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Abstract

Knowledge graphs (KGs) facilitate a wide va-
riety of applications. Despite great efforts in
creation and maintenance, even the largest KGs
are far from complete. Hence, KG comple-
tion (KGC) has become one of the most cru-
cial tasks for KG research. Recently, consider-
able literature in this space has centered around
the use of Message Passing (Graph) Neural
Networks (MPNNs), to learn powerful embed-
dings. The success of these methods is nat-
urally attributed to the use of MPNNs over
simpler multi-layer perceptron (MLP) models,
given their additional message passing (MP)
component. In this work, we find that surpris-
ingly, simple MLP models are able to achieve
comparable performance to MPNNs, suggest-
ing that MP may not be as crucial as previ-
ously believed. With further exploration, we
show careful scoring function and loss func-
tion design has a much stronger influence
on KGC model performance. This suggests
a conflation of scoring function design, loss
function design, and MP in prior work, with
promising insights regarding the scalability of
state-of-the-art KGC methods today, as well
as careful attention to more suitable MP de-
signs for KGC tasks tomorrow. Our codes are
publicly available at: https://github.com/
Juanhui28/Are_MPNNs_helpful.

1 Introduction

Knowledge graphs (KGs) (Bollacker et al., 2008;
Carlson et al., 2010) are a type of knowledge base,
which store multi-relational factual knowledge in
the form of triplets. Each triplet specifies the re-
lation between a head and a tail entity. KGs con-
veniently capture rich structured knowledge about
many types of entities (e.g. objects, events, con-
cepts) and thus facilitate numerous applications
such as information retrieval (Xiong et al., 2017a),
recommender systems (Wang et al., 2019), and
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question answering (West et al., 2014). To this end,
the adopted KGs are expected to be as comprehen-
sive as possible to provide all kinds of required
knowledge. However, existing large-scale KGs are
known to be far from complete with large portions
of triplets missing (Bollacker et al., 2008; Carlson
et al., 2010). Imputing these missing triplets is of
great importance. Furthermore, new knowledge
(triplets) is constantly emerging even between ex-
isting entities, which also calls for dedicated efforts
to predict these new triplets (García-Durán et al.,
2018; Jin et al., 2019). Therefore, knowledge graph
completion (KGC) is a problem of paramount im-
portance (Lin et al., 2015; Yu et al., 2021). A cru-
cial step towards better KGC performance is to
learn low-dimensional continuous embeddings for
both entities and relations (Bordes et al., 2013).

Recently, due to the intrinsic graph-structure of
KGs, Graph Neural Networks (GNNs) have been
adopted to learning more powerful embeddings for
their entities and relations, and thus facilitate the
KGC. There are mainly two types of GNN-based
KGC methods: Message Passing Neural Networks
(MPNNs) (Schlichtkrull et al., 2018; Vashishth
et al., 2020) and path-based methods (Zhu et al.,
2021; Zhang and Yao, 2022; Zhu et al., 2022).
In this work, we focus on MPNN-based models,
which update node features through a message pass-
ing (MP) process over the graph where each node
collects and transforms features from its neighbors.
When adopting MPNNs for KGs, dedicated efforts
are often devoted to developing more sophisticated
MP processes that are customized for better captur-
ing multi-relational information (Vashishth et al.,
2020; Schlichtkrull et al., 2018; Ye et al., 2019).
The improvement brought by MPNN-based models
is thus naturally attributed to these enhanced MP
processes. Therefore, current research on develop-
ing better MPNNs for KGs is still largely focused
on advancing MP processes.

Present Work. In this work, we find that, sur-

10696

https://github.com/Juanhui28/Are_MPNNs_helpful
https://github.com/Juanhui28/Are_MPNNs_helpful


prisingly, the MP in the MPNN-based models is
not the most critical reason for reported perfor-
mance improvements for KGC. Specifically, we re-
placed MP in several state-of-the-art KGC-focused
MPNN models such as RGCN (Schlichtkrull et al.,
2018), CompGCN (Vashishth et al., 2020) and KB-
GAT (Nathani et al., 2019) with simple Multiple
Layer Perceptrons (MLPs) and achieved compa-
rable performance to their corresponding MPNN-
based models, across a variety of datasets and
implementations. We carefully scrutinized these
MPNN-based models and discovered they also dif-
fer from each other in other key components such
as scoring functions and loss functions. To bet-
ter study how these components contribute to the
model, we conducted comprehensive experiments
to demonstrate the effectiveness of each compo-
nent. Our results indicate that the scoring and loss
functions have stronger influence while MP makes
almost no contributions. Based on our findings, we
develop ensemble models built upon MLPs, which
are able to achieve better performance than MPNN-
based models; these implications are powerful in
practice, given scalability advantages of MLPs over
MPNNs (Zhang et al., 2022a).

2 Preliminaries

Before moving to main content, we first introduce
KGC-related preliminaries, five datasets and three
MPNN-based models we adopt for investigations.

2.1 Knowledge graph completion (KGC)

The task of KGC is to infer missing triplets based
on known facts in the KG. In KGC, we aim to pre-
dict a missing head or tail entity given a triplet.
Specifically, we denote the triplets with missing
head (tail) entity as (h, r, ?) ((?, r, t)), where the
question mark indicates the entity we aim to pre-
dict. Since the head entity prediction and tail entity
prediction tasks are symmetric, in the following,
we only use the tail entity prediction task for il-
lustration. When conducting the KGC task for a
triplet (h, r, ?), we use all entities in KG as candi-
dates and try to select the best one as the tail entity.
Typically, for each candidate entity t′, we evaluate
its score for the triplet (h, r, t′) with the function
sh,r(t

′) = f(h, r, t′), where sh,r(t
′) is the score of

t′ given the head entity h and the relation r, and f
is a scoring function. We choose the entity t′ with
the largest score as the predicted tail entity. f(·)
can be modeled in various ways as discussed later.

Knowledge graph
Initial

representation
Refined

representation

Message 
Passing

Score Loss

Figure 1: A general MPNN framework for KGC.

Datasets. We use five well-known KG datasets,
i.e., FB15k (Bordes et al., 2013), FB15k-
237 (Toutanova et al., 2015; Toutanova and
Chen, 2015), WN18 (Schlichtkrull et al., 2018),
WN18RR (Dettmers et al., 2018) and NELL-
995 (Xiong et al., 2017b) for this study. The de-
tailed descriptions and data statistics can be found
in Appendix A. Following the settings in previ-
ous works (Vashishth et al., 2020; Schlichtkrull
et al., 2018), triplets in these datasets are randomly
split into training, validation, and test sets, denoted
Dtrain,Dval,Dtest, respectively. The triplets in the
training set are regarded as the known facts. We
manually remove the head/tail entity of the triplets
in the validation and test sets for model selection
and evaluation. Specifically, for the tail entity pre-
diction task, given a triplet (h, r, t∗), we remove t∗

and construct a test sample (h, r, ?). The tail entity
t∗ is regarded as the ground-truth for this sample.
Evaluation Metrics. When evaluating the perfor-
mance, we focus on the predicted scores for the
ground-truth entity of the triplets in the test set
Dtest. For each triplet (h, r, ?) in the test set, we
sort all candidate entities t in a non-increasing order
according to sh,r(t). Then, we use the rank-based
measures to evaluate the prediction quality, includ-
ing Mean Reciprocal Rank (MRR) and Hits@N.
In this work, we choose N ∈ {1, 3, 10}. See Ap-
pendix B for their definitions.

2.2 MPNN-based KGC

Various MPNN-based models have been utilized
for KGC by learning representations for the entities
and relations of KGs. The learnt representations
are then used as input to a scoring function f(·).
Next, we first introduce MPNN models specifically
designed for KG. Then, we introduce scoring func-
tions. Finally, we describe the training process,
including loss functions.

2.2.1 MPNNs for learning KG representations
KGs can be naturally treated as graphs with triplets
being the relational edges. When MPNN models
are adapted to learn representations for KGs, the
MP process in the MPNN layers is tailored for han-
dling such relational data (triplets). In this paper,
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we investigate three representative MPNN-based
models for KGC, i.e., CompGCN (Vashishth et al.,
2020), RGCN (Schlichtkrull et al., 2018) and KB-
GAT (Nathani et al., 2019), which are most widely
adopted. As in standard MPNN models, these mod-
els stack multiple layers to iteratively aggregate
information throughout the KG. Each intermediate
layer takes the output from the previous layer as
the input, and the final output from the last layer
serves as the learned embeddings. In addition to en-
tity embeddings, some MPNN-based models also
learn relation embeddings. For a triplet (h, r, t),
we use x

(k)
h , x(k)

r , and x
(k)
t to denote the head, re-

lation, and tail embeddings obtained after the k-th
layer. Specifically, the input embeddings of the
first layer x(0)

h , x(0)
r and x

(0)
t are randomly initial-

ized. RGCN aggregates neighborhood information
with the relation-specific transformation matrices.
CompGCN defines direction-based transformation
matrices and introduces relation embeddings to
aggregate the neighborhood information. It intro-
duces the composition operator to combine the em-
beddings to leverage the entity-relation information.
KBGAT proposes attention-based aggregation pro-
cess by considering both the entity embedding and
relation embedding. More details about the MP
process for CompGCN, RGCN and KBGAT can
be found in Appendix C. For MPNN-based models
with K layers, we use x

(K)
h , x(K)

r , and x
(K)
t as the

final output embeddings and denote them as xh ,
xr, and xt for the simplicity of notations. Note that
RGCN does not involve relation embedding xr in
the MP process, which will be randomly initialized
if required by the scoring function.

2.2.2 Scoring functions
After obtaining the final embeddings from the
MP layers, they are utilized as input to the scor-
ing function f . Various scoring functions can be
adopted. Two widely used scoring functions are
DistMult (Yang et al., 2015) and ConvE (Dettmers
et al., 2018). More specifically, RGCN adopts Dist-
Mult. In CompGCN, both scoring functions are in-
vestigated and ConvE is shown to be more suitable
in most cases. Hence, in this paper, we use ConvE
as the default scoring function for CompGCN. See
Appendix D for more scoring function details.

2.2.3 Training MPNN-based models for KGC
To train the MPNN model, the KGC task is often
regarded as a binary classification task to differen-
tiate the true triplets from the randomly generated

“fake” triplets. During training, all triplets in Dtrain

and the corresponding inverse triplets D′
train =

{(t, rin, h)|(h, r, t) ∈ Dtrain} are treated as posi-
tive samples, where rin is the inverse relation of
r. The final positive sample set can be denoted
as D∗

train = Dtrain
⋃D′

train. Negative samples
are generated by corrupting the triplets in D∗

train.
Specifically, for a triplet (e1, rel, e2) ∈ D∗

train, we
corrupt it by replacing its tail entities with other en-
tities in the KG. More formally, the set of negative
samples corresponding to the triplet (e1, rel, e2)
is denoted as: C(e1,rel,e2) = {(e1, rel, e′2)|e′2 ∈
V, e′2 ̸= e2} where V is the set of entities in KG.
CompGCN uses C(e1,rel,e2) as the negative samples.
However, not all negative samples are utilized for
training the RGCN model. Instead, for each pos-
itive sample triplet in D∗

train, they adopt negative
sampling to select 10 such samples from C(e1,rel,e2),
and use only these for training. Also, for RGCN,
any relation r and its inverse relation rin share the
same diagonal matrix for DistMult in Eq. (5) in
Appendix D. Both CompGCN and RGCN adopt
the Binary Cross-Entropy (BCE) loss. More details
are given in Appendix E.

2.2.4 Major differences between MPNNs
We demonstrate an overview of MPNN-based
model frameworks for the KGC task in Figure 1.
Specifically, the framework consists of several key
components including the MP (introduced in Sec-
tion 2.2.1), the scoring function (2.2.2), and the
loss function ( 2.2.3). Training can typically be con-
ducted end-to-end. Both RGCN and CompGCN
follow this framework with various designs in each
component. We provide a more detailed compari-
son about them later in this section. However, KB-
GAT adopts a two-stage training process, which
separates the training of the MP process (represen-
tation learning) and the scoring function. KBGAT
achieves strong performance as reported in the orig-
inal paper (Nathani et al., 2019), which was later
attributed to a test leakage issue (Sun et al., 2020).
After addressing this test leakage issue, we found
that fitting KBGAT into the general framework
described in Figure 1 leads to much higher perfor-
mance than training it with the two-stage process
(around 10% improvement on FB15K-237). Hence,
in this paper, we conduct analyses for KBGAT by
fitting its MP process (described in Appendix C)
into the framework described in Figure 1.

We summarize the major differences between
RGCN, CompGCN, and KBGAT across three ma-
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Figure 2: KGC results (%) of CompGCN/CompGCN-MLP, RGCN/RGCN-MLP, and KBGAT/KBGAT-MLP on
FB15K-237. The MLP counterparts achieve compare performance as the corresponding MPNN models.

jor components: (1) Message Passing. Their
MP processes are different as described in Sec-
tion 2.2.1 and detailed in Appendix C. (2) Scoring
Function. They adopt different scoring functions.
RGCN adopts the DistMult scoring function while
CompGCN achieves best performance with ConvE.
Thus, in this paper, we use ConvE as its default
scoring function. For KBGAT, we adopt ConvE as
its default scoring function. (3) Loss Function. As
described in Section 2.2.3, CompGCN utilizes all
entities in the KG as negative samples for training,
while RGCN adopts a negative sampling strategy.
For KBGAT, we also utilize all entities to construct
negative samples, similar to CompGCN.

3 What Matters for MPNN-based KGC?

Recent efforts in adapting MPNN models for KG
mostly focus on designing more sophisticated MP
components to better handle multi-relational edges.
These recently proposed MPNN-based methods
have reported strong performance on the KGC
task. Meanwhile, RGCN, CompGCN and KBGAT
achieve different performance. Their strong perfor-
mance compared to traditional embedding based
models and their performance difference are widely
attributed to the MP components (Schlichtkrull
et al., 2018; Vashishth et al., 2020; Nathani et al.,
2019). However, as summarized in Section 2.2.4,
they differ from each other in several ways besides
MP; little attention has been paid to understand how
each component affects these models. Thus, what
truly matters for MPNN-based KGC performance
is still unclear. To answer this question, we design
careful experiments to ablate the choices of these
components in RGCN, CompGCN and KBGAT to
understand their roles, across multiple datasets. All
reported results are mean and standard deviation
over three seeds. Since MP is often regarded as the
major contributor, we first investigate: is MP really
helpful? Subsequently, we study the impact of the
scoring function and the loss function.

3.1 Does Message Passing Really Help KGC?

For RGCN and CompGCN, we follow the set-
tings in the original papers to reproduce their re-
ported performance. For KBGAT, we follow the
same setting of CompGCN as mentioned in Sec-
tion 2.2.4. Specifically, we run these three mod-
els on datasets in their original papers. Namely,
we run RGCN on FB15K-237, WN18 and FB15K,
CompGCN on FB15K-237 and WN18RR, and KB-
GAT on FB15K-237, WN18RR and NELL-995. To
understand the role of the MP component, we keep
other components untouched and replace their MP
components with a simple MLP, which has the
same number of layers and hidden dimensions with
the corresponding MPNN-based models; note that
since an MPNN layer is simply an aggregation
over the graph combined with a feature transforma-
tion (Ma et al., 2021), replacing the MP component
with MLP can also be achieved by replacing the
adjacency matrix of the graph with an identity ma-
trix. We denote the MLP models corresponding to
RGCN, CompGCN and KBGAT as RGCN-MLP,
CompGCN-MLP and KBGAT-MLP, respectively.
We present results for CompGCN, RGCN and KB-
GAT1 on the FB15K-237 in Figure 2. Due to the
space limit, we present results on other datasets in
Appendix F. We summarize the key observation
from these figures:

Observation 1 The counterpart MLP-based mod-
els (RGCN-MLP, CompGCN-MLP and KBGAT-
MLP) achieve comparable performance to their
corresponding MPNN-based models on all
datasets, suggesting that MP does not significantly
improve model performance.

To further verify this observation, we investigate
how the model performs when the graph struc-

1We conduct a similar experiment using the setting in the
original KBGAT paper. We find that KBGAT and KBGAT-
MLP have similar performance on FB15K-237, WN18RR and
NELL-995, which is consistent with Observation 1.

10699



Table 1: KGC results (%) with various scoring functions. Models behave differently with different scoring functions.
FB15K-237 WN18RR NELL-995

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

CompGCN
DistMult 33.7± 0.1 24.7±0.1 36.9±0.2 51.5±0.2 42.9±0.1 39.0±0.1 43.9±0.1 51.7±0.3 32.3±0.5 24.3±0.6 36.1±0.4 47.4±0.2
ConvE 35.5±0.1 26.4±0.1 39.0±0.2 53.6±0.3 47.2±0.2 43.7±0.3 48.5±0.3 54.0±0.0 38.1±0.4 30.4± 0.5 42.2±0.3 52.9± 0.1

RGCN
DistMult 29.6±0.3 19.1±0.5 34.0± 0.2 50.1±0.2 43.0±0.2 38.6±0.3 45.0±0.1 50.8±0.3 27.8±0.2 19.9±0.2 31.4±0.0 43.0±0.3
ConvE 29.6±0.4 20.3± 0.4 32.7±0.5 47.9±0.6 28.9± 0.7 17.4± 0.8 36.9±0.5 48.8±0.5 31.7±0.2 23.3±0.2 35.3±0.3 48.5± 0.2

KBGAT
DistMult 33.4±0.1 24.5±0.1 36.6±0.1 51.3±0.5 42.1±0.4 38.7±0.4 43.1± 0.6 49.6±0.6 33.0±0.2 25.5± 0.1 36.8± 0.5 47.3±0.5
ConvE 35.0±0.3 26.0±0.3 38.5± 0.3 53.1± 0.3 46.4±0.2 42.6±0.2 47.9±0.3 53.9±0.2 37.4±0.6 29.7±0.7 41.4± 0.8 52.0±0.4

Table 2: KGC results (%) with various loss functions. The loss function significantly impacts model performance.

FB15K-237 WN18RR NELL-995
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

CompGCN
with 31.5±0.1 22.2±0.1 34.8±0.2 49.6±0.2 32.9± 0.9 24.4± 1.5 39.0±0.5 46.7±0.4 32.0±0.2 23.8±0.2 35.7±0.1 48.1±0.2
w/o 35.5±0.1 26.4±0.1 39.0±0.2 53.6±0.3 47.2±0.2 43.7±0.3 48.5±0.3 54.0±0.0 38.1±0.4 30.4± 0.5 42.2±0.3 52.9± 0.1

RGCN
with 29.6±0.3 19.1±0.5 34.0±0.2 50.1±0.2 43.0±0.2 38.6±0.3 45.0±0.1 50.8±0.3 27.8±0.2 19.9±0.2 31.4±0.0 43.0±0.3
w/o 33.4 ± 0.1 24.3± 0.1 36.7±0.1 51.4± 0.2 44.5± 0.1 40.9±0.1 45.5± 0.1 51.8± 0.2 34.6± 0.6 27.0± 0.6 38.3± 0.6 49.4± 0.6

KBGAT
with 30.1± 0.3 21.0± 0.3 33.2± 0.4 48.1± 0.3 30.1± 0.2 18.6 ±0.3 37.8±0.3 49.8±0.2 32.6 ± 0.3 24.3± 0.3 36.3± 0.4 48.7± 0.5
w/o 35.0±0.3 26.0±0.3 38.5± 0.3 53.1± 0.3 46.4±0.2 42.6±0.2 47.9±0.3 53.9±0.2 37.4±0.6 29.7±0.7 41.4± 0.8 52.0±0.4

ture utilized for MP is replaced by random gener-
ated graph structure. We found that the MPNN-
based models still achieve comparable perfor-
mance, which further verifies that the MP is not the
major contributor. More details are in Appendix G.

Moreover, comparing RGCN with CompGCN
on FB15K-237 in Figure 2, we observe very differ-
ent performances, while also noting that Observa-
tion 1 clarifies that the difference in MP compo-
nents is not the main contributor. This naturally
raises a question: what are the important contrib-
utors? According to Section 2.2.4, RGCN and
CompGCN also adopt different scoring and loss
functions, which provides some leads in answering
this question. Correspondingly, we next empiri-
cally analyze the impact of the scoring and the loss
functions with comprehensive experiments. Note
that FB15K and WN18 suffer from the inverse re-
lation leakage issue (Toutanova and Chen, 2015;
Dettmers et al., 2018): a large number of test
triplets can be obtained from inverting the triplets
in the training set. Hence, to prevent these inverse
relation leakage from affecting our studies, we
conduct experiments on three datasets NELL-995,
FB15K-237 and WN18RR, where FB15K-237 and
WN18RR are the filtered versions of FB15K and WN18
after addressing these leakage issues.

3.2 Scoring Function Impact
Next, we investigate the impact of the scoring func-
tion on CompGCN, RGCN and KBGAT while
fixing their loss function and experimental set-
ting mentioned in Section 2.2.4. The KGC re-
sults are shown in Table 1. In the original setting,
CompGCN and KBGAT use ConvE as the scoring
function while RGCN adopts DistMult. In Table 1,
we further present the results of CompGCN and

KBGAT with DistMult and RGCN with ConvE.
Note that we only make changes to the scoring
function, while fixing all the other settings. Hence,
in Table 1, we still use RGCN, CompGCN and
KBGAT to differentiate these three models but use
DistMult and ConvE to indicate the specific scoring
functions adopted.

From this table, we have several observations:
(1) In most cases, CompGCN, RGCN and KB-
GAT behave differently when adopting different
scoring functions. For instance, CompGCN and
KBGAT achieve better performance when adopt-
ing ConvE as the scoring function in three datasets.
RGCN with DistMult performs similar to that with
ConvE on FB15K-237. However, it dramatically
outperforms RGCN with ConvE on WN18RR and
NELL-995. This indicates that the choice of scor-
ing functions has strong impact on the performance,
and the impact is dataset-dependent. (2) Com-
paring CompGCN (or KBGAT) with RGCN on
FB15K-237, even if the two methods adopt the
same scoring function (either DistMult or ConvE),
they still achieve quite different performance. On
the WN18RR dataset, the observations are more in-
volved. The two methods achieve similar perfor-
mance when DistMult is adopted but behave quite
differently with ConvE. Overall, these observations
indicate that the scoring function is not the only
factor impacting the model performance.

3.3 Loss Function Impact
In this subsection, we investigate the impact of
the loss function on these three methods while fix-
ing the scoring function and other experimental
settings. As introduced in Section 2.2.3, in the
original settings, CompGCN, RGCN and KBGAT
adopt the BCE loss. The major difference in the
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Table 3: KGC results (%) with varying number of negative samples in the loss function. Generally, utilizing 10
negative samples is not enough. For different datasets and methods, the optimal number of negative samples varies.

FB15K-237 WN18RR NELL-995
#Neg MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

CompGCN

10 31.5±0.1 22.2± 0.1 34.8± 0.2 49.6±0.2 32.9± 0.9 24.4±1.5 39.0± 0.5 46.7± 0.4 32.0± 0.2 23.8± 0.2 35.7± 0.1 48.1±0.2
50 34.3± 0.1 24.7± 0.1 38.1± 0.1 53.0± 0.1 40.0± 0.4 33.0±0.7 44.0±0.2 51.6± 0.1 37.2± 0.9 28.7±0.9 41.6± 0.9 53.1± 1.0
200 35.3±0.3 25.5± 0.1 39.2 ± 0.1 53.8± 0.1 43.6± 0.5 39.2±0.7 45.3± 0.2 52.3± 0.5 39.2± 0.3 31.0± 0.3 43.6± 0.2 54.3 ± 0.2

0.5N 34.6 ±0.1 25.3±0.1 38.3± 0.1 52.7±0.1 44.0± 0.5 40.6±0.6 45.1± 0.6 50.9± 0.3 40.7±0.2 33.4± 0.2 44.4± 0.3 54.7±0.2
N 34.2±0.1 25.0±0.2 37.9± 0.3 52.2± 0.1 44.0±0.3 40.7 ±0.2 45.1± 0.3 50.8±0.5 40.3± 0.5 33.0± 0.5 44.0± 0.5 54.4±0.4

RGCN

10 29.6± 0.3 19.1±0.5 34.0± 0.2 50.1±0.2 43.0±0.2 38.6±0.3 45.0±0.1 50.8±0.3 27.8±0.2 19.9±0.2 31.4±0.0 43.0±0.3
50 32.5±0.2 22.5±0.3 36.7±0.1 52.0± 0.4 43.9± 0.1 39.6± 0.1 45.6±0.2 51.8± 0.2 29.6±0.3 21.7± 0.3 33.2± 0.3 44.6±0.3
200 33.2±0.1 23.2± 0.1 37.6±0.2 52.2±0.3 44.1±0.2 39.9± 0.4 45.7±0.2 52.0± 0.2 30.0±0.3 21.7±0.2 34.3±0.4 45.7±0.3

0.5N 33.3±0.2 24.3±0.3 36.9±0.1 50.9±0.2 44.4±0.2 40.7± 0.3 45.5±0.2 52.0± 0.3 33.6±0.3 26.7± 0.3 37.2±0.2 46.7±0.2
N 33.0±0.4 23.9±0.6 36.5± 0.3 50.5±0.3 44.5±0.2 40.6±0.2 45.8± 0.2 52.4±0.3 33.7± 0.0 26.9± 0.0 37.0± 0.1 46.4± 0.2

KBGAT

10 30.1±0.3 21.0± 0.3 33.2± 0.4 48.1± 0.3 30.1± 0.2 18.6 ±0.3 37.8±0.3 49.8±0.2 32.6 ±0.3 24.3±0.3 36.3±0.4 48.7±0.5
50 33.6±0.2 24.2±0.3 37.3±0.3 51.9±0.2 35.6±0.5 25.7±0.9 42.6±0.3 51.3±0.1 37.4±0.3 29.0±0.3 41.9±0.2 53.6±0.3
200 34.7±0.2 25.1±0.2 38.8±0.2 53.3±0.2 39.6±2.3 32.7±3.7 43.4±0.8 51.6± 0.4 39.2±0.2 31.0± 0.3 43.6±0.1 54.3±0.1

0.5N 34.0± 0.1 24.7± 0.1 37.7±0.1 52.2±0.1 44.3±0.1 40.8± 0.3 45.5± 0.2 51.1± 0.3 40.1±0.1 33.2±0.1 43.5±0.2 53.2±0.2
N 33.6±0.1 24.4±0.2 37.3±0.2 52.0±0.3 43.8± 0.9 40.1± 1.4 45.3± 0.5 51.1± 0.4 39.6± 0.2 32.8± 0.3 43.0±0.3 52.9±0.1

loss function is that CompGCN and KBGAT uti-
lize all negative samples while RGCN adopts a
sampling strategy to randomly select 10 negative
samples for training. For convenience, we use w/o
sampling and with sampling to denote these two set-
tings and investigate how these two settings affect
the model performance.

3.3.1 Impact of negative sampling
To investigate the impact of negative sampling strat-
egy, we also run CompGCN and KBGAT under the
with sampling setting (i.e., using 10 negative sam-
ples as the original RGCN), and RGCN under the
w/o sampling setting. The results are shown in Ta-
ble 2, where we use “with” and “w/o” to denote
these two settings. From Table 2, we observe that
RGCN, CompGCN and KBGAT achieve stronger
performance under the “w/o sampling” setting on
three datasets. Specifically, the performance of
CompGCN dramatically drops by 30.3% from 47.2
to 32.9 when adopting the sampling strategy, indi-
cating that the sampling strategy significantly im-
pacts model performance. Notably, only using 10
negative samples proves insufficient. Hence, we
further investigate how the number of negative sam-
ples affects the model performance in the following
subsection.

3.3.2 Impact of number of negative samples
In this subsection, we investigate how the num-
ber of negative samples affects performance under
the “with sampling” setting for both methods. We
run RGCN, CompGCN and KBGAT with varyinng
numbers of negative samples. Following the set-
tings of scoring functions as mentioned in Section
2.2.4., we adopt DistMult for RGCN and ConvE
for CompGCN and KBGAT as scoring functions.
Table 3 shows the results and #Neg is the num-

ber of negative samples. Note that in Table 3, N
denotes the number of entities in a KG, thus N
differs across the datasets. In general, increasing
the number of negative samples from 10 to a larger
number is helpful for all methods. This partially
explains why the original RGCN typically under-
performs CompGCN and KBGAT. On the other
hand, to achieve strong performance, it is not nec-
essary to utilize all negative samples; for example,
on FB15K-237, CompGCN achieves the best per-
formance when the number of negative samples
is 200; this is advantageous, as using all negative
samples is more expensive. In short, carefully se-
lecting the negative sampling rate for each model
and dataset is important.

4 KGC without Message Passing
It is well known that MP is the key bottleneck for
scaling MPNNs to large graphs (Jin et al., 2021;
Zhang et al., 2022a; Zhao et al., 2022). Observa-
tion 1 suggests that the MP may be not helpful for
KGC. Thus, in this section, we investigate if we
can develop MLP-based methods (without MP) for
KGC that can achieve comparable or even better
performance than existing MPNN methods. Com-
pared with the MPNN models, MLP-based meth-
ods enjoy the advantage of being more efficient
during training and inference, as they do not in-
volve expensive MP operations. We present the
time complexity in Appendix H. The scoring and
loss functions play an important role in MPNN-
based methods. Likewise, we next study the impact
of the scoring and loss functions on MLP-based
methods.

4.1 MLPs with various scoring and loss

We investigate the performance of MLP-based mod-
els with different combinations of scoring and loss
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Table 4: KGC results (%) of MLP-based methods with different combinations of scoring and loss functions. Both
the scoring and loss functions impact the performance of MLP-based models.

FB15K-237 WN18RR NELL-995
#Neg MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

DistMult

10 29.1±0.3 19.1±0.4 32.7±0.4 48.9±0.3 44.0± 0.0 39.5±0.5 45.7± 0.3 51.9±0.5 27.5±0.2 20.0±0.1 30.9±0.1 42.0±0.3
50 31.3±0.2 21.2±0.3 35.4±0.3 51.1±0.1 42.5± 0.4 38.3±0.5 43.9±0.4 51.1±0.2 27.5± 0.4 19.4±0.6 31.7±0.3 42.7±0.1
200 32.5±0.3 22.3±0.3 37.1±0.3 52.0± 0.2 41.5± 0.5 37.6±0.5 42.6± 0.6 49.6 ± 0.6 29.1±0.2 21.1±0.2 33.2±0.0 43.9 ±0.3

0.5N 32.8±0.2 23.4±0.3 36.8± 0.1 50.7± 0.1 41.3±0.6 38.0±0.4 42.4±0.7 48.5±1.5 31.5± 0.2 23.9±0.2 35.5± 0.2 45.3±0.3
N 32.7± 0.1 23.5 ±0.1 36.5±0.1 50.4± 0.1 41.4±0.2 38.4±0.2 42.2±0.2 47.7±0.2 31.0±0.1 23.4±0.3 34.8±0.3 45.1±0.4

w/o 33.4±0.2 24.5 ± 0.2 36.6± 0.2 51.1± 0.2 43.3± 0.1 39.9± 0.1 44.6±0.2 50.7 ±0.9 32.8±0.2 25.0±0.2 36.5 ± 0.3 47.7 ± 0.3

ConvE

10 30.3 ±0.4 21.1 ±0.5 33.6 ±0.4 48.6 ±0.4 35.5 ±5.8 27.6 ± 8.4 40.5 ±3.7 49.3 ± 1.2 31.6 ±0.6 23.5 ±0.5 35.0 ± 0.7 47.2 ±0.6
50 34.0± 0.3 24.5± 0.3 37.9± 0.2 52.6±0.2 42.1±0.1 36.3±0.2 45.0±0.1 52.4±0.1 37.0± 0.3 28.6± 0.4 41.4±0.3 53.1±0.1
200 35.0±0.0 25.5±0.1 39.0± 0.1 53.4±0.1 44.2±0.3 39.9± 0.4 45.7± 0.3 52.6±0.1 38.9±0.3 30.8±0.4 43.3±0.4 54.0±0.1
500 35.3±0.0 25.7±0.0 39.2± 0.2 53.6±0.2 44.5±0.3 40.6±0.4 45.7± 0.2 52.3±0.2 39.3±0.3 31.6±0.3 43.5 ±0.4 53.6±0.3

0.5N 34.3±0.1 25.0± 0.2 38.1± 0.0 52.4±0.0 45.4±0.2 41.8±0.3 46.4±0.3 52.6±0.2 40.0 ± 0.1 33.3± 0.2 43.3±0.1 52.9±0.1
N 34.0±0.1 24.8±0.2 37.7± 0.1 51.9±0.1 45.4±0.2 41.8±0.2 46.5±0.3 52.4 ± 0.1 39.7±0.2 33.0± 0.1 43.1±0.2 52.5± 0.1

w/o 35.5 ± 0.2 26.4±0.2 38.9±0.2 53.7±0.1 47.3± 0.1 43.7±0.2 48.8 ±0.1 54.4±0.1 38.1 ±0.5 30.4±0.5 42.1±0.5 52.5±0.5

Table 5: KGC results (%) of the ensembled MLP-based methods, which outperform the MPNN-based models.
FB15K-237 WN18RR NELL-995

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

CompGCN 35.5±0.1 26.4±0.1 39.0±0.2 53.6±0.3 47.2±0.2 43.7±0.3 48.5±0.3 54.0±0.0 38.1±0.4 30.4± 0.5 42.2±0.3 52.9± 0.1
RGCN 29.6± 0.3 19.1±0.5 34.0± 0.2 50.1±0.2 43.0±0.2 38.6±0.3 45.0±0.1 50.8±0.3 27.8±0.2 19.9±0.2 31.4±0.0 43.0±0.3

KBGAT 35.0±0.3 26.0±0.3 38.5± 0.3 53.1± 0.3 46.4±0.2 42.6±0.2 47.9±0.3 53.9±0.2 37.4±0.6 29.7±0.7 41.4± 0.8 52.0±0.4

MLP-best 35.5 ± 0.2 26.4±0.2 38.9±0.2 53.7±0.1 47.3± 0.1 43.7±0.2 48.8 ±0.1 54.4±0.1 40.0 ± 0.1 33.3± 0.2 43.3±0.1 52.9±0.1
MLP-ensemble 36.9 ±0.2 27.5±0.2 40.8±0.2 55.4±0.1 47.7±0.3 43.9 ±0.4 48.9±0.1 55.4±0.1 41.7±0.2 34.7±0.2 45.1±0.0 55.2±0.1

functions. Specifically, we adopt DistMult and
ConvE as scoring functions. For each scoring func-
tion, we try both the with sampling and w/o sam-
pling settings for the loss function. Furthermore,
for the with sampling setting, we vary the number
of negative samples. The results of MLP-based
models with different combinations are shown in
Table 4, which begets the following observations:
(1) The results from Table 4 further confirm that
the MP component is unnecessary for KGC. The
MLP-based models can achieve comparable or
even stronger performance than GNN models. (2)
Similarly, the scoring and the loss functions play
a crucial role in the KGC performance, though
dataset-dependent. For example, it is not always
necessary to adopt the w/o setting for strong perfor-
mance: On the FB15K-237 dataset, when adopting
ConvE for scoring, the MLP-based model achieves
comparable performance with 500 negative sam-
ples; on WN18RR, when adopting DistMult for scor-
ing, the model achieves best performance with 10
negative samples; on NELL-995, when adopting
ConvE for scoring, it achieves the best performance
with 0.5N negative samples.

Given these observations, next we study a sim-
ple ensembling strategy to combine different MLP-
based models, to see if we can obtain a strong and
limited-complexity model which can perform well
for various datasets, without MP. Note that ensem-
bling MLPs necessitates training multiple MLPs,
which introduces additional complexity. However,
given the efficiency of MLP, the computational cost
of ensembling is still acceptable.

4.2 Ensembling MLPs

According to Section 4.1, the performance of MLP-
based methods is affected by the scoring function
and the loss function, especially the negative sam-
pling strategy. These models with various combina-
tions of scoring function and loss functions can po-
tentially capture important information from differ-
ent perspectives. Therefore, an ensemble of these
models could provide an opportunity to combine
the information from various models to achieve
better performance. Hence, we select some MLP-
based models that exhibit relatively good perfor-
mance on the validation set and ensemble them
for the final prediction. Next, we briefly describe
the ensemble process. These selected models are
individually trained, and then assembled together
for the inference process. Specifically, during the
inference stage, to calculate the final score for a
specific triplet (h, r, t), we utilize each selected
model to predict a score for this triplet individually
and then add these scores to obtain the final score
for this triplet. The final scores are then utilized for
prediction. In this work, our focus is to show the
potential of ensembling instead of designing the
best ensembling strategies; hence, we opt for sim-
plicity, though more sophisticated strategies could
be adopted. We leave this to future work.

We put the details of the MLP-based models
we utilized for constructing the ensemble model
for these three datasets in Appendix I. The results
of these ensemble methods are shown in Table 5,
where we use MLP-ensemble to generally denote
the ensemble model. Note that MLP-best in the

10702



table denotes the best performance from individ-
ual MLP-based methods from Table 4. From the
table, we can clearly observe that MLP-best can
achieve comparable or even slightly better perfor-
mance than MPNN-based methods. Furthermore,
the MLP-ensemble can obtain better performance
than both the best individual MLP-based meth-
ods and the MPNN-based models, especially on
FB15K-237 and NELL-995. These observations fur-
ther support that the MP component is not neces-
sary. They also indicate that these scoring and loss
functions are potentially complementary to each
other, and as a result, even the simple ensemble
method can produce better performance.

5 Discussion

Key Findings: (1) The MP component in MPNN-
based methods does not significantly contribute to
KGC performance, and MLP-based methods with-
out MP can achieve comparable performance; (2)
Scoring and the loss function design (i.e. nega-
tive sampling choices) play a much more crucial
role for both MPNN-based and MLP-based meth-
ods; (3) The impact of these is significantly dataset-
dependent; and (4) Scoring and the loss function
choices are complementary, and simple strategies
to combine them in MLP-based methods can pro-
duce better KGC performance.
Practical Implications: (1) MLP-based models do
not involve the complex MP process and thus they
are more efficient than the MPNN-based models
(Zhang et al., 2022a). Hence, such models are more
scalable and can be applied to large-scale KGC ap-
plications for practical impact; (2) The simplicity
and scalability of MLP-based models make ensem-
bling easy, achievable and effective (Section 4.2);
and (3) The adoption of MLP-based models enables
us to more conveniently apply existing techniques
to advance KGC. For instance, Neural Architecture
Search (NAS) algorithms (Zoph and Le, 2016) can
be adopted to automatically search better model ar-
chitectures, since NAS research for MLPs is much
more extensive than for MPNNs.
Implications for Future Research: (1) Investigat-
ing better designs of scoring and loss functions are
(currently) stronger levers to improve KGC. Fur-
ther dedicated efforts are required for developing
suitable MP operations in MPNN-based models for
this task; (2) MLP-based models should be adopted
as default baselines for future KGC studies. This
aligns with several others which suggest the un-

derratedness of MLPs for vision-based problems
(Liu et al., 2021; Tolstikhin et al., 2021); (3) Scor-
ing and loss function choices have complementary
impact, and designing better strategies to combine
them is promising; and (4) Since KGC is a type
of link prediction, and many works adopt MPNN
designs in important settings like ranking and rec-
ommendations (Ying et al., 2018; Fan et al., 2019;
Wang et al., 2019), our work motivates a pressing
need to understand the role of MP components in
these applications.

6 Related Work

There are mainly two types of GNN-based KGC
models: MPNN-based models and path-based
models. When adopting MPNNs for KG, recent
efforts have been made to deal with the multi-
relational edges in KGs by designing MP oper-
ations. RGCN (Schlichtkrull et al., 2018) intro-
duces the relation-specific transformation matri-
ces. CompGCN (Vashishth et al., 2020) integrates
neighboring information based on entity-relation
composition operations. KBGAT (Nathani et al.,
2019) learns attention coefficients to distinguish
the role of entity in various relations. Path-based
models learn pair-wise representations by aggre-
gating the path information between the two nodes.
NBFNet (Zhu et al., 2021) integrates the informa-
tion from all paths between the two nodes. RED-
GNN (Zhang and Yao, 2022) makes use of the dy-
namic programming and A∗Net (Zhu et al., 2022)
prunes paths by prioritizing important nodes and
edges. In this paper, we focus on investigating
how the MP component in the MPNNs affects their
performance in the KGC task. Hence, we do not
include these path-based models into the compari-
son. A concurrent work (Zhang et al., 2022b) has
similar observations as ours. However, they ma-
jorly focus on exploring how the MP component
affects the performance. Our work provides a more
thorough analysis on the major contributors for
MPNN-based KGC models and proposes a strong
ensemble model based upon the analysis.

7 Conclusion

In this paper, we surprisingly find that the MLP-
based models are able to achieve competitive per-
formance compared with three MPNN-based mod-
els (i.e., CompGCN, RGCN and KBGAT) across
a variety of datasets. It suggests that the message
passing operation in these models is not the key
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component to achieve strong performance. To ex-
plore which components potentially contribute to
the model performance, we conduct extensive ex-
periments on other key components such as scoring
function and loss function. We found both of them
play crucial roles, and their impact varies signif-
icantly across datasets. Based on these findings,
we further propose ensemble methods built upon
MLP-based models, which are able to achieve even
better performance than MPNN-based models.
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9 Limitations

In this paper, we conducted investigation on
MPNN-based KGC models. MPNN-based models
learn the node representations through aggregating
from the local neighborhood, which differ from
some recent path-based works that learn pair-wise
representations by integrating the path information
between the node pair. Moreover, we mainly fo-
cus on the KGC task which is based on knowledge
graph, and thus other types of graph (e.g., homo-
geneous graph) are not considered. Therefore, our
findings and observations might not be applicable
for other non-MPNN-based models and non-KGC
task.
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Table 6: Data statistics for four datasets.

Datasets Entities Relations Train edges Val. edges Test edges

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134
WN18 40,943 18 141,442 5,000 5,000
FB15k 14,951 1,345 483,142 50,000 59, 071
NELL-995 75.492 200 126,176 13,912 14,125

A Dataset

We use five well-known KG datasets – Table 6
details their statistics:
• FB15k (Bordes et al., 2013) is a subset of the

Freebase database (Bollacker et al., 2008) con-
taining general facts. It is constructed by se-
lecting a subset of entities that are both in the
Wikilinks database1 and Freebase.

• FB15k-237 (Toutanova et al., 2015; Toutanova
and Chen, 2015) is a subset of the FB15k which
removes the inverse relations from FB15K to pre-
vent direct inference.

• WN18 (Schlichtkrull et al., 2018) is subset of
the WordNet database (Fellbaum, 2010) which
contains lexical relations between words.

• WN18RR (Dettmers et al., 2018) is a subset of
the WN18. WN18 contains triplets in the test set
that are generated by inverting triplets from the
training set. WN18RR is constructed by remov-
ing these triplets to avoid inverse relation test
leakage.

• NELL-995 (Xiong et al., 2017b) is constructed
from the 995-th iteration of the NELL sys-
tem (Carlson et al., 2010) which constantly ex-
tracts facts from the web.

B Evaluation Metrics

We use the rank-based measures to evaluate the
quality of the prediction including Mean Recip-
rocal Rank (MRR) and Hits@N. Their detailed
definitions are introduced below:
• Mean Reciprocal Rank (MRR) is the mean of

the reciprocal predicted rank for the ground-truth
entity over all triplets in the test set. A higher
MRR indicates better performance.

• Hits@N calculates the proportion of the
groundtruth tail entities with a rank smaller or
equal to N over all triplets in the test set. Sim-
ilar to MRR, a higher Hits@N indicates better
performance.

These metrics are indicative, but they can be flawed
when a tuple (i.e., (h, r) or (r, t)) has multiple

1https://code.google.com/archive/p/wiki-links/

ground-truth entities which appear in either the
training, validation or test sets. Following the fil-
tered setting in previous works (Bordes et al., 2013;
Schlichtkrull et al., 2018; Vashishth et al., 2020),
we remove the misleading entities when ranking
and report the filtered results.

C Message Passing in MPNN-based KGC

For a general triplet (h, r, t), we use x
(k)
h , x(k)

r ,
and x

(k)
t to denote the head, relation, and tail em-

beddings obtained after the k-th layer. Specifically,
the input embeddings of the first layer x(0)

h , x(0)
r

and x
(0)
t are randomly initialized. Next, we de-

scribe the information aggregation process in the
(k + 1)-th layer for the studied three MPNN-based
models, i.e., CompGCN, RGCN and KBGAT.
• RGCN (Schlichtkrull et al., 2018) aggregates

neighborhood information with the relation-
specific transformation matrices:

x
(k+1)
h = g(

∑

(r,t)∈Nh

1

ch,r
W(k)

r x
(k)
t +W(k)

o x
(k)
h )

(1)
where W(k)

o ∈ Rdk+1×dk and W
(k)
r ∈ Rdk+1×dk

are learnable matrices. W(k)
r corresponds to the

relation r, Nh is the set of neighboring tuples
(r, t) for entity h, g is a non-linear function, and
ch,r is a normalization constant that can be either
learned or predefined.

• CompGCN (Vashishth et al., 2020) defines
direction-based transformation matrices and in-
troduce relation embeddings to aggregate the
neighborhood information:

x
(k+1)
t = g


 ∑

(h,r)∈Nt

W
(k)
λ(r) ϕ(x

(k)
h ,x(k)

r )


 ,

(2)
where Nt is the set of neighboring entity-relation
tuples (h, r) for entity t, λ(r) denotes the direc-
tion of relations: original relation, inverse rela-
tion, and self-loop. W

(k)
λ(r) ∈ Rdk+1×dk is the

direction specific learnable weight matrix in the
k-th layer, and ϕ(·) is the composition operator to
combine the embeddings to leverage the entity-
relation information. The composition opera-
tor ϕ(·) is defined as the subtraction, multiplica-
tion, or cross correlation of the two embeddings
(Vashishth et al., 2020). CompGCN generally
achieves best performance when adopting the
cross correlation. Hence, in this work, we use the
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cross correlation as its default composition oper-
ation for our investigation. CompGCN updates
the relation embedding through linear transfor-
mation in each layer, i.e., x(k+1)

r = W
(k)
relx

(k)
r

where W
(k)
rel is the learnable weight matrix.

• KBGAT (Nathani et al., 2019) proposes
attention-based aggregation process by consider-
ing both the entity embedding and relation em-
bedding:

x
(k+1)
h = g


 ∑

(r,t)∈Nh

α
(k)
h,r,tc

(k)
h,r,t


 (3)

where c(k)h,r,t = W
(k)
1 [x

(k)
h ||x(k)

t ||xr], || is the con-
catenation operation. Note that the relation em-
bedding is randomly initilized and shared by all
layers, i.e, x(k)r = xr. The coefficient α(k)

h,r,t is
the attention score for (h, r, t) in the k-th layer,
which is formulated as follows:

α
(k)
h,r,t =

exp(LR(W(k)
2 c

(k)
h,r,t))∑

(r,t′)∈Nh
exp(LR(W(k)

2 c
(k)
h,r,t′))

(4)

where LR is the LeakyReLU function, W(k)
1 ∈

Rdk+1×3dk , W
(k)
2 ∈ R1×dk+1 are two sets of

learnable parameters.
For GNN-based models with K layers, we use
x
(K)
h , x(K)

r , and x
(K)
t as the final embeddings and

denote them as xh , xr, and xt for the simplicity
of notations. Note that RGCN does not involve xr
in the aggregation component, which will be ran-
domly initialized if required by the scoring func-
tion.

D Scoring Function

Two widely used scoring function are Dist-
Mult (Yang et al., 2015) and ConvE (Dettmers et al.,
2018). The definitions of these scoring functions
are as follows.

fDistMult(h, r, t) = xhRrxt (5)

fConvE(h, r, t) = g(vec(g([xh||xr] ∗ ω))W)xt

(6)

Rr ∈ Rdk×dk in Eq. (5) is a diagonal matrix corre-
sponding to the relation r. In Eq. (6), xh denotes
a 2D-reshaping of xh, ω is the convolutional fil-
ter, and W is the learnable matrix. vec(·) is an
operator to reshape a tensor into a vector. || is the
concatenation operator. ConvE feeds the stacked

MRR Hits@1 Hits@3 Hits@10
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(a) WN18RR

Figure 3: KGC results of CompGCN and CompGCN-
MLP on WN18RR. On this dataset, CompGCN-MLP
achieves compare performance as CompGCN.
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(a) WN18
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(b) FB15K

Figure 4: KGC results of RGCN and RGCN-MLP on
FB15K and WN18. On all three datasets, RGCN-MLP
achieves comparable performance as RGCN.

2D-reshaped head entity embedding and relation
embedding into convolution layers. It is then re-
shaped back into a vector that multiplies the tail
embedding to generate a score.

For DistMult, there are different ways to define
the diagonal matrix Rr: For example, in RGCN,
the diagonal matrix is randomly initialized for each
relation r, while CompGCN defines the diagonal
matrix by diagonalizing the relation embedding xr.

E Loss Function

We adopt the Binary cross-entropy (BCE) as the
loss function, which can be modeled as follows:

L = −
∑

(e1,rel,e2)∈D∗
train

(
log σ(f(e1, rel, e2))+

∑

(e1,rel,e′2)∈C(e1,rel,e2)

log(1− σ(f(e1, rel, e
′
2)))

)
.

(7)

where f(·) is the scoring function defined in the
appendix D, and σ is the sigmoid function.

10707



Table 7: KGC results (%) with random graph structure for message passing process. The MPNN-based models still
can achieve comparable performance.

FB15K-237 WN18RR NELL-995
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

CompGCN
Original 35.5±0.1 26.4±0.1 39.0±0.2 53.6±0.3 47.2±0.2 43.7±0.3 48.5±0.3 54.0±0.0 38.1±0.4 30.4± 0.5 42.2±0.3 52.9± 0.1
Random 35.3±0.1 26.3±0.1 38.7±0.1 53.4 ±0.2 47.3±0.0 44.0±0.2 48.5±0.2 53.8±0.3 38.8±0.1 31.1±0.0 42.8±0.1 53.3±0.1

RGCN
Original 29.6±0.3 19.1±0.5 34.0± 0.2 50.1±0.2 43.0±0.2 38.6±0.3 45.0±0.1 50.8±0.3 27.8±0.2 19.9±0.2 31.4±0.0 43.0±0.3
Random 28.6±0.5 18.8±0.5 32.4±0.8 48.2±0.7 43.0±0.3 38.7±0.1 45.0±0.5 50.8±0.6 27.7±0.2 19.6±0.2 31.4±0.3 43.3±0.2

KBGAT
Original 35.0±0.3 26.0±0.3 38.5± 0.3 53.1± 0.3 46.4±0.2 42.6±0.2 47.9±0.3 53.9±0.2 37.4±0.6 29.7±0.7 41.4± 0.8 52.0±0.4
Random 35.6±0.1 26.5±0.1 39.0±0.2 53.7±0.1 46.8±0.2 43.2±0.5 48.1±0.1 53.8±0.1 38.2±0.3 30.6±0.3 42.1±0.4 52.8±0.2
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(a) WN18RR

MRR Hits@1 Hits@3 Hits@10
0

10

20

30

40

50

60

37.7
29.9

42.0

52.3

38.1
30.4

42.11

52.5

KBGAT KBGAT-MLP

(b) NELL-995

Figure 5: KGC results of KBGAT and KBGAT-MLP on
WN18RR and NELL-995. On all three datasets, KBGAT-
MLP achieves comparable performance as KBGAT.

F Does Message Passing Really Help
KGC?

In section 3.1, We replace the message pass-
ing with the MLP while keeping other compo-
nents untouched in CompGCN, RGCN and KB-
GAT. Due to the space limit, we only present
the resutls on the FB15K-237 dataset in sec-
tion 3.1. In this section, we include additional
results on other datasets. Specifically, we in-
clude results of CompGCN/CompGCN-MLP on
the WN18RR dataset, RGCN/RGCN-MLP on the
WN18 and FB15K dataset, KBGAT/KBGAT-MLP
on the WN18RR and NELL-995 in Figure 3, Figure 4
and Figure 5 respectively. All the counterpart MLP-
based models achieve similar performance with the
corresponding MPNN-based models, which show
similar observations with the FB15K-237 datasets
in section 3.1.

G MPNNs with random graph structure
for message passing

In this section, we investigate how the performance
perform when we use random generated graph
structure in the message passing process. The num-
ber of random edges is the same as the ones in the
original graph. When training the model by opti-
mizing the loss function, we still use the original
graph structure, i.e., D∗

train in Eq. (7) is fixed in

Appendix E. Note that if the message passing has
some contribution to the performance, aggregating
the random edges should lead to the performance
drop.

We present the results of CompGCN, RGCN
and KBGAT on various datasets in Table 7. We use
“Original", “Random" to denote the performance
with the original graph structure and random edges
respectively. From Table 7, we observe that using
the noise edges achieves comparable performance,
which further indicates that the message passing
component is not the key part.

H Time Complexity

We first define the sizes of weight matrices and em-
beddings of a single layer. We denote the dimen-
sion of entity and relation embeddings as d. The
weight matrices in RGCN and CompGCN (shown
in Eqs. (1) and (2) respectively in Appendix C. ) are
d×d matrices. In KBGAT (Eq. (3) in Appendix C),
there are two weight matrices W1 and W2 of size
d × 3d and 1 × d, respectively. Thus, the time
complexity of RGCN, CompGCN, KBGAT for a
single layer is O(|E|d2 + nd2), O(|E|d2 + nd2),
O(3|E|d2+nd2+|E|d), respectively, where |E| is
the number of edges and n is the number of nodes.
While MLP doesn’t have the message passing op-
eration, the time complexity in a single layer is
O(nd2). Note |E| is usually much larger than n,
thus the MLP is more efficient than MPNN.

I Ensembling MLPs

We briefly introduce the MLP-based models we
utilized for constructing the ensemble model in
section 4.2 for the three datasets as follows:
• For the FB15K-237 dataset, we ensemble the

following models: DistMult + w/o sampling;
DistMult + with sampling (two different set-
tings with the number of negative samples as
0.5N and N , respectively); ConvE + w/o sam-
pling; ConvE + with sampling (five different set-
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tings with the number of negative samples as
50, 200, 500, 0.5N and N , respectively).

• For the WN18RR dataset, we ensemble the follow-
ing models: DistMult + w/o sampling; ConvE+
w/o sampling; ConvE+ with sampling (one set-
ting with the number of negative samples as N ).

• For the NELL-995 dataset, we ensemble
the following models: ConvE+ w/o sam-
pling; ConvE+with sampling (five settings
with the number of negative samples as
50, 200, 500, 0.5N and N ).
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