@inproceedings{jurgens-etal-2023-spouse,
title = "Your spouse needs professional help: Determining the Contextual Appropriateness of Messages through Modeling Social Relationships",
author = "Jurgens, David and
Seth, Agrima and
Sargent, Jackson and
Aghighi, Athena and
Geraci, Michael",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.616",
doi = "10.18653/v1/2023.acl-long.616",
pages = "10994--11013",
abstract = "Understanding interpersonal communication requires, in part, understanding the social context and norms in which a message is said. However, current methods for identifying offensive content in such communication largely operate independent of context, with only a few approaches considering community norms or prior conversation as context. Here, we introduce a new approach to identifying inappropriate communication by explicitly modeling the social relationship between the individuals. We introduce a new dataset of contextually-situated judgments of appropriateness and show that large language models can readily incorporate relationship information to accurately identify appropriateness in a given context. Using data from online conversations and movie dialogues, we provide insight into how the relationships themselves function as implicit norms and quantify the degree to which context-sensitivity is needed in different conversation settings. Further, we also demonstrate that contextual-appropriateness judgments are predictive of other social factors expressed in language such as condescension and politeness.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jurgens-etal-2023-spouse">
<titleInfo>
<title>Your spouse needs professional help: Determining the Contextual Appropriateness of Messages through Modeling Social Relationships</title>
</titleInfo>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Agrima</namePart>
<namePart type="family">Seth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jackson</namePart>
<namePart type="family">Sargent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Athena</namePart>
<namePart type="family">Aghighi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Geraci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Understanding interpersonal communication requires, in part, understanding the social context and norms in which a message is said. However, current methods for identifying offensive content in such communication largely operate independent of context, with only a few approaches considering community norms or prior conversation as context. Here, we introduce a new approach to identifying inappropriate communication by explicitly modeling the social relationship between the individuals. We introduce a new dataset of contextually-situated judgments of appropriateness and show that large language models can readily incorporate relationship information to accurately identify appropriateness in a given context. Using data from online conversations and movie dialogues, we provide insight into how the relationships themselves function as implicit norms and quantify the degree to which context-sensitivity is needed in different conversation settings. Further, we also demonstrate that contextual-appropriateness judgments are predictive of other social factors expressed in language such as condescension and politeness.</abstract>
<identifier type="citekey">jurgens-etal-2023-spouse</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.616</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.616</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>10994</start>
<end>11013</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Your spouse needs professional help: Determining the Contextual Appropriateness of Messages through Modeling Social Relationships
%A Jurgens, David
%A Seth, Agrima
%A Sargent, Jackson
%A Aghighi, Athena
%A Geraci, Michael
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F jurgens-etal-2023-spouse
%X Understanding interpersonal communication requires, in part, understanding the social context and norms in which a message is said. However, current methods for identifying offensive content in such communication largely operate independent of context, with only a few approaches considering community norms or prior conversation as context. Here, we introduce a new approach to identifying inappropriate communication by explicitly modeling the social relationship between the individuals. We introduce a new dataset of contextually-situated judgments of appropriateness and show that large language models can readily incorporate relationship information to accurately identify appropriateness in a given context. Using data from online conversations and movie dialogues, we provide insight into how the relationships themselves function as implicit norms and quantify the degree to which context-sensitivity is needed in different conversation settings. Further, we also demonstrate that contextual-appropriateness judgments are predictive of other social factors expressed in language such as condescension and politeness.
%R 10.18653/v1/2023.acl-long.616
%U https://aclanthology.org/2023.acl-long.616
%U https://doi.org/10.18653/v1/2023.acl-long.616
%P 10994-11013
Markdown (Informal)
[Your spouse needs professional help: Determining the Contextual Appropriateness of Messages through Modeling Social Relationships](https://aclanthology.org/2023.acl-long.616) (Jurgens et al., ACL 2023)
ACL