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Abstract

The task of spoken video grounding aims to
localize moments in videos that are relevant
to descriptive spoken queries. However, ex-
tracting semantic information from speech and
modeling the cross-modal correlation pose two
critical challenges. Previous studies solve them
by representing spoken queries based on the
matched video frames, which require tremen-
dous effort for frame-level labeling. In this
work, we investigate weakly-supervised spo-
ken video grounding, i.e., learning to localize
moments without expensive temporal annota-
tions. To effectively represent the cross-modal
semantics, we propose Semantic Interaction
Learning (SIL), a novel framework consisting
of the acoustic-semantic pre-training (ASP) and
acoustic-visual contrastive learning (AVCL). In
ASP, we pre-train an effective encoder for the
grounding task with three comprehensive tasks,
where the robustness task enhances stability
by explicitly capturing the invariance between
time- and frequency-domain features, the con-
ciseness task avoids over-smooth attention by
compressing long sequence into segments, and
the semantic task improves spoken language
understanding by modeling the precise seman-
tics. In AVCL, we mine pseudo labels with
discriminative sampling strategies and directly
strengthen the interaction between speech and
video by maximizing their mutual information.
Extensive experiments demonstrate the effec-
tiveness and superiority of our method.1

1 Introduction

Temporal video grounding (Gao et al., 2017; Hen-
dricks et al., 2017) is an important task in the cross-
modal understanding field (Zhang et al., 2020d;
Jin et al., 2020; Xun et al., 2021; Jin and Zhao,
2021; Yin et al., 2022), aiming to retrieve a target
moment within a video based on a given query.

∗ Equal contribution.
† Corresponding author

1https://github.com/yewzz/SIL.

Figure 1: An Example of Spoken Video Grounding.

With the progress in deep learning, there has been
significant achievements in this area. While most
previous studies focus on textual queries, recent
work (Xia et al., 2022) introduce the spoken video
grounding task by incorporating the spoken query
into the video grounding, as shown in Figure 1.

However, such video grounding task with spo-
ken queries presents unique challenges compared
to its text-based counterpart. First, the encoding
of speech is inherently difficult due to its weak
and volatile semantic information, making it ardu-
ous to extract useful features for video grounding.
Second, even with the acquisition of valuable se-
mantic features, modeling speech-video interaction
and extracting cross-modal content still poses an
inevitable obstacle.

Prior work (Xia et al., 2022) address these two
problems simultaneously through the proposed
video-guided contrastive predictive coding, which
utilizes aligned video clips to learn semantic repre-
sentations from spoken queries. However, a critical
drawback is its heavy reliance on precise tempo-
ral matching between video and spoken queries.
The acquisition of such fine-grained annotations
requires substantial manual labor, hindering the
practicality and applicability of this approach.

In this work, we address the issue of intensive
labor by investigating a novel task called Weakly-
Supervised Spoken Video Grounding (WSVG),
aiming to localize speech-aligned moments in
videos under a weakly-supervised scheme. In
this setting, we only have access to aligned video-
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speech pairs during training without any temporal
annotations, which poses a greater challenge.

To tackle the aforementioned problem, we pro-
pose a novel framework Semantic Interaction
Learning (SIL), following a progressive pipeline to
first pre-train a speech encoder for semantic encod-
ing and then learn speech-video alignment during
grounding training. It consists of two key compo-
nents: acoustic-semantic pre-training (ASP) and
acoustic-visual contrastive learning (AVCL).

In the pre-training stage, the ASP module uti-
lizes external speech-text data to train a speech
encoder capable of extracting rich semantic infor-
mation from speech. To adapt the encoded fea-
tures for the downstream weakly-supervised video
grounding, ASP includes three specialized tasks
targeting three specific characteristics. (1) The ro-
bustness task focuses on the encoder’s ability to
handle complex and noisy speech, which is a prac-
tical problem in the real world. Considering time
series data can be split into the time and frequency
domains to provide invariance regardless of vary-
ing distributions (Zhang et al., 2022), we utilize
both time- and frequency-based speech feature for
pre-training and forces their encoded semantic in-
formation to be consistent. (2) The conciseness
task addresses the issue of long sequence features
with redundant information, which results in scat-
tered distribution of the video-speech attention and
impedes effective interaction. Hence, we com-
press the encoded features into discrete segments
via I&F algorithm (Dong and Xu, 2020), refining
the feature sequence for effective interaction. (3)
The semantic task emphasizes the extraction of
key semantics for grounding, which is a crucial
requirement in this fine-grained cross-modal un-
derstanding task. Unlike the trivial self-supervised
method (Baevski et al., 2020) or knowledge dis-
tillation method (Hinton et al., 2015), we draw
inspiration from the human understanding system
that encompasses auditory perception and cogni-
tive processing (Dong et al., 2021). Concretely,
we introduce a connectionist temporal classifica-
tion (CTC) (Graves et al., 2006) loss to facilitate
training, and further consider both sequence-level
and word-level semantic to ensure the comprehen-
sive semantic transfer.

In the grounding stage, the AVCL module di-
rectly enhances the correlation between video and
speech. Despite the effective semantic encoding
of spoken queries, the discrepancy between video

and speech still hinders the cross-modal interac-
tion. As video and speech are from two distinct
feature spaces, AVCL leverages contrastive learn-
ing to maximize their agreement. First, we perform
location-based selection and score-based mining to
select pseudo labels with high confidence. With the
located boundary of the predicted pseudo proposal,
we can coarsely select the negative samples from
regions outside and further calculate the clip-level
score inside the boundary to mine positive/negative
samples. Then, based on these discriminative sam-
ples, we contrastively maximize the mutual infor-
mation between speech and positive clips.

Our main contributions are listed as follows:

• We investigate a new task WSVG to explore the
weakly-supervised spoken video grounding.

• We propose a novel framework SIL to effectively
model the semantic contents of video-speech in-
teraction, where the ASP module enhances se-
mantic encoding and the AVCL module improves
cross-modal interaction.

• Extensive experiments verify the superiority of
our approach in terms of both accuracy and effi-
ciency.

2 Related Works

2.1 Temporal Video Grounding

Temporal video grounding aims to localize the mo-
ment corresponding to the query. Under the super-
vised setting, existing methods can be categorized
into the top-down and bottom-up frameworks. The
top-down methods (Gao et al., 2017; Hendricks
et al., 2017; Liu et al., 2018; Chen et al., 2018;
Zhang et al., 2019) first generate proposals and
then estimate cross-modal alignment scores for
them. And the bottom-up methods (Chen et al.,
2019a, 2020; Wu et al., 2020; Zhang et al., 2020a;
Zhao et al., 2021) directly calculate the frame-level
probabilities of being temporal boundaries. Un-
der the weakly-supervised setting, the methods can
be categorized into the multiple instance learning
(MIL) and the reconstruction frameworks. The
MIL methods learn the latent visual-textual align-
ment by distinguishing the matched video-language
pairs from the unmatched pairs. For example, Gao
et al. 2019 devise an alignment and a detection
module. Zhang et al. 2020d develop contrastive
learning between counterfactual results. Huang
et al. 2021 explore cross-sentence relational con-
straints. The reconstruction methods reconstruct
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the query from visual contents during training and
utilize intermediate results to localize. For exam-
ple, Lin et al. 2020 utilize language reconstruction
to rank proposals. Song et al. 2020 further employ
the attention weight. Zheng et al. 2022 mine neg-
atives within the same video. Recent work (Xia
et al., 2022) study the spoken video grounding task
and represent speech with video-guided contrastive
predictive coding. We consider the intensive labor
and introduce the weakly-supervised setting.

2.2 Vision-Audio Learning

Vision-audio learning has attracted researchers’ in-
terest in recent years. Since Harwath and Glass
2015 collect spoken captions for Flickr8k, much
research (Chrupała, 2022; Harwath et al., 2019;
Higy et al., 2021; Scholten et al., 2021) begins
to attach importance to this field. Some works
emphasize the cognitive and linguistic questions,
such as understanding how different learned lay-
ers correspond to visual stimuli (Chrupała et al.,
2017; Gelderloos and Chrupała, 2016), learning
linguistic units (Harwath and Glass, 2019; Har-
wath et al., 2019). Oncescu et al. 2020 propose
QuerYD, a video dataset with both text and audio
descriptions for text-video retrieval and corpus mo-
ment retrieval. Recent work (Cheng et al., 2023)
study visual speech translation and recognition.

3 Methods

3.1 Overview

Problem Formulation. Given an untrimmed
video V and a spoken query S, this task aims to
train a network G(V, S) to localize the most rele-
vant moment proposal p corresponding to the spo-
ken query S, without (p, S) alignment annotations,
i.e. only the video-speech pair (V, S) are available.
Overall Pipeline. Our SIL follows a two-stage
pipeline. First, we pre-train the speech encoder
with external speech-text data. In this stage, the
ASP module develops three tasks to improve ro-
bustness, conciseness and semantic respectively,
which enables the encoder to extract effective infor-
mation of speech for the downstream task. Then,
we fix the speech encoder and conduct weakly-
supervised training on the grounding dataset via
our base network. In this stage, the ACVL mod-
ule selects contrastive samples via a discriminative
sampling strategy and then maximizes the mutual
information between video and speech.

Figure 2: The Base Network for WSVG.

3.2 Base Network
To illustrate our framework clearly, we first formu-
late the base grounding network G(V, S) under SIL
as following four common modules:

• Feature Encoder: The video encoder encodes
video features as V̄ = {v̄i}nv

i=1 ∈ Rnv×d and
the speech encoder encodes speech features as
S̄ = {s̄i}nc

i=1 ∈ Rnc×d, where d is the hidden
size, nv and nc are the length of video and speech
features, respectively.

• Interaction: It develops the cross-modal interac-
tion between V̄ and S̄, then outputs multi-modal
clip features {mi}nv

i=1 ∈ Rnv×d. The interaction
methods include attention-based aggregation and
feature fusion (Zhang et al., 2019).

• Proposal Scorer: Based on multi-modal clip
features {mi}nv

i=1, it extracts np proposal fea-
tures and calculates their alignment scores K =
{ki}np

i=1. The score of each video-speech pair
(V, S) is f(K), where f(·) is the average of the
top-R proposal scores.

• Training: We follow the MIL paradigm (Zhang
et al., 2020c) to utilize the score f(K) to train
the model with binary cross entropy loss Lbase,
which distinguishes the matched video-speech
pair (V, S) from two randomly-selected negative
pairs (V ′, S) and (V, S′).

The details are introduced in Appendix A.

3.3 Acoustic-semantic Pre-training
In this section, we elaborate on our pre-training
for the speech encoder. Given the external data,
we denote the speech as S and its paired text (i.e.
transcript) as W . We first introduce the overall en-
coding process and then detail our designed tasks.

Our speech encoder consists of convolu-
tional layers and Na+Ns layers Transformer en-
coder (Vaswani et al., 2017). (1) First, the robust-
ness task in Section 3.3.1 simultaneously considers
the time-based features Stime and frequency-based
features Sfreq as the speech input. For ease of pre-
sentation, we omit superscripts and denote them
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Figure 3: The Concrete Design of Semantic Interaction Learning Framework.

as S. We apply convolutional blocks on S to ex-
tract their deep features S = {si}ns

i=1 ∈ Rns×d,
where ns is the downsampled sequence length.
(2) Next, we input these features into Na layers
Transformer encoder to obtain acoustic features
Sa ∈ Rns×d. The conciseness task in Section 3.3.2
then compresses them into segment-level features
Sc ∈ Rnc×d, where nc is the length of segments.
(3) Finally, we input Sc into another Ns layers
Transformer encoder to learn semantic features
Ss ∈ Rnc×d. We train Sa and Ss via the semantic
task in Section 3.3.3.

3.3.1 Robustness Task

As explicit consideration of the frequency domain
provides an understanding of the behavior of time
series that cannot be captured in the time domain
(Zhang et al., 2022), we aim to improve robustness
by considering both domain features and identi-
fying their general property of speech that is pre-
served across transformations.

For each speech S, we generate its time-based
feature as St (i.e. wave) and frequency-based fea-
ture as Sf (i.e. mel-frequency spectrum). They
can be converted to each other through Fourier
transform and inverse Fourier transform. Then we
simultaneously input two features into the speech
encoder and perform the same aforementioned pre-
training. Here we adopt different convolutional
layers and Na layers transformer encoder to model

acoustic property for two distinct domain features,
while we remain the rest Ns layers identical for
semantic sharing. Following the encoding process,
we can obtain their corresponding semantic fea-
tures St

s and Sf
s , which are output from the last

Ns layers encoder. To learn the invariance across
domains, we apply L1 loss to align two features in
a common feature space, given by:

Lrob = |St
s − Sf

s | (1)

After pre-training, we yield the final semantic fea-
tures S̃ via concatenation as S̃ = [St

s,S
f
s ]. During

grounding training, we further encode it as S̄ by a
Bi-GRU network.

3.3.2 Conciseness Task
The long sequence of speech may result in over-
smooth attention distribution (Touvron et al.,
2023). To alleviate ineffective cross-modal interac-
tion caused by this, we design a conciseness task
to compress long acoustic features into segments.

We adopt continuous integrate-and-Fire (I&F)
(Dong and Xu, 2020) algorithm, which is a soft
and monotonic alignment mechanism. First, the
input features Sa = {sa,i}ns

i=1 are fed to a weight
predictor to obtain the weights G = {gi}ns

i=1, repre-
senting the amount of information in Sa. We then
scan and accumulate them from left to right until
the sum reaches the threshold(set to 1.0), indicat-
ing a semantic boundary bj is detected. Then, we
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reset the accumulation and continue to scan the rest
which begins with rj . Finally, we multiply all gi
by corresponding sa,i and integrate them to obtain
segment features Sc = {sc,i}nc

i=1, where nc is the
detected segment number.

To enable each segment carry the complete se-
mantic information, we regard each word in the text
sequence W = {wi}nw

i=1 as an independent supervi-
sion signal. Then we develop a non-auto-regressive
decoder to predict word tokens W̄ = {w̄i}nw̄

i=1 from
the segment features. The alignment loss consists
of two terms:

Lcon = (nw̄−nw)−
∑

(x,y)∈(W̄ ,W )

logPnar(y|x) (2)

where the first item aims to force the length of
predicted token consistent with the target text and
the second item is the cross entropy loss for word
recognition.

3.3.3 Semantic Task
We design the semantic task to transfer the knowl-
edge from the text representation model, e.g. Glove
embedding (Pennington et al., 2014), to the en-
coded speech features Ss. To stabilize and facilitate
semantic learning, we first utilize an ordinary CTC
loss without considering the syntactic structure
and semantic knowledge of target word sequences.
Next, with the embedding features W = {wi}nw

i=1

of text W , we perform semantic learning with
sequence-level and item-level objectives, where
the sequence-level objective tries to contrastively
align matched speech-text features and the word-
level objective aims to reconstruct the masked key
word based on the speech. The full semantic loss
consists of three terms Lsem = Lctc+Lseq+Lword.
CTC Warm-up. To model the acoustic structure
for semantic learning, we build a CTC decoder over
the features Sa and optimize it with a CTC loss.
Given the target word sequence W = {wi}nw

i=1,
CTC introduces a set of intermediate paths φ(W ),
where each path C ∈ φ(W ) is composed of words
and blanks that can be reduced to the target se-
quence. The loss is computed by:

Lctc = −log
∑

C∈φ(W )

P (C|Sa) (3)

Sequence-level Contrastive Objective. The
sequence-level objective employs contrastive learn-
ing to bring the speech closer to its correspond-
ing text in the global feature space. First, we ap-
ply mean-pooling on word features W and speech

features Ss to obtain their sequence-level features
Wseq and Sseq

s . For each sequence-level speech
feature Sseq

s , we denote the corresponding text fea-
ture as Wseq,+ and randomly sample B unmatched
text features Wseq,−. We adopt the Info-NCE
loss (Gutmann and Hyvärinen, 2010; Sun et al.,
2019) to optimize the alignment by:

Lseq=−log
eS

seq
s ·Wseq,+

eS
seq
s ·Wseq,++

∑B
i=1e

Sseq
s ·Wseq,− (4)

Word-level Generative Objective. Though the
sequence-level objective ensures the global seman-
tic, it fails to capture the information of crucial
word for grounding. Thus, we further leverage the
speech content to predict the masked words in order
to preserve the word-level knowledge.

We mask x% of the word features W to gener-
ate modified word features Wm as (Devlin et al.,
2018). Then we build a bi-directional Transformer
decoder with Wm as queries and Ss as keys and
values. The output o of the decoder is given by
o = TransformerDecoder(Wm,Ss). We em-
ploy a linear layer to predict the word distribution
{ei}nw

i=1 ∈ Rnw×db , where db is the vocabulary size.
Finally, we compute the negative log-likelihood of
each word and add them up, given by:

Lword = −
nw−1∑

i=1

logp(wi+1|ei) (5)

3.4 Acoustic-visual Contrastive learning

In grounding training, we conduct acoustic-visual
contrastive learning (AVCL). To mine visual sam-
ples as guidance, we design two discriminative
sampling strategies.
Location-based Selection. As no temporal anno-
tations are provided under the weakly-supervised
setting, we consider the selected proposal p as the
latent visual guidance and coarsely select negative
samples outside the boundary of the proposal p.
Score-based Mining. To mine high-quality vi-
sual samples, we further calculate clip-level scores
{ci}nv

i=1 for clips inside the boundary through the
proposal scorer in Section 3.2, where the proposal
features is replaced with the clip features as input.
Then we select several clips with the highest scores
as positive samples, while reserving a subset with
the lowest scores as negative samples.

With the above strategies, we select T positive
and T negative clips samples. The inspiration
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comes from the observation on experiments. Dur-
ing early training, the predicted boundary tends
to cover a wide temporal range, thus the location-
based selection provides insufficient negative sam-
ples and the score-based mining can further select
hard negative clips within the predicted proposal as
a complementary part. As the training goes on, the
predicted boundary will narrow and be more accu-
rate, the location-based selection can select enough
negative samples to avoid introducing noise.

Given V̄+ and V̄− as features of positive and
negative clips respectively, we maximize the lower
bound of cross-modal mutual information through
Jensen-Shannon estimator (Hjelm et al., 2018; Nan
et al., 2021) as:

LAVCL = E[(ϕ(S̄, V̄−))]−E[(ϕ(S̄, V̄+))] (6)

where ϕ(·, ·) is the MI discriminator.

3.5 Training and Inference

Pre-Training. We combine the losses of three tasks
to form the overall loss LASP for acoustic-semantic
pre-training by:

LASP = λ1Lrob +λ2Lconc+Lsem (7)

Grounding Training. We fix the speech encoder
and perform grounding training with the ACVL
module. The full loss LG is given by:

LG = Lbase + λ3LAVCL (8)

Inference. During the inference, we directly select
the proposal with the highest score as the result.

4 Experiments

4.1 Datasets

We evaluate the weakly-supervised spoken video
grounding on the ActivityNet Speech dataset and
perform pre-training on the LibriSpeech dataset.
ActivityNet Speech (Xia et al., 2022). It is con-
structed on the ActivityNet Caption (Caba Heil-
bron et al., 2015), which contains 19,209 videos
annotated with 3.65 textual descriptions on average
and marked with timestamps. ActivityNet Speech
transforms the textual annotations into speech.
LibriSpeech (Panayotov et al., 2015). It is a collec-
tion of approximately 1,000 hours of audiobooks
in the LibriVox project (Kearns, 2014).

4.2 Implementation Details
For video features, we follow the previous works
(Gao et al., 2017) to extract C3D (Tran et al.,
2015) features as input. For speech features, we
adopt the raw wave as time-based feature and use
Fourier Transform to obtain 80-dimensional log-
mel spectrograms as frequence-based feature. In
pre-training, we use the pre-trained Glove (Pen-
nington et al., 2014) embeddings as the word fea-
tures. The full details are listed in Appendix B.2

4.3 Evaluation Metrics
For a fair comparison, we follow previous tempo-
ral video grounding works (Gao et al., 2017) to
employ the R@n,IoU=m as the evaluation metrics,
which is the percentage of at least one of the top-n
moments with the IoU > m. We also report the
mIoU value which is the average IoU between the
top-1 selected moment and the ground truth.

4.4 Performance Comparison
Baseline. Since no existing strategy can be directly
applied to WSVG, we consider baselines under the
cascaded and end-to-end (E2E) setting.

• Cascaded methods: these methods use textual
input recognized by the ASR model (Baevski
et al., 2020) as input to the grounding network.
We select the following weakly-supervised text-
based video grounding methods: WSLLN (Gao
et al., 2019), RTBPN (Zhang et al., 2020c) and
SCN (Lin et al., 2020).

• E2E methods: these methods use speech as di-
rect input to the grounding network. (1) We con-
sider the supervised approach VSLNet (Zhang
et al., 2020a) and VGCL (Xia et al., 2022) for
reference. (2) We denote the backbone of SIL as
Base and combine it with other pre-training tech-
niques, including Wav2vec2.0 model (Baevski
et al., 2020) that performs self-supervised train-
ing, VILT (Kim et al., 2021) that follows multi-
modal pre-training, and LUT (Dong et al., 2021).
For these pre-training techniques, we adopt the
same 960h LibriSpeech data. (3) Besides, we
combine our semantic task Lsem with the above
text-based grounding backbones for a better com-
parison. We keep almost all architecture as same
as the original backbones but replace the text
encoder with the speech encoder.

Main Results. Table 1 reports the performance
evaluation results. We also fine-tune the speech en-
coder on the grounding data and report the results
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Table 1: Performance Evaluation on the ActivityNet Speech. The best results are bold. SP: Speech. TXT: Text.

Setting Backbone
Pre-Training & Data R@1,IoU=m R@5,IoU=m

mIoU(finetune)
Method SP TXT 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

Supervised Approach

E2E
VSLNet - × × 76.42 49.64 31.98 17.26 - - - - 35.92
VGCL - × × 75.26 51.80 32.36 18.10 - - - - 36.83

Weakly-supervised Approach

Cascaded
ASR-WSLLN - × × 74.47 41.76 22.62 11.03 - - - - 31.42(31.68)

ASR-SCN - × × 71.35 46.64 28.09 13.26 89.55 71.32 55.74 31.14 32.02(32.49)
ASR-RTBPN - × × 74.62 47.75 28.80 13.44 92.31 77.52 61.88 32.37 32.88(33.26)

E2E

Base - × × 65.62 41.99 24.20 11.02 87.28 72.37 55.83 28.08 28.44
Base Wav2vec2.0 ✓ × 65.65 44.61 26.20 10.83 90.01 74.21 58.37 28.89 30.22(30.36)
Base VILT ✓ ✓ 69.71 45.69 26.68 12.43 92.51 76.80 59.56 30.91 31.06(32.13)
Base LUT ✓ ✓ 72.44 46.24 26.97 12.82 92.08 75.64 60.38 31.12 31.34(32.48)

WSLLN Lsem ✓ ✓ 75.11 41.39 22.07 10.96 - - - - 31.28(31.54)
RTBPN Lsem ✓ ✓ 72.86 46.76 27.89 13.24 92.49 76.80 61.04 32.45 32.10(33.01)

E2E(Ours)
Base Lsem ✓ ✓ 73.11 46.39 27.07 13.06 92.10 76.12 60.24 31.24 31.88
Base LASP ✓ ✓ 74.88 48.14 28.68 13.95 93.44 79.32 61.52 32.17 33.04

Base+LAVCL LASP ✓ ✓ 71.79 49.46 30.26 15.22 94.87 82.28 63.73 35.48 34.02(34.52)

Table 2: The Comparison of Average Inference Latency
and Grounding Performance. The batch size is set to 1.

Method mIoU Latency Speedup

ASR-Base 32.13 0.090s 1.00x
ASR-RTBPN 32.88 0.094s 0.95x

SIL(Ours) 34.02 0.044s 2.04x

in the last column. From the results, we can ob-
serve several interesting points: (1) The cascaded
baselines generally perform better than E2E base-
lines. This phenomenon is reasonable since the
ASR model has a high recognition accuracy (see
Appendix) and weakly-supervised text-based video
grounding methods are mature, validating the dif-
ficulty of direct modeling the video-speech inter-
action. (2) In E2E baselines, our semantic task
(Lsem) outperforms other pre-training approaches,
indicating its effectiveness for semantic model-
ing. However, existing text-based backbones are
still inferior to their cascaded version, indicating
that speech encoding and video-speech interac-
tion are still insufficient. (3) Our full framework
SIL (Base+LAVCL+LASP) surpasses all weakly-
supervised baselines on almost all criteria, verify-
ing its effectiveness. (4) We also observe an inter-
esting point that the stronger weakly-supervised
model tends to obtain a higher value at R@1,
IoU=0.7/0.5 while a lower value at R@1, IoU=0.1.
This is because inaccurate models tend to give a
proposal prediction with a larger temporal range,
which usually covers the ground truth segment but
with a low IoU score.

Figure 4: Robustness Analysis.

Grounding Efficiency. We measure the grounding
efficiency in the average time required to ground
one spoken query in the video. Note the computa-
tion cost of data pre-processing is excluded. We
select ASR-Base/ASR-RTBPN as two typical cas-
caded methods for comparison and list the result in
Table 2. It demonstrates the superiority of SIL in
both performance and efficiency.
Robustness analysis. To showcase the robustness
of our model in real-life scenes, we add augmen-
tation at different levels (low, medium, high), in-
cluding time stretching, pitch shifting and noise
addition. The full configuration is introduced in
Appendix B.2. We compare our SIL with ASR-
RTBPN and two ablation methods that only uses
frequency- or time-based features without train-
ing of robustness task. As illustrated in Figure 4,
our SIL shows stable performance, validating the
power of our robustness task.

4.5 Ablation Study

Overall Ablation Study. We conduct the over-
all ablation study and show the result in Ta-
ble 3. We observe our semantic task (Lsem) im-
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Table 3: Ablation Results on the ActivityNet Speech.

ASP Module AVCL Module R@1, IoU=m R@5, IoU=m mIoU
Lrob Lconc Lsem LAVCL 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

67.94 41.48 22.99 10.07 88.10 72.12 56.24 29.24 28.52
✓ 73.11 46.39 27.07 13.06 92.10 76.12 60.24 31.24 31.88

✓ ✓ 74.36 47.64 28.39 13.81 93.12 78.96 61.13 32.03 32.93
✓ ✓ 72.69 47.61 29.12 14.40 92.76 79.07 62.36 33.64 32.96

✓ ✓ ✓ 71.13 49.37 30.02 15.19 94.56 81.32 63.38 35.27 33.91

✓ ✓ ✓ ✓ 71.79 49.46 30.26 15.22 94.87 82.28 63.73 35.48 34.02

Table 4: Evaluation Results of Different Amount of
Data for Acoustic-semantic Pre-training.

Data R@1, IoU=m mIoU
0.3 0.5 0.7

10% 46.71 28.22 13.33 31.71

50% 49.28 29.42 14.46 33.87

100% 49.46 30.26 15.22 34.02

Table 5: Effect of Conciseness Task.

Fusion Pre-Training R@1, IoU=m mIoU
0.5 0.7

Pool+Add w/o. Lconc 27.49 13.42 32.36
Pool+Add w. Lconc 27.24 13.38 32.28
Attention w/o. Lconc 27.07 13.06 31.88
Attention w. Lconc 28.68 13.95 33.04

proves performance significantly, e.g. 4.08 on
R@1,IoU=0.5 and 2.99 on R@1,IoU=0.7, since
it directly learns knowledge from word embedding.
Also, the conciseness task (Lconc) and acoustic-
visual contrastive learning (LAVCL) further bring
gains. Though the robustness task (Lconc) has no
significant effect, we have demonstrated its contri-
bution in the robustness analysis.

4.5.1 Analysis of ASP
Effectiveness under Low-resource Setting. As
shown in Table 4, under a low-resource setting,
our acoustic-semantic pre-training still achieves
comparable performance with limited data (50%),
showing excellent generalization capability.
Effect of Conciseness Task. To investigate
whether the conciseness task can promote cross-
modal interaction, we combine it with two differ-
ent fusion methods: attention-based fusion (Zhang
et al., 2019) and simple fusion that includes pool-
ing and addition. We remove the AVCL module to
better reflect the impact and list the results in Ta-
ble 5. It is observed that directly applying attention
leads to inferior results due to insufficient interac-

(a) Performance (b) Grouding Loss

Figure 5: Effect of Semantic Task.

Table 6: Extension of AVCL on Text-based Grounding.

Method R@1, IoU=m R@5, IoU=m

0.3 0.5 0.3 0.5

RTBPN 49.77 29.63 79.89 60.56
RTBPN+AVCL 50.87 30.96 84.27 64.68

tion. However, our conciseness task successfully
leverages the potential of the attention mechanism,
improving interaction significantly for grounding.
Effect of Semantic Task. We compare three ob-
jectives in our semantic learning task with the
method (Dong et al., 2021), which also includes
two similar semantic objectives: the seq-level loss
Ldis-s and the word-level loss Ldis-w. The differ-
ence is that they mainly focus on the distance loss
(e.g. MSE) to minimize the semantic gap. The re-
sult in Figure 5 (a) reveals that our sequence-level
objective Lseq can outperform Ldis-s+Ldis-w due to
the effectiveness of contrastive learning. And our
word-level objective Lword can also be seamlessly
combined to improve performance by a large mar-
gin. Besides, we draw the curve of grounding loss
Lbase during grounding training in Figure 5 (b) to
reflect the video-speech alignment. We find each
loss in semantic task speeds up convergence for
weakly-supervised grounding training.

4.5.2 Analysis of AVCL
Integration with Text-based Video Grounding.
AVCL is also a common module that can be inte-
grated into the weakly-supervised text-based video
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Figure 6: Visualization of Grounding Results.

grounding by replacing the speech features with
the word features. As shown in Table 6, our AVCL
module further improves the performance on the
strong basis of the RTBPN method, validating its
versatility and effectiveness.

4.6 Qualitative Analysis

Visualization of Grounding Results. Figure 6 de-
picts two grounding examples from the ActivityNet
Speech, where Base+SIL localizes the temporal
moments covering the most salient part. Compared
to two methods Base+VILT and ASR-RTBPN, our
SIL can localize more precise moments and achieve
better performance, validating its effectiveness.
Visualization of Speech Representations. To
qualitatively verify our acoustic-semantic pre-
training strategy, we use the pre-trained encoder
to extract the features of speech in the ActivityNet
Speech and visualize them using t-SNE in Figure 7
(a). We show three point pairs staying close in
the feature space. The two red points on the left
both describe the "jump" action, and the two yel-
low points on the top have similar "gun" and "hide"
meanings. Note each pair contains a few similar
words, indicating the close distance is determined
by semantic rather than acoustic information. Also,
we perform clustering with respect to four specific
words in Figure 7 (b). We observe there is a clear
boundary and symmetric relationship between the
four clusters. The above result demonstrates the
effectiveness of our pre-training strategy.
Visualization of Video-Speech Attention. We vi-
sualize the video-speech attention between the tar-
get frame and segments in Figure 8 using a thermo-
dynamic diagram, where the darker color means a
higher correlation and the temporal correspondence
between the transcript and speech is also shown.

Figure 7: Visualization of Speech Representations.

Figure 8: Visualization of Video-Speech Attention.

From the result, we observe that the frame can at-
tend to the segments temporally corresponding to
keywords, e.g. "lay", "crunches", and ignore other
irrelevant ones, e.g. "the", "on". This fact suggests
that our conciseness task can detect the word-level
segments and boost the cross-modal interaction.

5 Conclusion

In this paper, we propose a new task named Weakly-
Supervised Spoken Video Grounding and present a
novel framework SIL. Concretely, we conduct an
acoustic-semantic pre-training to achieve effective
and robust semantic encoding. Besides, we develop
an acoustic-visual contrastive learning to optimize
representations for cross-modal interaction. The
extensive experiments demonstrate the superiority
of our proposed method.

6 Limitations

In this section, we make a clear discussion of the
limitation of our work. Our work mainly leverages
a pre-training scheme to enhance the encoding of
speech for video grounding. However, the adopted
audio data (i.e. Libri Speech) for pre-training are
different from the one in the grounding dataset (i.e.
ActivityNet Speech). This could lead to perfor-
mance degradation due to the domain gap. The find-
ings could inspire the researchers to explore a better
pre-training strategy to learn domain-invariant and
effective speech representations for grounding.

7 Ethics Statement

We adopt the widely-used datasets that were pro-
duced by previous researchers. We follow all rele-
vant legal and ethical guidelines for their acquisi-
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tion and use. Besides, we recognize the potential
influence of our technique, such as its application in
human-computer interaction and vision-language
grounding systems. We are committed to conduct-
ing our research ethically and ensuring that our
research is beneficial. We hope our work can in-
spire more investigations for spoken video ground-
ing and wish our framework can serve as a solid
baseline for further research.
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This appendix contains four sections. (1) Ap-
pendix A introduces the detailed design of the base
grounding network. (2) Appendix B presents the
experiments details. (3) Appendix C provides addi-
tional analysis. (4) Appendix D describes the detail
and insight of our technique.

A Base Grounding Network

A.1 Feature Encoder
Video Encoder. For each video V , we first ex-
tract its features by a pre-trained 3D ConvNet (Tran
et al., 2015). Then we apply a linear layer to project
them to the hidden dimension d and utilize the QA
encoder blocks (Yu et al., 2018) to generate con-
textualized video representations V̄ = {v̄i}nv

i=1 ∈
Rnv×d, where nv is the clip number and d is the
hidden dimension.
Speech Encoder. The details of the speech en-
coder have been introduced in Section 3.3 in the
main paper. Note we do not introduce the concise-
ness task in our Base model, thus the I&F algorithm
is not utilized here.

A.2 Interaction
To model the video-speech interaction, we conduct
an attentive aggregation (Chen et al., 2019a; Zhang
et al., 2019), given by:

δij = u⊤
mtanh(U1

mv̄i +U2
ms̄j + bm),

δ̃ij =
exp(δij)∑nc
k=1 exp(δik)

,qi =

nc∑

j=1

δ̃ij s̄j
(9)

where U1
m,U2

m are projection matrices in the clip-
to-speech attention, bm is the bias and u⊤

m is the
row vector. The qi is the summarized speech fea-
ture relevant to the i-th clip. Then we concate-
nate them and apply a Bi-GRU network to yield
the multi-modal clip representations {mi}nv

i=1 ∈
Rnv×d.

A.3 Proposal Scorer
We follow 2D-TAN (Zhang et al., 2020b,c) to build
a 2D feature map F ∈ Rnv×nv×d as proposal fea-
tures. Then we apply a 2D convolution layer to ob-
tain the updated proposal features {hi}np

i=1, where
np is the number of the proposals. Finally, we ap-
ply a fully connected layer with sigmoid function
to generate proposal scores K = {ki}np

i=1.

A.4 MIL Training
Under the weakly-supervised setting, we follow the
MIL scheme to train the model. For each matched

video-speech pair (V, S), we randomly select an-
other video V ′ and speech S′ from the training set
to construct two negative pairs (V ′, S) and (V, S′).
We compute the alignment score f(K) for (V, S),
and compute f(KV ′) and f(KS′) for (V ′, S) and
(V, S′) similarly, where f(·) is the average of top-
R proposal scores and R it set to 20. We adopt
the binary cross-entropy (BCE) loss to learn the
cross-modal alignment by:

Lbase =− logf(K)− log(1− f(KV̄ ))

− logf(K)− log(1− f(KS̄)))
(10)

To stabilize the weakly-supervised training, we
also add a widely-used diversity loss (Chen et al.,
2019b; Zhang et al., 2020d) Ldiv for score distribu-
tion as:

k̄i =
exp(ki)∑R
i=1 exp(ki)

, Ldiv = −k̄ilog(k̄i) (11)

B Experiment Details

B.1 Dataset Details

ActivityNet Speech. The dataset (Xia et al., 2022)
constructs the speech annotations by employing 58
speakers to read the original text descriptions in
ActivityNet Captions (Caba Heilbron et al., 2015),
which contain 28 male speakers and 30 female
speakers. To guarantee the recording quality, all
the speakers are required to read smoothly without
a stammer. The average of each speech record-
ing is 6.22 seconds and about 124.3 hours in to-
tal. Following the standard split in (Zhang et al.,
2020b,c), there are 37,417, 17,505 and 17,031
moment-speech pairs used for training, validation
and testing, respectively.
LibriSpeech. To evaluate different scenarios with
respect to the amount of available training data,
we use the standard LibriSpeech (Panayotov et al.,
2015) division that includes 100, 460 and 960 hours
training data. We report the performance of the
model with 960 hours data for pre-training.

B.2 Implementation Details

Data Preprocessing. For video features, we split
them into 64 clips following previous work (Zhang
et al., 2020b). For speech input, we downsample
the speech sequence to 1/4 of its original length.
For log-mel spectrograms, we adopt a 16 kHz sam-
pling rate, a 25 ms Hamming window, a 20 ms
window stride, and 80 mel filter bands.
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Table 7: The Augmentation Configuration on Wave
Data of Speech. SNR is the signal-noise ratio.

Augmentation low medium high

time stretching (ratio) [0.8,1.25] [0.6,1.67] [0.5,2.0]
pitch shifting (step) [-2,2] [-4,4] [-6,6]

noise addition (SNR) [20,30] [10.20] [0,5]

Model Setting. The dimension d of hidden layers
is set to 256. The number Na and Ns of Trans-
former encoder layers are both set to 4. In con-
ciseness task, we follow (Dong and Xu, 2020) to
adopt the scaling and tail-handling strategy. The
non-auto-regressive decoder is an ordinary 4-layer
Transformer decoder. In semantic task, the CTC
decoder consists of a two-layer MLP, the number
B of negative samples for sequence-level objective
is set to 512, the number of Transformer decoder
layers for word-level objective is set to 4 and the
mask ratio x% is set to 50%. In acoustic-visual con-
trastive learning, the number T of positive/negative
samples is set to 12. For training, the loss coef-
ficients λ1, λ2 and λ3 are empirically set to 1.0,
1.0 and 0.1 respectively. We adopt an Adam opti-
mizer (Duchi et al., 2011) with the warmup updates
of 7000 and 200 and the learning rate of 0.0002
and 0.0003 for pre-training and grounding train-
ing, respectively. During inference, we apply the
non-maximum suppression (NMS) with a threshold
0.45 when selecting multiple proposals.
Training Step. For pre-training on the LibriSpeech,
we train the encoder with loss LASP for 40 epochs.
For weakly-supervised spoken video grounding
training on the ActivityNet Speech, we train the
model with loss LG for 10 epochs.
Experiment Configuration. The SIL is imple-
mented using PyTorch 1.9.0 with CUDA 10.0 and
cudnn 7.6.5. All the experiments are conducted
on a workstation with two NVIDIA GeForce RTX
2080Ti GPU.
Data Augmentation. In the robustness analysis,
we apply speech augmentation at three levels (low,
medium, high), as shown in Table 7. Time stretch-
ing means the change of speed/duration of speech
wave data without changing pitch. Pitch shifting
means the step change of speech pitch without
changing speed and duration. Noise addition means
adding the noise from ESC-50 (Piczak, 2015) to
original speech at the same sampling rate.

B.3 Baseline Setting

Cascaded Methods. For the ASR model, we adopt

Table 8: The Accuracy of ASR model on ActivityNet
Speech.

Method WER

wav2vec 2.0(adopted) 5.2817
Google API 9.5057

the pre-trained wav2vec2.0 model (Baevski et al.,
2020). To verify the accuracy of the ASR model on
ActivityNet Speech, we make a comparison with
the open API of Google ASR2 and the result is
shown in Table 8, which indicates that we do select
an effective ASR model. We then detail the archi-
tectures of the above weakly-supervised temporal
video grounding method. WSLLN (Gao et al.,
2019) fuses the visual proposals with the text and
conducts the proposal detection and alignment si-
multaneously, then generates final matching scores.
RTBPN (Zhang et al., 2020c) builds an enhanced
visual stream and a suppressed visual stream based
on a language-guided filter, then fuses them with
text and considers both the intra-sample and inter-
sample loss to train the model with additional reg-
ularization terms. It also adopts 2D-TAN (Zhang
et al., 2020b) as the backbone for proposal genera-
tion and modeling. SCN (Lin et al., 2020) utilizes
a Transformer decoder (Vaswani et al., 2017) to re-
construct the masked language based on the visual
proposals and rank them based on the reward.
• Performance of Original Text-based Methods.

To clearly show the effect of ASR on the ground-
ing, we also present the performance of original
text-based methods for reference. As shown in
Table 9, the performance of cascaded methods
is inferior to the original methods, especially on
some strict criteria on R@1, e.g. ASR-RTBPN
drops 2.02 on R@1,IoU=0.3 and 0.83 on R@1,
IoU=0.5. Meanwhile, we also observe stronger
baselines suffer from more severe degradation,
suggestting the limitations of cascaded meth-
ods even with an excellent ASR model. Fur-
ther, our proposed framework SIL is able to
achieve comparable even better results compared
with original text-based methods, e.g. 49.46 vs
49.77 on R@1,IoU=0.3 and 30.26 vs 29.63 on
R@1,Iou=0.5.

End-to-end Methods. We next introduce the de-
tailed architectures of the end-to-end baselines:
• Supervised Methods. VSLNet (Zhang et al.,

2020a) is originally proposed for text-based

2https://cloud.google.com/speech-to-text.
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Table 9: Performance Comparison Results on the ActivityNet Speech. The values in bracket denote the performance
of original text-based methods (when accuracy of ASR is 100%).

Method R@1,IoU=m R@5,IoU=m

0.1 0.3 0.5 0.1 0.3 0.5

ASR-WSLLN 74.47(75.40) 41.76(42.80) 22.62(22.70) - - -
ASR-SCN 71.35(71.48) 46.64(47.23) 28.09(29.22) 89.55(90.88) 71.32(71.45) 55.74(55.69)

ASR-RTBPN 74.62(73.73) 47.75(49.77) 28.80(29.63) 92.31(93.89) 77.52(79.89) 61.88(60.56)

SIL(Ours) 71.79 49.46 30.26 94.87 82.28 63.73

video grounding. It directly estimates the frame-
level probabilities of being boundaries, where
a cross-entropy loss is utilized to supervise the
probability distribution. We simply replace the
textual features with the log-mel spectrograms
features of speech. VGCL (Xia et al., 2022) is
directly proposed for spoken video grounding. It
utilizes matched frame-level features to perform
contrastive predictive coding for speech encoding
and then conduct grounding training.

• Weakly-supervised Methods. The Base adopts
80-dimensional log-mel spectrograms as the
speech input. Without pre-training, we re-
duce the layer number of Transformer en-
coder to 2 for speech encoding, which achieves
better and more stable performance. The
Base+Wav2vec2.0 adopts the 512-dimensional
vectors obtained from the last layer of pre-trained
wav2vec2.0 (Baevski et al., 2020) model as the
input speech features. It also follows the Base
architecture and reduces the layer number of
Transformer encoder to 2 for stability. The
Base+VILT follows the text-video multi-modal
pre-training strategy (Kim et al., 2021) to build
an 8-layer cross-modal Transformer encoder en-
coding both text and speech modalities. It de-
velops two tasks, where the text-speech match-
ing identifies whether this textual sentence cor-
responds to the speech and the language model-
ing randomly masks 15% of words for predic-
tion. We adopt the same word embedding and
speech input features as our SIL. We first pre-
train the encoder with 30 epochs and fix it. Dur-
ing grounding training, we apply another train-
able fully-connected layer with a Bi-GRU to en-
code speech and adopt the Base architecture. The
Base+LUT follows the speech recognition pre-
training (Dong et al., 2021) to build an 8-layer
Transformer encoder for speech. It develops the
knowledge distillation to learn word features at
sequence-level and word-level with MSE loss.

We adopt the same word embedding and speech
input features as our SIL. We first pre-train the
encoder with 30 epochs and fix it, then similarly
adopt the Base architecture for grounding. The
WSLLN+Lsem and RTBPN+Lsem both utilize
our semantic task to pre-train the speech encoder
while adopt the model architectures of WSLLN
and RTBPN for grounding training, respectively.
Similar to SIL, we pre-train the speech encoder
and fix it during grounding training. Note the
reconstruction-based methods utilizing the word
reconstruction can’t be applied to speech, thus
we do not combine our semantic task with SCN.
The Base+Lsem is our ablation model, with only
the semantic task as pre-training.

C Additional Analysis

C.1 Effect of ASP under Supervised Setting.

To better reflect the performance of our acousitc-
semantic pre-training, we further apply it to the
supervised approaches under the end-to-end frame-
work. We first build two baselines adopting
log-mel spectrograms as speech input features
without any pre-training for the speech encoder:
VSLNet (Zhang et al., 2020a) and SBase. The
SBase is the same as Base in Appendix B.3, but
we train it under the supervised setting. Here we
follow (Zhang et al., 2020b) to calculate the IoU
between each proposal and ground truth as the su-
pervision for the proposal score and utilize a binary
cross-entropy loss to train the model. Besides, we
also report the performance of VGCL (Xia et al.,
2022) which utilize matched video clips to per-
form contrastive predictive coding pre-training for
speech. Then we apply our acousitc-semantic pre-
training on the SBase model to pre-train the speech
encoder and then conduct supervised grounding
training. As shown in Table 10, our supervised
baseline SBase is inferior to VSLNet and VGCL.
However, with our acoustic-semantic pre-training
strategy, the approach SBase+ASP significantly
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Table 10: Effect of ASP module under Fully-Supervised Setting. FS: fully-supervised.

Method Setting Pre-Training R@1,IoU=m R@5,IoU=m mIoU
0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

VSLNet FS - 76.42 49.64 31.98 17.26 - - - - 35.92
VGCL FS VGCL 75.26 51.80 32.36 18.10 - - - - 36.83
SBase FS - 69.10 48.70 30.53 15.38 96.62 86.53 74.82 46.19 33.14
SBase FS ASP 79.02 59.61 40.32 21.00 95.18 86.11 76.10 49.26 40.54

Table 11: Effect of Sampling Strategies in AVCL.

Method R@1, IoU=m

0.1 0.3 0.5 0.7

SIL w/o. location 72.38 49.14 29.51 14.71
SIL w/o. score 72.62 48.96 29.28 14.42

SIL 71.79 49.46 30.26 15.22

outperforms other baselines, demonstrating the ef-
fectiveness of our ASP module for semantic learn-
ing even under the supervised setting.

C.2 Effect of Sampling Strategies in AVCL.

To evaluate two proposed sampling strategies in our
acoustic-visual contrastive learning, we generate
two ablation models SIL w/o. location and SIL
w/o. score. As shown in Table 11, removing
each sampling strategy will lead to performance
drop. We also note that score-based mining has a
larger impact than location-based selection. This is
because the former can more effectively filter out
hard negative samples, leading to a more precise
optimization for cross-modal interaction.

C.3 Hyper-parameter Analysis

Impact of Mask Ratio x%. We set the mask ratio
x% to [15%, 30%, 50%, 70%] to explore its impact.
We display the results in Figure 9 (a). We note
that the performance first gradually improves and
then slowly decreases with the increase of mask
ratio. When the mask ratio is set to 50%, the model
can achieve best performance. This phenomenon
is slightly different from the setting reported in
BERT (Devlin et al., 2018), where the ratio is set
to a small value 15%. This is because a larger
mask ratio in the word-level objective empowers
the decoder to predict the masked words based
on the speech input, reducing the dependence on
contextual features.
Positive/Negative Sample Number T . Since the
total clip number is set to 64, we set T to [3, 6, 12,
24] to study its effect. As shown in Figure 9 (b),
the performance first improves then decreases as

(a) Mask Ratio x% (b) Sample Number T

Figure 9: Hyper-parameter Analysis of the Mask Ratio
x% and the Sample Number T.

T increases and the AVCL module performs best
when T is set to 12. This observation suggests that
the limited samples fail to provide the encoder with
sufficient and discriminative features necessary for
effective distinction, while an excessive number
of samples introduce noisy and inaccurate features
that hamper performance.

D Technique Details and Insight

D.1 Insight of Robustness Task

Speech signals, as time series data, are easily bi-
ased by complex factors, such as large variations of
temporal dynamics across datasets, real-life noise
and irregular sampling (Zhang et al., 2022). Thus,
the speech encoder is required to be robust to ex-
tract valuable information from the speech, which
ensures stable training for the downstream weakly-
supervised spoken video grounding task.

To enhance the robustness of speech encoding,
our goal is to identify a general property that re-
mains consistent across diverse speech sequences.
Recent findings (Zhang et al., 2022) highlight the
advantages of a latent time-frequency space for rep-
resentation learning. By decomposing the speech
signal into the frequency and time domains, we can
view them as complementary perspectives of the
same data (Cohen, 1995). This relationship, rooted
in signal processing theory, provides an inherent
invariance that persists regardless of the distribu-
tion of time series (Flandrin, 1998; Eldele et al.,
2022), serving as an inductive bias for pre-training.
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As the consistency loss used in computer vision to
learn invariant features across different transforma-
tions (e.g., rotation, translation, scaling), it is both
reasonable and necessary to explore the time and
frequency domains in speech signals and enforce
the inter-domain consistency of encoded features,
ensuring the underlying invariance properties (i.e.,
semantics) are captured during pre-training.

D.2 Integrate and Fire Method
Integrate and Fire (Dong and Xu, 2020) is origi-
nally proposed for ASR field, we utilize it to auto-
matically detect the boundary and extract segment-
level features for the conciseness task. By inserting
it before the semantic learning, we can ensure each
segment serve as an independent semantic unit such
as a word and hence reduce the redundant infor-
mation of original long sequence that may cause
over-smooth cross-modal attention distribution.

As mentioned in Section 3.3.2, first, the input
acoustic sequence Sa = {sa,i}ns

i=1 will be fed to
a weight predictor consisting of a multi-layer per-
ceptron to obtain the weights G = {gi}ns

i=1, rep-
resenting the amount of information in Sa. Then
the I&F method scans and accumulates them from
left to right until the sum reaches the threshold θ
(set to 1.0), indicating a semantic boundary bj is
detected. Third, the current scanned weight gbj will
be split into two parts: lj and rj . The lj is used for
fulfilling the integration of the current segment sc,j
while rj is used for the next integration of sc,j+1.
Then, the I&F method resets the accumulation and
continues to scan the rest which begins with rj .
Finally, we multiply all gi by corresponding si and
integrate them based on detected boundaries to ob-
tain segment-level features Sc = {sc,i}nc

i=1, where
nc is the number of segments. The process can be
formulated as follows:

bj = argmin
t

(rj−1 +
∑t

i=bj−1+1
gi > θ),

rj = rj−1+
∑bj

i=bj−1+1
gi−T, lj = gbj−rj ,

sc,j = rj−1 ∗ sa,bj−1

+
∑bj

i=bj−1+1
gi ∗ sa,i + lj ∗ sa,bj

(12)

10930



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section 6.

�7 A2. Did you discuss any potential risks of your work?
It has no obvious risks.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Section 1.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �3 Did you run computational experiments?
Section 4.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix B.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

10931

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4 and Appendix B.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Appendix B.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

10932


