silver Annotation

We use the BIC model to automatically annotate
all documents in SWIPE, identifying over one mil-
lion edits, including more than 90,000 elaborations.
Category-specific statistics are in Appendix C.

We refine SWIPE into a cleaned version by
automatically reversing edits tagged in the Non-
Simplification class. In Section 6, we determine
whether models trained on the cleaned SWIPE are
less prone to generating unwanted edits, such as
ones including extraneous information.
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Reference - 8.8 71 35 50 4 38 12 80 43 38 41

ACCESS 38 10.4 88 33 46 2 19 14 87 3 1 81

BART-WikiLrg 35 9.7 85 63 48 6 68 33 87 17 42 71

Keep it Simple 33 8.7 78 32 42 8 51 14 96 26 54 25

BART-SWiPE 47 7.7 71 42 54 5 35 20 80 13 23 44

BART-SWiPE-C 45 8.2 67 44 56 4 30 19 78 16 5 29

GPT3 (dv-003) 35 9.5 89 58 35 36 81 33 86 17 31 48
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Figure 5: Analysis of generated simplifications: SARI,
FKGL, and percentage of identified edit categories.

6 Text Simplification Baselines

We leverage SWIPE and its cleaned alternative to
fine-tune two BART-large models: BART-SWIPE
and BART-SWIPE-C and compare them to re-
cent simplification systems. We experiment with
two existing simplification systems: ACCESS
(Martin et al., 2020), a state-of-the-art controllable
sentence-level simplification model trained on Wik-
ilarge (Zhang and Lapata, 2017), and Keep it Sim-
ple (KIS) (Laban et al., 2021), an unsupervised
paragraph-level model optimized to produce lexical
and syntactic edits. We also train BART-Wikilarge
a BART-large model trained on Wikilarge to un-
derstand the effect of the dataset under a fixed pre-
trained model. Finally, we include a prompt-based
GPT3-davinci-003 using a task prompt that did
not specify edit categories to apply. Model details
and example outputs are in Appendix E.

We run experiments on the validation set of
SWIPE. For each model, we report the n-gram-
based SARI score (Xu et al., 2016), the Flesch-
Kincaid Grade Level (Kincaid et al., 1975), and
the distribution of edit categories identified by BIC
(merged into 10 groups). Results are in Figure 5.

SWIPE-trained models achieve the highest per-
formance in terms of SARI, confirming a similarity
to reference simplifications, and the lowest esti-
mated grade-level scores, validating the model’s
ability to improve readability.

The ACCESS sentence-level model performs
moderately well on the SARI metric, but worst on
the grade-level estimation, and makes fewer com-
plex edits such as reorderings or elaborations, con-
firming that sentence-level models focus on simpler
edits, such as lexical and syntactic edits.

All other models attempt a large proportion of
all edits, including a large number of edits tagged

as extraneous information (i.e., information not in
the original document). When simplified by human
editors, extraneous information often comes from
other documents or background knowledge and is
not likely harmful. On the contrary, recent NLG
work has shown that model-generated extraneous
information is often hallucinated, can be factually
incorrect, and is undesirable. Example model out-
puts in Appendix E.2 show example problematic
outputs from the KIS and BART-Wikilarge models
which include factual errors, for example confus-
ing centimeters and micrometers, or the length and
width of a hair.

The KIS, BART-Wikilarge, BART-SWIPE, and
GPT-3 models all produce a larger proportion of
extraneous information edits than elaborations, con-
firming prior work showing that problematic hal-
lucinations can occur for the simplification task
as well (Devaraj et al., 2022). BART-SWIPE-C
is able to produce elaborations while having a re-
duced rate of extraneous information, giving pre-
liminary evidence that the edit-based dataset clean-
ing process we adopt can mitigate – but not solve –
the generation of extraneous information.

Similar to recent work in summarization show-
ing that zero-shot GPT3 can tie or surpass super-
vised models (Goyal et al., 2022; Liu et al., 2022),
we observe that GPT3 can generate a wide range
of simplification edits and does not mirror priors of
the dataset – such as producing more sentence splits
than fusions – indicating it has potential for use as
a general-purpose simplification model. Similar to
prior work, GPT3-based candidates score poorly
on reference-based metrics.

We note that the analysis is preliminary, and fu-
ture work should assess the efficacy, factual consis-
tency, and simplicity of generated edits with target
readers as done in prior work (Laban et al., 2021)
to gain a thorough understanding of model perfor-
mance.

7 Discussion & Future Work

Edit-Based Evaluation of Generators. In Sec-
tion 6, we compare baseline simplification models
based on the types of edits they produce. This anal-
ysis is based on automatically identified edits by
the BIC model we trained, which likely includes
errors. We expect that BIC’s errors should affect
all of the models’ candidates equally, and should
not significantly affect overall trends. More manual
analysis is required to establish the effectiveness
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of edits (i.e. whether the applied edits successfully
simplify the document), as well as whether edits are
factual and reflect the original document’s content.

Extraneous Information in Simplification. In
Section 5.4, we create a version of the SWiPE
dataset where we remove edits that require extra-
neous information for a generation. We however
choose to release the original dataset which in-
cludes those edits, as they could be valuable for
future work, for example, approaches that might
retrieve relevant documents prior to simplifying or
to generate negative samples which can be used to
stress-test models (Laban et al., 2022b).

Out-of-Domain Testing. We created an out-
of-domain test set by selecting three Wikipedia
categories that would be entirely isolated as a test
set, to establish whether models would be capable
of generalizing to unseen categories. In Section 5,
we did not observe a meaningful gap in model
performance between the in-domain and out-of-
domain test sets, indicating that the Wikipedia cat-
egories we selected are not dissimilar enough from
in-domain categories. Future work could explore
other axes to create challenging out-of-domain test
sets, for instance, based on page author identity, or
publication time.

Edit-Based Models. In Section 6, we exper-
iment with models that approach text simplifica-
tion as a sequence-to-sequence model task and do
not explicitly represent the editing process. How-
ever, recent progress in text-editing models (Malmi
et al., 2022) could provide an avenue for better
models in text simplification, which could be more
efficient computationally and explainable in their
generations. It is likely that text-editing models
trained for sentence-level simplification (Malmi
et al., 2019; Agrawal et al., 2021) can be expanded
using SWIPE to generate a wider set of edits that
can leverage document-level context.

Plan-then-Execute Models. Prior work in
conditional generation tasks such as story gen-
eration (Martin et al., 2018), data-to-text gener-
ation (Puduppully et al., 2019), or summarization
(Narayan et al., 2021) have decomposed the task
in two steps, involving first the generation of a
high-level plan, followed by an execution step that
generates the output conditioned on the desired
plan. The SWIPE resource can enable such re-
search in the field of simplification, as the precise
edit-based annotations we collected can serve as a
basis for a plan to condition a generation model on.

Plan-then-execute models enrich models with an
intermediary representation that can be modified
by a potential user, enabling customizable simplifi-
cation applications.

Towards Practical Simplification. Practical im-
plementations of text simplification, such as the
news website Newsela (Xu et al., 2015) which
simplifies the news to make it accessible to multi-
ple grade-level tiers, require document-level under-
standing and editing. We hope the SWIPE dataset
and models can play a part in making textual con-
tent more accessible, for example by improving
access to scientific documents (August et al., 2022)
or news coverage diversity (Laban et al., 2023).

8 Conclusion

We introduce SWIPE, a large-scale document-level
simplification dataset based on Wikipedia. SWIPE
is created by collecting pairs of pages from the
English and Simple English Wikipedia and match-
ing their revision histories to build document pairs
that align in terms of content presented. We col-
laborated with Simple Wikipedia editors to anno-
tate 5,000 document pairs in SWIPE, finding that
many complex edits that require document-level
context such as elaborations frequently occur in the
dataset. We experimented with the automatic iden-
tification of edits, finding that even though the task
is challenging, some models are able to achieve
performance above 0.7 F-1 at edit categorization,
making them viable to analyze model-generated
simplifications. An analysis of generative simpli-
fication models reveals that sentence-level models
are limited in the types of edits they propose and
that document-scoped models are likely to produce
hallucinated content. Finally, a model fine-tuned on
a cleaned version of SWIPE produces less extrane-
ous content while continuing to generate complex
edits, pointing towards simplification models that
can generate complex yet factually consistent edits.
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9 Limitations

SWIPE focuses on the English language. Al-
though it is possible that some aspects of the work
– such as the edit categorization – might transfer to
the study of text simplification in other languages,
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we focus on the English language. As of the writing
of this paper, there is no equivalent of Simple En-
glish Wikipedia for other languages on Wikipedia,
and creating similar resources for other languages
would require finding other resources.

Difficulty in Retracing Original Editing. By
matching revisions of Wikipedia pages that are
factually aligned, and working with SEW editors
to annotate the edits, we attempted to match the
process used to create the resource. It is however
not possible to recruit all 5,000+ SEW editors and
for some page pairs the annotations are another
editor’s best attempt to reconstruct the intended
edits by the original editor.

Improving Annotation Reproducibility. The
analysis we conduct in Section 4.2 reveals that our
annotators achieve moderate agreement on sam-
ples repeatedly annotated. More detailed analysis
reveals that agreement is generally strong from
common edit categories such as Lexical Edits, se-
mantic deletions, or sentence splitting, but is lower
for more infrequent categories. Better training of
annotators on tail categories could therefore likely
improve annotation. We also found that discus-
sion amongst annotators of a sample often led to
eventual consensus. Therefore collecting multiple
annotations per sample, and allowing for discussion
when multiple interpretations occur could help im-
prove annotation quality, but at an increased cost.

10 Ethical Considerations

The models and datasets utilized in the project pri-
marily reflect the culture of the English-speaking
populace. Gender, age, race, and other socio-
economic biases may exist in the dataset, and mod-
els trained on these datasets may propagate these
biases. Text generation tasks such as simplifica-
tion have previously been shown to contain these
biases.

In our collaboration with Wikipedia Editors to
produce the annotations for SWIPE, we ensured
to remunerate the participants fairly ($25/hour),
including for fully or partially completing the on-
boarding task. Participants could communicate
with us to voice concerns, could work at their own
pace, and choose to stop working on the project
at any time. Finally, we ensured to anonymize the
annotations by not including personally identifi-
able information in any version of the dataset (an-
notator identity is instead marked as annotator1,
annotator2, etc.).

We note that the models we use are imperfect
and can make errors. When interpreting our mod-
els’ outputs, results should be interpreted not in
terms of certainty but probability. For example, if
one of the simplification models generates edits
that introduce non-trivial information, it is possible
for this information to be hallucinated and not fac-
tually correct. Model outputs should therefore be
checked, or a warning that content was machine-
generated should be given to the reading audience.

To build the SWIPE dataset, we relied on several
datasets as well as pre-trained language models.
We explicitly verified that all datasets and models
are publicly released for research purposes and that
we have proper permission to reuse and modify the
models.
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A Revision Matching

Given a single revision of a SEW page, the task
objective is to identify revisions of the matching
EW page that could have been used as a starting
point by a Wikipedia editor.

To gain a better understanding of the task at
hand, we manually annotated a subset of 2,000 re-
vision pairs from the created dataset. Prior work
for sentence-level alignment has shown a relation-
ship between content alignment and shallow string
alignment (such as Levenshtein distance). To de-
termine whether string-alignment methods are ade-
quate for document-level alignment, we annotated
samples across the entire range of string-alignment
similarities, annotating 200 document pairs in each
0.1 range of Levenshtein ratio between [0,1.0].

Revision pairs were annotated by the authors of
the paper with binary Aligned/Unaligned labels.
A document pair was assigned the Aligned label
if all the information in the SEW document was
mentioned in the EW document, or if any new
information can be seen as a useful addition for the
purpose of simplifying information present both in
the SEW and EW pages. The most common reason
for a document pair to be marked as Unaligned
is when the SEW document contains additional
sentences or paragraphs that provide information
that does not directly assist the information on the
EW page.

The annotated data were randomly split into
training, validation, and testing splits (1400-300-
300 examples). We experimented with a diverse

Validation Test

Model Name P R F1 P R F1

Majority 59.0 100.0 74.2 62.6 100.0 77.0
∆Publish 60.1 97.7 74.2 63.3 96.8 76.6

Lev. Ratio 63.1 100.0 76.3 65.9 96.3 78.3
Partial Lev. R 64.9 97.2 77.8 66.7 94.2 78.1

Ent. Overlap 79.8 82.5 81.1 75.9 75.1 75.5

SummaCDoc 77.0 92.7 84.1 77.9 91.5 84.2

Supervised 88.9 81.4 85.0 83.9 85.2 84.5

Table 4: Performance of models on the page-pair align-
ment task. Top-to-bottom: baselines, string alignment,
NER, NLI, and supervised models. Precision, recall,
and F-1 reported on validation and test sets.

set of zero-shot and supervised methods for the
task of page-pair alignment prediction, which we
briefly introduce below. For models that predict
real-valued scores, we selected a threshold based
on the best validation performance.
Baselines. Majority always predicts the majority
class (Aligned), and ∆Publish produces a score
based on the difference in publication time of the
two revisions.
String-Alignment. Levenshtein Ratio is the
negated normalized Levenshtein distance, and
Partial Levenshtein Ratio finds the longest
common subsequence (LCS) between the two doc-
uments, and computes the LCS’s Levenshtein Ra-
tio, allowing penalty-free deletion/insertions at the
extrema of either document.
Entity-based. Entity Overlap uses spaCy’s
NER model (Honnibal et al., 2020) to extract
named entities from both revisions and computes
the Jaccard index between the entity sets as a score,
with the assumption that newly introduced entities
can be a signal of new and unaligned information.
NLI-based. NLI models such as the SummaC
model (Laban et al., 2022a) have been successfully
adapted to semantic similarity tasks, such as fac-
tual inconsistency detection in summarization. We
include SummaCDoc in our experiments.
Supervised. We finetune a RoBERTa-Large on the
1,400 training samples, and select the final model
based on the checkpoint that achieved the highest
F1 score of 82.8 on the validation set.

Table 4 summarizes results. The ∆Publish and
Levenshtein-based methods only narrowly outper-
form the majority class baseline in terms of F1
performance, confirming recent findings on the lim-
itations of string-based similarity measures (Jiang
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et al., 2020). Entity Overlap performs moderately
strongly on the validation set but fails to generalize
on the test set. Finally, the NLI-based SummaC
model and the supervised model both largely out-
perform other models, and both achieve test F-1
scores of around 84.

We select the SummaC model (Laban et al.,
2022a) for the dataset creation process, as it
achieves similar performance to the supervised
model in terms of F1, but with a higher recall (and
lower precision). We favor recall for this applica-
tion, as it will lead to a potentially larger dataset.
We note that this choice might come at the cost
of some of the samples in the dataset not being
high-quality matches.

B SWIPE Edit Definitions

Below is a reproduction of the definitions provided
during the onboarding of annotators.

B.1 Introduction.
Edits can be attributed to one of four high-level
goals:

• Lexical edits are focused on simplifying word
units, replacing rare/technical terms – a single
word or a phrase – with simpler/more familiar
terms.

• Syntactic edits are focused on simplifying
sentence units, simplifying the structure of a
sentence, for example shortening sentences,
or reordering clauses within a sentence.

• Discourse edits deal with multi-sentence-
level understanding, for instance by making
connections between sentences more explicit,
or reordering content so that required informa-
tion appears before advanced information.

• Semantic edits deal with the addition or re-
moval of information to improve readability
at the document level, for example through
the deletion of information that is not needed
for a preliminary understanding of a docu-
ment, or elaborations that introduce needed
background or practical examples to help a
broader audience understand the document.

Any edit that does not fit any of the pri-
mary simplification goals is categorized as a Non-
simplification. Other edits are typically artifacts
of the dataset, for example, a fact correction in

Wikipedia revisions, or format cleaning (change of
spelling or capitalization).

We now give a definition of each edit. Anno-
tators were additionally provided a canonical ex-
ample of each category, which we omit in the pa-
per, but will include upon publication on an open-
source repository.

B.2 Lexical Edits
• Lexical - Entity. Any edit that specifically tar-

gets the simplification of an entity (person, or-
ganization, location) for example the removal
of a person’s middle name or the replacement
of a scientific name with a common name.

• Lexical. Any edit that replaces a complex or
technical word or phrase with a more com-
mon/simple/accessible word or phrase. If the
target phrase is a named entity, then the edit
should be labeled with the more specific Lexi-
cal - Entity.

B.3 Syntactic Edits
• Sentence Split. An edit that leads to a sin-

gle sentence being divided into two or more
shorter sentences. In order for the split to
be fluent, words are typically removed and
inserted at the sentence boundary. If non-
connector content is added, then it is not only
a sentence split.

• Sentence Fusion. An edit that leads to several
(two or more) sentences being merged into a
single (potentially longer) sentence. Content
is typically removed from original sentences
to join the sentences fluently.

• Syntactic Deletion. An edit that deletes
words in a sentence with the primary objective
of compressing the sentence but does not re-
move information. If information is removed,
see Semantic - Deletion.

• Syntactic Generic. An edit that modifies the
syntax of the sentence, for example through
re-ordering of clauses or changing verb tense.

B.4 Discourse Edits
• Reordering. An edit (or typically several ed-

its) that re-orders content to improve narrative
flow, for example moving up background con-
tent to ease comprehension. The re-ordering
can happen within a single sentence, or across
multiple sentences.
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• Anaphora Resolution. An edit that replaces
the repeated or implicit mention of an entity –
typically a pronoun – with a resolved mention
of the entity (i.e., that doesn’t require prior
context).

• Anaphora Insertion. An edit that replaces an
explicit mention of an entity with an indirect
mention, such as a pronoun. The pronoun is
typically a short common, which can reduce
sentence complexity by decreasing length and
word complexity. Note: this is the inverse of
the Anaphora Resolution edit.

B.5 Semantic Edits

• Specific-to-General. An edit that substitutes
or removes low-level detail in exchange for a
higher-level description (like replacing a city
with its country). The detail deletion typically
is judged as not essential and can be replaced
by the higher-level portion. There must be
a high-level content addition, otherwise, if
it is only deletion, it is likely a Semantic -
Deletion.

• Elaboration - Background. An edit that in-
serts content – a phrase or a full sentence –
adding pre-requisite information for related
content in the document. Typically, the back-
ground is inserted before the content it supple-
ments.

• Elaboration - Example. An edit that inserts
a concrete example of an abstract concept or
phenomenon described in the document. Typi-
cally, the example is inserted after the content
it concretizes.

• Elaboration - Generic. Any edit that adds
information but cannot be categorized as a
“Background” or “Example” elaboration. The
insertion can be a phrase or a full sentence.

• Semantic - Deletion. An edit that removes
content from the original document, typically
because it is not essential to a simple compre-
hension of the document. The deletion can
remove a part of a sentence or an entire sen-
tence. Note that there can be many deletions
within a single document, particularly when
the original document is lengthy.

B.6 Non-Simplification Edits

• Format. An edit that modifies solely the for-
matting of the document, including punctua-
tion, capitalization, spelling (for example UK
to US spelling), or entity format (such as a
date).

• Noise Deletion. An edit that fixes noisy con-
tent in the original document, such as a trailing
partial sentence, or Wikipedia-specific format-
ting and jargon.

• Fact Correction. An edit that corrects a spe-
cific fact in the original document, most often
updating the recency of the fact.

• Extraneous Information. Any edit that intro-
duces facts that are not meant to simplify or
add context to the information already present.
Typically adds related but secondary informa-
tion that is not needed in the simplified text.
The insertion could be within a sentence or an
entire sentence.

• NonSim - General. Any other edit that does
not contribute to (Lexical, Syntactic, Dis-
course, Semantic) simplification, but does not
fit in any other category.

C Agreement Level & Silver Statistics

Table 5 summarizes additional statistics of SWIPE.
We find that the BIC model identifies edits at
roughly the same rate as the manual annotation,
with a few exceptions for long-tail categories such
as Elaborations or Specific-to-Generic, this is due
to low model recall on infrequent categories.

Overall, the class-level agreement level stands
around 0.62, measured using Cohen’s Kappa on
329 document pairs that were annotated by multiple
editors. Table 5 provides category-specific Cohen’s
Kappa, with the main trend showing higher agree-
ment for frequent categories (Semantic Deletion,
Sentence Split, Lexical), and lower agreement for
infrequent categories. The agreement level is par-
ticularly low for elaboration categories, however,
when merging the three categories of elaborations
into a super-category, we measure an agreement
level of 0.4, indicating that some agreement exists
at a coarser level. Future work can therefore choose
to combine the elaboration categories to remove
disagreement from the annotations.
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Manual Silver

Edit Category N %∃ N %∃ κ

• Lexical Edit 6789 61.7 246k 62.0 0.62
• Entity Edit 359 6.4 9553 5.7 0.36

• Sentence Split 3010 43.8 93k 41.1 0.83
• Sentence Fusion 334 6.0 8141 4.6 0.34
• Syntactic Deletion 1889 28.1 45k 24.5 0.47
• Syntactic Generic 2615 36.2 65k 31.6 0.40

• Reordering 2379 34.6 75k 32.2 0.50
• Anaphora Resolut. 302 5.4 13k 7.6 0.30
• Anaphora Insert. 362 6.4 11k 7.2 0.73

• Elaboration - Bkgrd 805 12.9 1164 0.7 0.18
• Elaboration - Exple 139 2.4 139 0.1 0.05
• Elaboration - Generic 3195 36.0 91k 37.6 0.09
• Semantic Deletion 12928 76.8 343k 73.6 0.83
• Specific-to-General 332 5.7 1227 0.8 0.25

• Format 2688 35.3 82k 35.2 0.58
• Noise Deletion 693 10.6 14k 7.9 0.58
• Fact Correction 290 5.0 4581 2.4 0.37
• Extraneous Info 3028 36.5 105k 37.0 0.69
• Miscellaneous 241 3.6 1820 0.8 0.0

Table 5: Edit categories in SWIPE. For the manually
and silver-annotated portions of the dataset, N: number
of annotated instances, %∃: percentage of documents
with edit, κ is Cohen’s Kappa measuring inter-annotator
agreement level

D Identification Models Supplemental

This Section provides the additional content related
to Section 5 of the paper.

D.1 Model Specifics

We provide the implementation and training de-
tail of each model included in the experiments of
Section 5:

The Category Classification (CC) model,
used in the Adjacent-CC, BI-CC, and Oracle-CC
pipelined approaches is implemented as a finetuned
RoBERTa-large model with a sequence classifica-
tion head (i.e. a model that generates a single pre-
diction for the entire sequence). The model was
trained on a processed version of the training por-
tion of SWIPE, in which each document pair was
leveraged to create several samples, each based on
a single group in the annotations. For each new
sample, an adjusted alignment sequence is created
by reverting all edit operations that are not part of
the sample’s considered group. The model receives
the adjusted alignment sequence and must predict
the category of the represented edit. Crucially, the
CC model is expecting to see a single category per
input alignment sequence and does not consider

overlapping and multi-category edits. The model
we use in experiments was trained with a batch
size of 16, Apex half-precision, for seven epochs
at a learning rate of 10−5. The best checkpoint
based on validation F-1 was selected, achieving a
validation F-1 score of 77.5. We note that there’s a
crucial mismatch between train and prediction time
in CC-based pipelines, as the CC model is trained
on oracle groups, and at prediction time, certain
configurations provide the model with imperfect
groups (such as the Adjacent and BI groupers),
which likely negatively affects performance. The
training of the final model took roughly 1 hour
on a single A100 GPU, and roughly 50 runs were
conducted in iterations of model training.

The BI model, used in the grouping stage of
the BI-CC model is a RoBERTa-large sequence
tagging model that receives as input an alignment
sequence and must predict for each edit operation
whether the operation is at the beginning of (B)
or inside (I) an edit group. We used an XML-like
language to represent the alignment sequence for
the model, using two operation starts (<insert>
and <delete>) and two operation ends (</insert>
and </delete>) which were added as special to-
kens to the model’s vocabulary. The model was
then trained to generate each operation’s binary B/I
tag at the corresponding beginning delimiter token.
The model was trained using half-precision, and a
learning rate of 10−5 for 10 epochs, selecting the
model with the highest F-1 binary accuracy on the
validation set of SWIPE. The training of the final
model took roughly 25 minutes on a single A100
GPU, and roughly 20 training runs were conducted
in iterations of model training.

The Category Tagging (CT) model, used in
the first stage of the CT-Single, CT-Adjacent, and
CT-Rules models, follows a similar architecture
as the BI model described above, but outputs one
of the 19 simplification categories for each edit
operation instead of a B/I indicator. Additionally,
CT uses a multi-label token-classification head to
handle the case of multiple categories for an edit
operation (e.g. for overlapping edit groups). For
training, we used a batch size of 8 and a learning
rate of 10−5 for 10 epochs. The final checkpoint
was selected based on validation-set performance.
The training of the final model took approximately
20 minutes on a single A100 GPU, and roughly 10
training runs were conducted in iterations of model
training.
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The Rules grouping method used in the second
stage of the CT-Rules model, relied on category-
specific statistics in the training portion of SWIPE.
Categories were split into two sub-groups: contigu-
ous and global. For each category, we analyzed
the percentage of annotated of edits of the given
category that were contiguous (adjacent) in their
operation group. For each edit category, if a ma-
jority of annotated cases were contiguous, the edit
category was labeled as contiguous, otherwise, it
was labeled as global. For categories marked as
contiguous, the model generated groups for pre-
dicted operation types based on contiguous bound-
aries (identical to the Adjacent grouping method),
and all operations of a given global category were
organized into a single group.

The BIC model uses an identical model architec-
ture to the CT model described above, but expands
the label space from 19 category labels to 57 joint
category-BI labels. Specifically, for each category
label <cat>, two additional labels are considered:
<cat-B> and <cat-I>, indicating whether the opera-
tion is at the beginning or end of a group of this cat-
egory. At training time, an edit operation is tagged
with <cat> if the category is present and addition-
ally with either <cat-B> or <cat-I> according to
the operation’s position within the annotated group.
At inference time, the model outputs one or more of
the 57 joint labels at each edit operation’s start to-
ken. If <cat> is predicted for a given category, then
the associated BI label is chosen based on whether
<cat-B> or <cat-I> has the higher predicted proba-
bility. For training, we used a batch size of 8 and
a learning rate of 10−5 for 10 epochs. The model
checkpoint was selected based on validation-set
performance. The training of the final model took
approximately 20 minutes on a single A100 GPU,
and roughly 15 training runs were conducted in
iterations of model training.

The Seq2seq model was implemented based on a
BART-large model that we fine-tuned on a seq2seq
task using an XML representation of the alignment
sequence. Example processing of the illustrative
Figure 1 would be:

Input: “The Mariinsky Theater
is a <INS>very famous</INS>
<DEL>historic</DEL> theater of
opera and balet ...”

Output: “The Mariinsky Theater is
a <B;lexical>very famous</INS>

Edit Category N Cat F-1 %Part %Exact

• Semantic Deletion 12928 87.8 73.0 76.3
• Lexical Edit 6789 70.4 61.6 64.8
• Elaboration - Generic 3195 40.8 34.9 35.1
• Extraneous Info 3028 75.3 47.7 55.0
• Sentence Split 3010 83.5 55.6 69.9
• Format 2688 73.3 60.5 65.6
• Syntactic Generic 2615 70.7 63.0 63.3
• Reordering 2379 51.1 27.1 51.1
• Syntactic Deletion 1889 54.0 47.9 47.9
• Elaboration - Bkgrd 805 23.0 26.3 26.3
• Noise Deletion 693 61.1 48.7 48.7
• Anaphora Insert. 362 50.5 42.9 42.9
• Entity Edit 359 39.2 39.7 39.7
• Sentence Fusion 334 50.7 27.4 32.3
• Specific-to-General 332 17.2 15.9 15.9
• Anaphora Resolut. 302 62.7 57.1 57.1
• Miscellaneous 241 45.2 28.9 31.6
• Fact Correction 290 47.7 31.8 40.9
• Elaboration - Exple 139 11.1 16.7 16.7

Table 6: Breakdown of BIC model per edit category.
Categories are sorted in order of frequency in the dataset,
and we report the three metrics that can be computed
at the category level. Categories belong to five classes:
• lexical, • syntactic, • discourse, • semantic, and •
non-simplification.

<I;lexical>historic</DEL> theater of
opera and balet ...”

As illustrated in the example, the model was trained
to replace generic operation beginning tags with a
joint tag representing the category and the BI tag
of the operation. The vocabulary of the model was
expanded to include the 38 tokens representing all
combinations of (category x (B,I)) tags. The model
was trained on the preprocessed data following a
standard sequence-to-sequence formulation, with a
batch size of 6, a learning rate of 2 ∗ 10−5, for ten
epochs, and the model with the lowest validation
loss was selected as a final model. Training of the
final model required roughly one hour of training,
and roughly 20 training runs were conducted in
iterations of model training.

D.2 BIC Performance Breakdown

Table 6 reports the performance of the BIC model,
individualized by category. We find that perfor-
mance generally improves on categories as the
number of examples in the dataset increases, giving
evidence that further annotations of tail categories
could lead to improved performance of the BIC
model.
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Model Name Cat F1 Class F1 %Part %Exact Doc/s

Op Majority 36.5 40.1 - - 2.7k

Adjacent-CC 59.5 61.7 43.5 46.5 3.4
BI-CC 67.8 69.4 54.1 57.6 2.5
Oracle-CC 83.5 85.2 - - 2.7

CT-Single 73.5 76.3 28.4 28.4 23.3
CT-Adjacent 73.5 76.3 58.6 61.8 23.2
CT-Rules 73.5 76.3 55.9 59.6 23.2

BIC 74.9 76.6 57.3 62.1 18.9
Seq2Seq 44.6 47.2 30.7 34.4 0.1

Table 7: Out-of-domain test set edit identification re-
sults. Doc/s reports the throughput of each model in
documents per second.

D.3 Out-of-domain identification
performance & model throughput

Table 7 presents the results analogous to Table 3 but
for the out-of-domain test set. We do not observe a
marked drop in performance, indicating that either
the identification models are capable of generaliz-
ing to unseen Wikipedia categories, or that selected
OOD categories are not truly out of distribution.
We discuss the OOD test set selection further in the
Limitations section.

We compute the throughput of each model to
provide insights into the computational cost of iden-
tifying edits in document pairs. All models were
benchmarked by the time they took to identify edits
in the entire validation set (i.e., roughly 500 docu-
ment pairs), using a single A-100 GPU on the same
server, and we report normalized documents per
second throughput (Doc/s). All models were tested
at batch-size 1, which could disadvantage some
neural methods. Results are summarized in the
right-most column of Table 7. We find that the BIC
model is the second-fastest neural method behind
CT-based models, confirming that joint modeling
of the edit identification task positively affects both
performance and efficiency.

E Generation Models Supplemental

This Section provides the additional content related
to Section 6 of the paper.

E.1 Model Specifics
The ACCESS model was implemented using the
original author’s public code release4, and the de-
fault conditioning parameters of 0.95 for length
target, 0.75 for Levenshtein target, and 0.75 for the
word-rank target.

4https://github.com/facebookresearch/access

The Keep-it-Simple model was implemented
using the original author’s public model release on
the HuggingFace model hub5. As recommended
by the authors, we used a beam search (beam size
of 4) to generate candidates, selecting the beam
with the highest likelihood as the final generated
candidate.

The BART-SWIPE and BART-SWIPE-C
models were trained on the standard and cleaned
versions of the SWIPE dataset, using a standard
sequence-to-sequence framing, in which the model
received the original document as an input, and
was trained to generate the simplified document.
We trained the models with a learning rate of
2 ∗ 10−5, a batch size of six for three epochs, and
selected the final checkpoint based on validation
loss, which reached 1.12 for BART-SWIPE and
0.78 for BART-SWIPE-C. Training required 6-10
hours for each model, on a single A-100 GPU, and
5 runs were completed in the development of the
models. At generation time, we used beam search
(beam size of 4) to generate candidate simplifica-
tions.

The GPT3-davinci-003 model was imple-
mented using OpenAI’s API access to the GPT3
model, with the following prompt: “Simplify the
document below so it is accessible to a wider audi-
ence. Start of document:”, with newlines inserted
to delimit the task definition, the document, and the
expected output. We used default generation pa-
rameters provided in the interface, and estimate the
cost of generation at $10 for the 500 documents in
the validation set. We note that it is unclear whether
GPT3 qualifies as a zero-shot model for simplifi-
cation, since it is trained on Wikipedia (amongst
others), and has therefore been trained on a super-
set of the data in SWIPE, although it has not seen
the explicit revision pairing available in SWIPE.

E.2 Example Generations
In Tables 8-9, we provide the revision of the
Wikipedia page about the “Millimeter”, included in
the validation set of SWIPE. The Tables then pro-
vide the alignment sequence of six candidate sim-
plifications: the human-written reference in Simple
English Wikipedia, and the outputs of the ACCESS,
Keep it Simple, BART-SWIPE, BART-SWIPE-C
and GPT3-davinci-003 models.

5https://huggingface.co/philippelaban/keep_it_
simple
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Complex Document – English Wikipedia

The micrometre (International spelling as used by the International Bureau of Weights and Measures; SI
symbol: µm) or micrometer (American spelling), also commonly known as a micron, is an SI derived
unit of length equaling 1x10-6 of a metre (SI standard prefix “micro-” = 10-6); that is, one millionth of
a metre (or one thousandth of a millimetre, 0.001 mm, or about 0.000039 inch). The micrometre is a
common unit of measurement for wavelengths of infrared radiation as well as sizes of biological cells and
bacteria, and for grading wool by the diameter of the fibres. The width of a single human hair ranges from

approximately 10 to 200 µm. The first and longest human chromosome is approximately 10µm in length.

Reference – Simple English Wikipedia

The A micrometre (International (its American spelling as used by the International Bureau of Weights

and Measures is micrometer ; SI symbol : µm is µm ) or micrometer(American spelling), also commonly
known as is a micron, is an SI derived unit of length equaling 1x10-6 of in the SI measurement system.
It can also be called a metre(SI standard prefix" micro-" = 10-6); that micron. It is , one millionth of
a metre (or one thousandth of a millimetre, 0.001 mm, or about 0.000039 inch). The micrometre is a
common unit of measurement for wavelengths of infrared radiation as well as sizes of biological cells and
bacteria, and for grading wool by the diameter of the fibres. The width of a single human hair ranges from

approximately 10 to 200 µm. The first and longest human chromosome is approximately 10µm in length.

ACCESS

The micrometre(International spelling as used by the International Bureau of Weights and Measures;

SI symbol: µm mm ) or micrometer(American spelling), also commonly known as a micron, is an SI
derived unit of length equaling 1x10-6 1x10 - 6 of a metre(SI standard prefix" micro-" = 10-6 ) ; , that is,
one millionth of a metre(or one thousandth of a millimetre, 0.001 mm, 01 mm or about 0.000039 inch)
about00039. The micrometre is a common unit of measurement for wavelengths of infrared radiation
as well as sizes of biological cells and bacteria , and for grading wool by the diameter of the fibres. The
width of a single human hair ranges is found from approximately about 10 to 200 µm 200 mm. The first

and longest human chromosome is approximately 10µm about 10mm in length.

Keep it Simple

The micrometre (International is a common spelling as used by the International Bureau of Weights and

Measures ; . It is also used by the SI symbol: µm) or micrometer(American spelling) , also commonly
known as a which is used by all of the measures in the same way, and so is the micron, which is an SI
derived unit of length equaling equivalent to 1x10-6 of a metre (SI standard prefix" micro-" = 10-6);
that is, one millionth of a metre(or one thousandth of a millimetre, 0.001 mm, or about 0.000039 inch).
The micrometre is a common unit of measurement for wavelengths of infrared radiation as well as sizes
of biological cells and bacteria, and for grading wool by the diameter of the fibres. The width of a
single human hair ranges from approximately 10 to 200 µm. The first and longest human chromosome is

approximately 10µm in length.

Table 8: “Millimeter” Wikipedia page, reference simplification from SEW, and model outputs from the ACCESS
and Keep it Simple models. Deletions are in red and insertions in blue. See Table 9 for other model outputs.
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BART-WikiLarge

The micrometre (International spelling as used by the International Bureau of Weights and Measures;

SI symbol: µm) or micrometer(American spelling), also commonly (also known as the micrometer) is a
micron, is an SI derived unit of length equaling 1x10-6 that is less than 1/10,000 of a metre (SI standard
prefix" micro-" = 10-6); that is, one millionth of a metre(or one thousandth of a millimetre, 0.001 mm,
or about 0.000039 inch). The micrometre micrometer(I) is a common the smallest unit of measurement
for wavelengths the number of infrared radiation as well as sizes different types of biological cells and
bacteria microorganisms, and for grading wool by the diameter different sizes of the fibres cells. The
width length of a single human hair ranges range varies from approximately 10 5 to 200 µm 20 cm(1 to 2
in). The first and longest human chromosome is approximately 10µm 4.7 in length, the second is 6.5 in
length.

BART-SWIPE

The micrometre (International spelling as used by the International Bureau of Weights and Measures; SI

(SI symbol: µm) or micrometer(American spelling), also commonly known as a micron, is an SI derived
unit of length equaling 1x10-6 of a metre(SI standard prefix" micro-" = 10-6); that . It is , equal to one
millionth of a metre(or one thousandth 1/1000 of a millimetre millimeter , 0.001 mm, or about 0.000039
inch). The micrometre is a common unit of measurement for wavelengths of infrared radiation as well
as sizes of biological cells and bacteria, and for grading wool by the diameter of the fibres. The width
of a single human hair ranges from approximately is about 10 to 200 µm. The first and longest human

chromosome is approximately 10µm in length.

BART-SWIPE-C

The A micrometre (International spelling as used by the International Bureau of Weights and Measures;

SI symbol: µm) or micrometer(American spelling), also commonly (also known as a micron, is an SI
derived unit of length equaling 1x10-6 of a metre(SI standard prefix" micro-" = 10-6); that is, equal to
one millionth of a metre (or one thousandth of a millimetre, 0.001 mm, or about 0.000039 inch). The
micrometre It is a common unit of measurement for of wavelengths of infrared radiation as well as
sizes of biological cells and bacteria, and for grading wool by the diameter of the fibres. The width of a
single human hair ranges from approximately 10 to 200 µm. The first and longest human chromosome is

approximately 10µm in length.

GPT3-davinci-003

The A micrometre (International spelling as used by the International Bureau of Weights and Measures;

SI symbol (symbol : µm) or micrometer(American spelling), also commonly known as is a micron, is
an SI derived unit of length equaling 1x10-6 of a metre(SI standard prefix" micro-" = 10-6); that is, one
millionth of a metre (or , or one thousandth of a millimetre , 0.001 mm, or about 0.000039 inch (0.001 mm
). The micrometre is a common unit of measurement for wavelengths It’s used to measure the wavelength
of infrared radiation as well as sizes , the size of biological cells and bacteria, and for grading wool by the
diameter of the wool fibres. The width of a A single human hair ranges from approximately 10 to 200 µm.
The first is around 10-200 µm wide, and the longest human chromosome is approximately 10µm about 10

µm in length.

Table 9: Model outputs from the two SWIPE-trained models and the GPT3 zero-shot baseline. Deletions are in red
and insertions in blue.
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