
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 11027–11052

July 9-14, 2023 ©2023 Association for Computational Linguistics

How Do In-Context Examples Affect Compositional Generalization?

Shengnan An∗†, Zeqi Lin‡, Qiang Fu‡, Bei Chen‡,
Nanning Zheng†, Jian-Guang LOU‡, Dongmei Zhang‡

† Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University
‡ Microsoft Corporation

{an1006634493@stu, nnzheng@mail}.xjtu.edu.cn
{Zeqi.Lin, qifu, beichen, jlou, dongmeiz}@microsoft.com

Abstract

Compositional generalization—understanding
unseen combinations of seen primitives—is an
essential reasoning capability in human intel-
ligence. The AI community mainly studies
this capability by fine-tuning neural networks
on lots of training samples, while it is still un-
clear whether and how in-context learning—the
prevailing few-shot paradigm based on large
language models—exhibits compositional gen-
eralization. In this paper, we present COFE,
a test suite to investigate in-context composi-
tional generalization. We find that the composi-
tional generalization performance can be easily
affected by the selection of in-context exam-
ples, thus raising the research question what
the key factors are to make good in-context ex-
amples for compositional generalization. We
study three potential factors: similarity, diver-
sity and complexity. Our systematic experi-
ments indicate that in-context examples should
be structurally similar to the test case, diverse
from each other, and individually simple. Fur-
thermore, two strong limitations are observed:
in-context compositional generalization on fic-
tional words is much weaker than that on com-
monly used ones; it is still critical that the in-
context examples should cover required linguis-
tic structures, even though the backbone model
has been pre-trained on large corpus. We hope
our analysis would facilitate the understanding
and utilization of in-context learning paradigm.

1 Introduction

Compositional generalization is an essential capa-
bility of human intelligence. It means to under-
standing and producing novel expressions by re-
combining known components in language (Chom-
sky, 1957; Montague, 1974; Fodor and Lepore,
2002). Taking examples in Figure 1, after learn-
ing the combination “baby in a room”, human in-
telligence can easily generalize to “Jackson in a
room”. On exploring this human-like capability

∗Work done during an internship at Microsoft Research.

Few-Shot

Examples

Input: Jackson observed a visitor in the taxi .

Output: OBSERVE (JACKSON , IN (VISITOR , TAXI))

Modify Object

Input: The goose rolled a baby in a room .

Output: ROLL (GOOSE , IN (BABY , ROOM))

…

Test Case
Input: Jackson in a room observed a baby .

Output: OBSERVE (IN (JACKSON , ROOM) , BABY)

Data Preparing For Testing

In-Context Compositional Generalization

In-Context Learning Paradigm

Large Language Model

Few-Shot Examples + Test Input

Sampled Sequence

Modify Subject

Figure 1: Test compositional generalization under in-
context learning. This case belongs to Phrase Recom-
bination in COFE. The phrases modify the objects in
examples but are recombined with subject in test input.

in deep learning models, several benchmarks such
as SCAN (Lake and Baroni, 2018), CFQ (Keysers
et al., 2019) and COGS (Kim and Linzen, 2020)
have been proposed based on semantic parsing1

tasks. In these benchmarks, the training set cover
all the primitives while lacking certain combina-
tions, and the test set focuses on these missing
combinations. By fine-tuning generic neural mod-
els on these benchmarks, much work reported that
these models exhibit poor compositional general-
ization (Furrer et al., 2020; Shaw et al., 2021; Bogin
et al., 2022).

Recently, in-context learning with large lan-
guage models exhibits impressive performance on
various tasks (Brown et al., 2020; Rae et al., 2021;
Wei et al., 2022). By conditioning on few-shot in-
context examples, the pre-trained language model,
with extremely large model size and pre-trained

1Semantic parsing means translating natural language (NL)
expressions into semantic representations (i.e., logical forms).

11027

corpus, can perform downstream tasks without any
update on pre-trained parameters.

Behind the impressive performance of in-context
learning, we are curious whether this prevailing
paradigm can take a step towards compositional
generalization. To investigate this, we first take an
initial exploration: for each test case in COGS, we
select in-context examples from its training set and
ensure that all primitives in each test case are cov-
ered by the equipped in-context examples. Our ini-
tial exploration suggests that compositional gener-
alization can be easily affected by in-context exam-
ples: with only covering primitives, davinci 175B
lags behind fine-tuned GPT2-Large with 24.2%
accuracy (similar to the observation in Qiu et al.
(2022)); with also covering some local structures
(inspired by Bogin et al. (2022)), davinci outper-
forms fine-tuned GPT2-Large with 3.9% accuracy.
Based on these initial observations, we raise and in-
vestigate the question: How do in-context examples
affect compositional generalization?

We construct the test suite COFE (based on
COGS) to facilitate our systematic investigation.
Taking the coverage of primitives as a basic prin-
ciple in COFE, we further define and inject three
factors in selecting in-context examples: similarity,
diversity, and complexity. Similarity is considered
as the matching of hidden structures behind con-
crete expressions. Diversity reflects whether the
context presents repeated patterns or not. Complex-
ity portrays the amount of information contained
in each example. By controlling these factors in
constructing COFE, we can systematically investi-
gate how would in-context examples influence the
performance on compositional generalization.

Our experiments demonstrate that all three fac-
tors matter for in-context compositional general-
ization. We leverage six large language models
in GPT series: davinci, code-cushman-001, code-
cushman-002, text-davinci-002, text-chat-davinci-
002, and code-davinci-002. The observations are
consistent across models: to better perform compo-
sitional generalization, all backbone models prefer
in-context examples with higher structural similar-
ity to the test case, higher diversity among different
examples, and lower complexity in each individ-
ual example. Furthermore, beyond the influence
from these factors, in-context compositional gen-
eralization still faces two challenges. One is that
in-context learning has difficulty recombining fic-
tional words (e.g., random tokens) rather than com-

monly used ones. The other one is that in-context
examples are still required to cover the linguistic
structures in NL expressions, even though the back-
bone model has been pre-trained on large corpus.

Our contributions are three-fold: 1) to answer
the research question posed, we investigate three
factors in selecting in-context examples and draw
consistent conclusions across models; 2) we con-
struct COFE to conduct our systematic investiga-
tion, and will release it to facilitate further explo-
ration of in-context compositional generalization;
3) we also point out two remaining challenges that
in-context learning still struggles to handle. We
hope our analysis would provide insights on how
to select proper in-context examples, and to shed
light on the future research of in-context composi-
tional generalization. COFE is publicly available
at https://github.com/microsoft/Contextua
lSP/tree/master/cofe.

2 In-Context Compositional
Generalization

In-context compositional generalization refers
to understand and produce novel combinations
through recombining the building blocks presented
by in-context examples. We first introduce some ba-
sic settings for testing this desired capability, then
show our initial observations.

2.1 Principles for Measuring In-Context
Compositional Generalization

To measure in-context compositional generaliza-
tion under a test suite, each test case and its
equipped in-context examples should satisfy two
principles.

• Combination held-out principle: to test
generalization on certain combinations, in-
context examples should exclude these com-
binations while test cases contain them.

• Primitive coverage principle: the primitives
contained in each test case should be fully cov-
ered by in-context examples. Primitives are
the minimum indivisible units in expressions.
In this work, we mainly consider primitives as
lexical items (e.g., the noun “baby” and the
verb “observed” in Figure 1).

We say that a model exhibits in-context composi-
tional generalization if it performs well on a test
suite that satisfies these two principles.

11028

https://github.com/microsoft/ContextualSP/tree/master/cofe
https://github.com/microsoft/ContextualSP/tree/master/cofe

Category In-Context Examples Test Case Illustration of Combination

Primitive

Substitution

Primitive

Structural Alternation

Phrase

Recombination

Longer

Chain

Deeper

Nesting

input: shark

output: SHARK

input: A girl drew the boy .

output: DRAW (GIRL , BOY , NONE)

input: The shark drew a boy .

output: DRAW (SHARK , BOY , NONE)

𝐗𝑁𝐗𝐿
+

𝐗𝑆1
input: The goose baked .

output: BAKE (GOOSE , NONE , NONE)

input: A teacher noticed a chicken .

output: NOTICE (TEACHER , CHICKEN , NONE)

input: A teacher baked the chicken .

output: BAKE (TEACHER , CHICKEN , NONE) +

𝐗𝑆1 𝐗𝑆2

input: Logan mailed Stella the cake in the pile .

output: MAIL (LOGAN , IN (CAKE , PILE) , STELLA)

input: The goose rolled a baby in a room .

output: ROLL (GOOSE , IN (BABY , ROOM) , NONE)

input: A visitor in the pile rolled a resident .

output: ROLL (IN (VISITOR , PILE) , RESIDENT , NONE)

𝐗𝑆1
+

𝐗𝑆2

input: The boy admired that Noah confessed that \

Emma was given a cookie .

output: ADMIRE (BOY , NONE , NONE) \

CCOMP CONFESS (NOAH , NONE , NONE) \

CCOMP GIVE (NONE , COOKIE , EMMA)

input: The girl wished that a crocodile declared that \

the boy admired that Emma liked that \

Evelyn was passed a drink .

output: WISH (GIRL , NONE , NONE) \

CCOMP DECLARE (CROCODILE , NONE , NONE) \

CCOMP ADMIRE (BOY , NONE , NONE) \

CCOMP LIKE (EMMA , NONE , NONE) \

CCOMP PASS (NONE , DRINK , EVELYN)

𝐘𝑆𝑛 𝑛 times

recursion

input: Noah appreciated a girl in a house \

beside the chair .

output: APPRECIATE (NOAH , \

IN (GIRL , \

BESIDE (HOUSE , CHAIR\

)) , NONE)

input: A dog painted the girl beside the chair \

in a house beside a road on a dish .

output: PAINT (DOG , \

BESIDE (GIRL , \

IN (CHAIR , \

BESIDE (HOUSE , \

ON (ROAD , DISH\

)))) , NONE)

𝐘𝑆𝑛 𝑛 times

recursion

𝐗𝐿
𝐗𝑁

Figure 2: Five categories of aiming combinations. The key parts in combinations are marked with underlines and
colors (blue in NL-side and purple in code-side). The last column follows the notations defined in Section 3.2.

2.2 COGS (Under In-Context Learning)

COGS is a compositional generalization bench-
mark designed for the fine-tuning paradigm: based
on a semantic parsing task, the training set of
COGS covers all primitives in this task, while sev-
eral combinations of primitives in the test set are
excluded from the training set. We term these ex-
cluded combinations as aiming combinations.

We measure in-context compositional generaliza-
tion based on COGS, by converting it from the orig-
inal fine-tuning paradigm to the in-context learning
paradigm. For each COGS test case, we select
in-context examples from the training set B, en-
suring that the two principles are satisfied. Note
that, for each test case, there are usually different
collections of in-context examples satisfying the
two principles. Our basic setting is to use a random
one among them, and we show that this casual strat-
egy could lead to an underestimation of in-context
compositional generalization (Section 2.3).

To facilitate testing on more complex logical
forms, we reconstruct some target-side clauses
from the chain structure into the nested-function
format (illustrated in Figure 2). This reconstruction
follows An et al. (2023) and is similar to the con-
version from Lambda calculus to FunQL in Geo
domain(Zelle and Mooney, 1996; Kate et al., 2005;
Zettlemoyer and Collins, 2012). Moreover, to im-
prove human readability, we omitted two types of
details: the special marker for definite descriptions
and the Skolem constants. These details do not
affect the testing of compositional generalization.

Apart from these omitted details, the logical forms
in COFE unambiguously represent the main seman-
tics in the domain of COGS, such as semantic roles,
modifications, and orders among clauses and modi-
fications. More details about COFE logical forms
are contained in Appendix A.

Categories of aiming combinations. The aim-
ing combinations in COGS can be divided into
five categories, of which two are low-level combi-
nations (i.e., focusing on specific primitives) and
three are high-level combinations (i.e., focusing
on high-level structures), illustrated in Figure 2.

• Primitive Substitution (PrimSubs): Compose
a primitive (e.g., “shark”) with a grammatical
role (e.g., “subject”).

• Primitive Structural Alternation (PrimAlte):
Compose a primitive (e.g., “baked”) with a
sentence structure (e.g., “subj. verb obj.”).

• Phrase Recombination (PhraReco): Compose
a prepositional phrase (e.g., “A in B”) with a
grammatical role (e.g., “subject”).

• Longer Chain (LongChain): Extend the tail
of the logical form with CCOMP clauses ∈ Y1

S .
The max recursive times of CCOMP clauses in
B is 2, while in test case it is 12.

• Deeper Nesting (DeepNest): Expand the ar-
guments in functions with IN/ON/BESIDE
clauses ∈ Y1

S . The max recursive times in B
and test cases are the same with LongChain.

Note that PrimSubs and PrimAlte are low-level
combinations while others are high-level ones.

11029

40

60

80

100
A

c
c
u
ra

c
y
 (

%
)

Casual Selection With Preference

davinci

GPT2-Large

cushman001 cushman002 text002 chat002 code002

Figure 3: Initial observations on PrimSubs: casual selec-
tion leads to low performance while adding preference
brings considerable gains.

2.3 In-Context Learning vs Fine-Tuning
Compositional generalization under the fine-tuning
paradigm has been widely studied (Furrer et al.,
2020; Shaw et al., 2021; Bogin et al., 2022), while
there is little observation under in-context learn-
ing. To first get a general sense about in-context
compositional generalization, we conduct an initial
exploration to compare with a fine-tuning baseline.

Models and setups. We test in-context composi-
tional generalization with six large models in GPT
series: davinci, code-cushman-001 (cuchman001),
code-cushman-002 (cuchman002), text-davinci-
002 (text002), text-chat-davinci-002 (chat002), and
code-davinci-002 (code002). The sampling tem-
perature is 0 (i.e., greedy decoding), and the max
decoding length is 500. The reported metric is
exact-match accuracy. To set a fine-tuning base-
line, we take GPT2-Large with 0.7B parameters.
We fine-tune it on the whole B and test without
in-context examples. We set learning rate as 1e-5
and batch size as 8 during fine-tuning, and set beam
size as 5 for inference. Appendix B includes more
details.

Casual selection leads to low performance of
in-context compositional generalization. For
selecting in-context examples, we first take a casual
selection: while satisfying the primitive coverage
principle, we randomly select 10 examples without
other preference. We conduct initial exploration
on PrimSubs category. Figure 3 shows that under
the casual selection, all six models lag behind the
fine-tuned GPT2-Large on PrimSubs. In particular,
although the size of davinci is more than 200 times
that of GPT2-Large, there is a 24.2% accuracy gap
between davinci and the fine-tuned GPT2-Large.
These observations are close to Qiu et al. (2022).

However, we suppose the potential of in-context
learning is still not fully revealed. Specifically, the
selection of in-context examples does not yet take
full advantage of available examples in B. In next
try, while still following the primitive coverage

principle, we consider injecting some additional
preference in the selection of in-context examples.

Preference in selection could bring huge im-
provement on PrimSubs. Inspired by Bogin et al.
(2022) that suggests the influence of unobserved
local structures, we consider to prioritize examples
that have similar hidden structures to the test case.
Figure 3 shows that with this preference in selec-
tion, results on PrimSubs hugely change: davinci
now outperforms the fine-tuned GPT2-Large; code-
davinci-002 even performs near-perfectly. These
changes strongly suggest that the selection of in-
context examples can significantly affect in-context
compositional generalization.

Based on these initial results, to further reveal
the potential of in-context learning, we perform
in-depth investigations on how the selection of in-
context examples affects compositional generaliza-
tion.

3 Factors Under In-Context Examples

To facilitate our systematic investigation, we con-
struct COFE (COmpositional generalization with
FEw-shot examples), which is derived from COGS.
For selecting in-context examples in constructing
COFE, we identify, inject, and control three poten-
tial factors: similarity, diversity, and complexity.

3.1 Conceptual Definitions

We first give conceptual definitions of our consid-
ered factors and discuss our intuitions behind them.

Similarity has been widely considered as the
main factor in selecting in-context examples (Liu
et al., 2022; Shin et al., 2021; Rubin et al., 2021;
Poesia et al., 2021). The primitive coverage prin-
ciple can be regarded as a basic lexical similarity
on the surface of expressions. Beyond this surface
similarity, we consider that the structural similar-
ity hidden behind expressions could be a beneficial
factor. From the view of syntactic structure, the
recombination of primitives is equivalent to the re-
construction of the parse tree. Similar structures
would ease the difficulty of recombination because
the model does not need to completely reconstruct
the entire structure of in-context examples. More-
over, some work has suggested that the challenge
of compositional generalization under fine-tuning
lies in unobserved structures (Keysers et al., 2019;
Shaw et al., 2021; Bogin et al., 2022).

11030

Diversity concerns the repetitiveness among in-
context examples. It portrays the property among
in-context examples. Specifically, the context is
under low diversity if it contains many repeating
patterns among in-context examples, otherwise it
is under high diversity. Under in-context learning,
the low diversity can easily lead to biased observa-
tions on the full task space, as there are only few
examples for the model to learn. Thus, we suppose
that the low diversity among examples could block
in-context compositional generalization. Moreover,
some work also demonstrated that the diversity in
training data could affect compositional generaliza-
tion under fine-tuning (Oren et al., 2021).

Complexity reflects the amount of information
contained in each individual in-context example.
The higher complexity means that the example
could provide more information to the model, but
these information could be redundant. In addition,
the difficulty in directly learning from complex
examples has been flagged at the intersection of
cognitive science and machine learning (Elman,
1993; Bengio et al., 2009). Such difficulty may
be more severe for in-context learning, since the
parameters of the model cannot be updated to fit
these complex examples. Thus, we suppose that
too high complexity might hinder performance.

3.2 Incorporate Three Factors Into Test Suite

To inject these factors in selecting in-context ex-
amples, we design a matching score based on the
parse trees behind concrete expressions. Formally,
considering the primitive coverage, structural simi-
larity, diversity and complexity, the matching score
of two parse trees T and T′ is defined as follows,

Match(T,T′) =wp · |P(T) ∩ P(T′)|+
ws · |S(T) ∩

[
S(T′)−S(C)

]
|−

wc · depth(T′),
(1)

in which P(·) contains primitives, S(·) contains
partial structures (defined later), C contains al-
ready selected examples, S(T′) − S(C) means to
exclude already covered parts in S(C) from S(T′),
and depth(·) reflects the complexity of the tree.

The meaning of three factors in Equation 1 is
that: the structural similarity means covering S(T),
the high diversity means to avoid repeatedly cov-
ering the same element in S(T), and the low com-
plexity is to prioritize low-depth structures.

Jackson observed a baby

subject verb object

root
𝐓𝑺𝟏 𝐓𝑺>𝟏

④

①

② ③

Jackson observed a baby

subject verb object

root①+②+④

Figure 4: T1
S and T>1

S in the parse tree of the ex-
pression “Jackson observed a baby”. T1

S contains
four one-depth sub-structures . We only illustrate one

combination ∈ T>1
S composed from ① , ② and ④

∈ T1
S . TL are in bold and TN are with underlines.

Based on this matching score, the overall ranking
score between the test case (X,Y) and a candidate
(Xc,Yc) is calculated as follows,

scorec = Match(X,Xc) + Match(Y,Yc), (2)

in which both the matching of source side (i.e., NL
expressions) and target side (i.e., logical forms) are
considered. Poesia et al. (2021) has demonstrated
the importance of target-side similarity in semantic
parsing and code generation tasks, and this work
will further investigates the necessity of source-side
matching. In the following, we will give a more
detailed description of notations in Equation 1.

Detailed description: Figure 4 shows an illustra-
tion of notations. Considering an expression e with
the parse tree T, TL represents leaf nodes (e.g.,
“Jackson”) and TN contains internal nodes (e.g.,
“subject”). T1

S contains one-depth sub-structures
in T. Each T1

s ∈ T1
S (e.g., ① in Figure 4) con-

tains one parent node (e.g., “root”) and a set of
child nodes (e.g., “subject”, “verb” and “object”).
T>1

S contains deeper sub-structures that are com-
posed from several one-depth sub-structures in T1

S

(e.g., ①+②+④ in Figure 4). In Equation 1, the
primitives P(T) = TL, and the partial structures
S(T) = T1

S∪T>1
S . Note that aiming combinations

⊂ S(T). Appendix E includes more details.

4 Experiments and Analysis

4.1 Experimental Settings and
Hyper-Parameters

We take a greedy-search algorithm to sequentially
select 10 examples for each test case. Models
and setups follow our initial explorations in Sec-
tion 2.3. For the investigation of each factor, hyper-
parameters in Equation 1 are set as follows2.

2Appendix C contains our detailed implementations.

11031

Table 1: Results with (and without) structural similarity. Grey boxes mark the significantly better performances
compared to the fine-tuned GPT2-Large.

Model Setting PrimSubs PrimAlte PhraReco LongChain DeepNest Avg. Acc

code-davinci-002
Primitive Coverage 92.2 77.1 60.8 62.1 12.3 60.9
+ Structural Similarity 99.8 99.7 65.3 87.0 26.0 75.6

text-chat-davinci-002
Primitive Coverage 92.2 75.4 47.0 65.0 6.3 57.2
+ Structural Similarity 99.5 99.3 53.4 87.7 18.9 71.8

text-davinci-002
Primitive Coverage 88.5 66.4 38.7 46.5 2.9 48.6
+ Structural Similarity 99.7 99.4 39.4 80.2 12.7 66.3

code-cushman-002
Primitive Coverage 82.6 55.6 21.3 29.3 5.0 38.8
+ Structural Similarity 98.9 99.0 28.5 64.0 15.1 61.1

code-cushman-001
Primitive Coverage 76.6 60.7 16.9 5.0 1.0 32.0
+ Structural Similarity 99.1 98.4 20.7 11.1 8.9 47.6

davinci
Primitive Coverage 69.4 52.3 9.4 2.3 0.2 26.7
+ Structural Similarity 97.5 95.4 12.3 13.4 1.4 44.0

Fine-Tuning Baseline - 93.6 97.9 14.0 5.4 0.0 42.2

In all settings, we prioritize the matching of prim-
itives (i.e., |P(T) ∩ P(T′)| in Equation 1) since the
primitive coverage principle should be firstly sat-
isfied. Concretely, we set wp = 100 and ensure
wp ≫ ws and wc in all settings.

For investigating structural similarity3, we set
ws = 1 and wc = 0, and exclude S(C) term.

For investigating the effect of higher diversity,
we add the S(C) term and keep other settings.

For complexity, we set |wc|·max(depth(T′)) <
ws, such that the of preference of complexity will
not influence the priority of structural similarity.
Concretely, as max(depth(T′)) = 12 in COFE,
we set wc = 0.01 for the low-complexity exper-
iments and wc = −0.01 for the high-complexity
experiments, and exclude S(C) term.

Some basic statistics for COFE under full similar-
ity setting are listed in Table 2, and Appendix C.5
contains statistics under other settings. These stat-
ics show that the primitive coverage principle is
well satisfied, since the cover rates of TL are al-
most 100%. Note that the coverage on T1

S ∪T>1
S

must be lower than 100% since the aiming combi-
nation must be excluded.

4.2 Similarity

Structural similarity brings significant gains.
Table 1 shows the performance with structural sim-
ilarity. Compared to the results without structural
similarity (i.e., only with the coverage on primi-
tives), there are considerable gains on all five cat-
egories and across all six models. These gains
clearly demonstrate that beyond primitive coverage,
the structural similarity under in-context examples

3This setting is named full similarity setting.

are essential for compositional generalization.

More precise structural similarity brings larger
gains. As mentioned in Section 3.2, the structural
similarity considers to match S(T) which contains
two parts, T1

S and T>1
S . Specifically, we regard

that T1
S describes the rough structure of T, and

T>1
S determines a more precise structure. Based

on the results in Table 1, we are curious about
whether a rough structural similarity is enough.
To verify this, we remove T>1

S from S(T), which
means that now we do not restrict the selected in-
context examples to match precise structures in test
cases. Figure 5 shows that the performances on
four categories significantly drop with only a rough
structural similarity, indicating that matching the
precise structure of test case is still required for
in-context examples. The only exception lies in
PhraReco. It suggests that similarity is not the
only influential factor for in-context compositional
generalization. In Section 4.3, we will show that
the low diversity and high complexity potentially
cause this exception.

With structural similarity, low-level combina-
tions are almost solved while high-level combi-
nations still have large room for improvement.
Specifically, for code-davinci-002, which exhibits
the best performance among all backbone models,
it performs near-perfectly on low-level combina-
tions (i.e., PrimSubs and PrimAlte) while still does
not achieve >95% accuracy on high-level combina-
tions (i.e., PhraReco, LongChain and DeepNest).
Although in-context learning greatly exceeds the
fine-tuning baseline on high-level combinations,
we suppose there is still potential for improve-
ment. Compared to low-level combinations, han-

11032

Table 2: Basic statistics of COFE.

Statistics Number of Instances
Average Coverage Average Length

TL TN T1
S T>1

S Context Case Input Case Output

Test Cases 4,785 99.7% 100% 88.9% 49.3% 297.7 17.8 33.7
- PrimSubs 1,100 100% 100% 79.8% 45.1% 236.7 7.1 11.5
- PrimAlte 700 100% 100% 96.6% 59.7% 269.4 7.9 13.8
- PhraReco 1,000 100% 100% 84.4% 19.8% 254.0 10.7 16.9
- LongChain 1,000 99.8% 100% 97.8% 76.7% 370.6 32.4 76.7
- DeepNest 985 98.8% 100% 89.0% 48.6% 356.4 29.0 46.3

Example Bank 24,155 - - - - - 7.5 10.5

dling high-level ones requires more creation than
imitation, thus just considering similarity for in-
context examples is not enough. In the following,
we will further investigate these high-level combi-
nations from the view of diversity and complexity.

4.3 Diversity and Complexity

High diversity brings considerable gains on
PhraReco. Figure 6 shows how diversity among
in-context examples affects generalization on high-
level combinations. It shows that increasing the di-
versity could bring considerable gains in PhraReco,
while not affecting the other two categories. For
the performance on PhraReco, the improvements
from higher diversity are in line with our specu-
lations in Section 3.1, that low diversity leads to
biased observations, thus blocking high-level struc-
tural generalization. For LongChain and DeepNest,
beyond biased structures, their difficulty also lies
in length generalization, thus just increasing struc-
tural diversity brings less effect to them.

Low complexity brings considerable gains on
PhraReco. Figure 7 shows how the complexity in
each individual example affects generalization on
high-level combinations. For PhraReco, there are
∼10% gains in accuracy when the high complexity
setting is changed to low complexity setting. We
suppose the reason behind this gain is that simple
examples could reduce the learning difficulty for
the model. Moreover, simple examples also contain
less redundant information thus would not confuse
the model4. For LongChain and DeepNest, there
is still less change on performance. Note that the
max depth in these two categories is 13 while the
max depth in the whole example bank is only 3.
Therefore, changing the complexity of in-context
examples would bring negligible influence for test
cases in LongChain and DeepNest.

4Note that low and high complexity settings keep the same
coverage rate on S(T), as demonstrated in Appendix C.5.

Table 3: Results under different prompt orders (full
similarity setting). ∆ represents the max difference in
performance for each model.

Model Structure Closer Atom Closer Random Order ∆

code-davinci-002 75.6 74.2 74.5 1.4
text-davinci-002 66.3 66.0 66.3 0.3

code-cushman-002 61.1 60.0 60.1 1.1
code-cushman-001 47.6 48.2 47.3 0.9

davinci 44.0 43.6 42.5 1.5

4.4 Analysis: Robustness to Prompt Order
Some previous work on in-context learning showed
that the order of exemplars in prompt could
sometimes hugely influences the performance of
LLMs (Zhao et al., 2021; Lu et al., 2022). Here,
we examine whether our observations above are
sensitive to the prompt order. Based on the full
similarity setting (Section 4.2), we consider three
different strategies for ordering exemplars: 1) ran-
dom order; 2) atom closer: exemplars with higher
coverage on atomic blocks are placed closer to the
test input; 3) structure closer (default): examples
with higher similarity on linguistic structures are
placed closer to the test input. Implementations of
different strategies for prompt order are detailed in
Appendix C.3.

Results in Table 3 show that the performance
only slightly changes under different prompt orders.
These results indicate that the main results revealed
by COFE is consistent and reliable. It also indicates
that in-context learning could be less sensitive to
the prompt order when the in-context examples are
chosen properly.

4.5 Discussion: Difficulty in DeepNest
Among all five categories, in-context learning per-
forms worst on DeepNest. Compared to LongChain
which also test recursive structures, the results on
DeepNest still lag far behind. There is an interest-
ing observation from the study of error cases (such
as Figure 10): in-context learning frequently makes
word-level mistakes, while the overall nested struc-

11033

0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

PrimSubs PrimAlte PhraReco LongChain DeepNest

w/o Structural Similarity

code002 text002
0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Rough Structural Similarity Precise Structural Similarity

code002 text002 code002 text002 code002 text002 code002 text002

Figure 5: Performance of code-davinci-002 and text-davinci-002 with different levels of structural similarity.

0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

PhraReco

Low Diversity

code002 text002
0

20

40

60

80

100

LongChain

0

20

40

60

80

100

DeepNest

High Diversity

code002 text002 code002 text002

Figure 6: Performance under different diversity settings
(on high-level combinations).

20

40

60

80

A
c
c
u

ra
c
y
 (

%
)

Low Complexity

40

60

80

100

0

20

40

60

Mid Complexity High Complexity

PhraReco LongChain DeepNest
code002 text002 code002 text002 code002 text002

Figure 7: Performance under different complexity set-
tings (on high-level combinations).

ture in the prediction is close to the ground truth. It
suggests that the performance bottleneck in Deep-
Nest is to correctly fill the details in the complex
structure, rather than generating the sketch of the
structure. Appendix F.1 provides further analysis.

5 Remaining Challenges

Our investigation has revealed a huge potential of
in-context learning on performing compositional
generalization5. Despite this potential, for achiev-
ing the ideal in-context compositional generaliza-
tion, there remains the following two challenges.

In-context examples are still required to match
linguistic structures in NL expressions. Since
all backbone models have been pre-trained on large
natural language corpus, we expect that these mod-
els could already handle the high variety in NL
expressions without further hints from in-context
examples. Motivated by this, we conduct experi-
ments on another variant of COFE: the source-side
term Match(X,Xc) is removed from Equation 2,
and the coverage of S(X) is limited (detailed in
Appendix C.6). Figure 8 shows that on all five cat-
egories, the performance consistently drops if in-

5Appendix G shows the results of assembling factors.

context examples do not match the NL-side struc-
ture. It suggests that even having been pre-trained
on large corpus, in-context learning still struggles
to effectively recognize the semantic equivalence
among different linguistic structures behind NL
expressions (detailed in Appendix F.3).

In-context learning has difficulty leveraging fic-
tional words6. The ideal compositional general-
ization requires that the recombination of primi-
tives should be independent of the surface form in
primitives. In COFE, we set the target-side prim-
itives as the uppercase of source-side ones (e.g.,
“cat”→“CAT”). Such case conversion is commonly
used in semantic parsing tasks. To test whether
in-context learning could use fictional words, we
replace each target-side word with random char-
acters (e.g., replace “CAT” with “MXR”, detailed
in Appendix C.7). Figure 9 shows the huge drops
after changing words. Moreover, we investigate the
structural accuracy by only keeping the structural
terminals (e.g., parentheses and commas) in predic-
tions. Figure 9 shows that the structural accuracy
is also affected by fictional words. It indicates that
on performing in-context compositional general-
ization, the prediction of structural sketch is not
decoupled with word-level patterns.

6 Related Work

Compositional generalization (CG) has attracted
much attention in NLP field. Most existing bench-
marks measured CG under fine-tuning with syn-
thetic semantic parsing tasks, suggesting the limita-
tions of general-purpose neural networks (Lake and
Baroni, 2018; Keysers et al., 2019; Kim and Linzen,
2020). Many approaches were proposed to enhance
the CG on general-purpose models (Andreas, 2020;
Akyürek et al., 2020; Guo et al., 2021; Oren et al.,
2021; Shaw et al., 2021; Zhu et al., 2021) or de-
sign task-specific methods (Liu et al., 2020; Herzig

6The term “fictional words” means that these words are
made up by us, so that large language models hardly encounter
them during pre-training. Here, we generate fictional words
by drawing random characters from the alphabet.

11034

0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

PrimSubs PrimAlte PhraReco LongChain DeepNest

Without Matching NL-Side

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Matching Both Side

code002 text002 code002 text002 code002 text002 code002 text002 code002 text002

Figure 8: Performance with or without matching linguistic structures in NL expressions.

0

20

40

60

80

A
c
c
u

ra
c
y
 (

%
)

code-davinci-002 text-davinci-002 code-cushman-002
0

20

40

60

80

0

20

40

60

80

Fictional Words
Fictional Words
(Structural Acc) Commonly Used Words

34.7%
34.1% 27.6%

Figure 9: Average exact-match accuracy and structural
accuracy with fictional words.

and Berant, 2021; Chen et al., 2020; Liu et al.,
2021). Some influential factors that affect CG have
been revealed, such as the length bias (Csordás
et al., 2021), target-side format (Furrer et al., 2020;
Herzig et al., 2021) and local structures (Bogin
et al., 2022). Most existing work explored CG
under the fine-tuning paradigm, while our work ad-
vances the exploration under the in-context learning
paradigm.

In-context learning (ICL) along with large lan-
guage models (LLMs) has shown surprising per-
formance in many NLP tasks (Brown et al., 2020;
Hendrycks et al., 2020; Patel and Pavlick, 2021;
Rae et al., 2021; Zhang et al., 2022a; Hoffmann
et al., 2022; Srivastava et al., 2022; Chowdhery
et al., 2022; Smith et al., 2022; Wei et al., 2022).
Most related to our work, Qiu et al. (2022) and
Drozdov et al. (2022) also explored ICL on CG
challenges. Qiu et al. (2022) utilized the target-
side similarity on structural fragments and reported
that LLMs still exhibited much poorer CG than fine-
tuned small models on COGS, which is close to our
initial observations. Drozdov et al. (2022) designed
task-specific inference pipelines for performing CG
under a least-to-most manner. Our work provides
more general understandings on how to improve
CG performance by revealing several factors in
selecting in-context examples. In addition, some
more recent work has similar observations on the
potential of LLMs on CG (Hosseini et al., 2022),
gains from diversity (Levy et al., 2022), and chal-
lenges under fictional words (Kim et al., 2022)

Selection of in-context examples is an essential

APPRECIATE (CAT , BESIDE (GIRL , IN (BUCKET , BESIDE (HOUSE , IN

(STAGE , BESIDE (BOX , BESIDE (BED , BIKE)))))) , NONE)

APPRECIATE (CAT , BESIDE (GIRL , BESIDE (BUCKET , IN (HOUSE , BESIDE

(STAGE , IN (BOX , BESIDE (BED , BESIDE (BIKE , NONE)))))) , NONE)

Ground Truth:

Prediction from code-davinci-002:

Figure 10: An error case in DeepNest (full similarity
setting) with wrong local words and redundant parts.

part for the utilization of ICL. Most existing work
considered the similarity as the major metric dur-
ing selection. Liu et al. (2022) selected k-nearest
neighbors with similar sentence embeddings; Shin
et al. (2021) regarded the conditional probability
from a pre-trained LLM as the similarity score; Ru-
bin et al. (2021) and Zhang et al. (2022b) separately
trained a retriever to score the similarity; Poesia
et al. (2021) and Madaan et al. (2022) estimated the
target-side similarity. This work demonstrates the
necessity of structural similarity in achieving CG,
and also reveals the importance of two other factors
beyond similarity, i.e., diversity and complexity.

7 Conclusion and Future Work

This work investigates how in-context composi-
tional generalization is affected by the selection
of examples. The test suite COFE is constructed
to study three factors. Experiments show the ef-
fects of structural similarity, higher diversity and
lower complexity. Two challenges under in-context
compositional generalization are further revealed.

To apply our revealed factors outside the COFE

test suite, one main challenge for future work is
to determine the hidden structures behind expres-
sions without knowing the exact generative gram-
mar. Here, we consider two potential approaches.
One is to use a pre-trained parser to generate a
parse tree for the input query and then measure tree
similarity. The other approach is to pre-train an
embedding model with a structure-aware training
objective and then compute embedding similarity.

11035

Limitations

GPU resources. This work utilizes extremely
large language models and thus has a high cost
on GPU resources. Concretely, experiments are
conducted on the 8 x NVIDIA A100 GPU station.
The maximum inference time on each version of
COFE (containing 4,785 test cases) is ∼ 8 hours.
The maximum estimation of costed computing re-
sources in this study is ∼ 500 x 8 GPU hours.

Synthetic data. As in most previous work on
compositional generalization (Lake and Baroni,
2018; Keysers et al., 2019; Kim and Linzen, 2020),
the COFE dataset is constructed using synthetic
data rather than natural one. The source-side sen-
tences in COFE are from COGS, which account
for 70–80% of naturally-occurring English sen-
tences (Kim and Linzen, 2020; Roland et al., 2007).
Thus, this synthetic test suite could be close to the
real-world application scenarios.

Single run. Due to the high cost on computing re-
sources, we do not take multiple runs with different
sets of examples, nor did we take multiple samples
with temperature > 0. Observations under different
prompt orders (in Appendix 4.4) imply that with
desired factors in selecting in-context examples,
there could be low variance in experiments.

Ethics Statement

Due to the utilization of pre-trained language mod-
els, this work could be exposed to some potential
risks of ethical issues on general deep learning mod-
els (such as social bias and privacy breaches). As
explored in this work that the model behavior can
be hugely influenced by the provided context, we
call for further investigation into how ethical issues
can be avoided by controlling the provided context.

Acknowledgments

We thank all the anonymous reviewers for their
valuable comments. Shengnan An and Nanning
Zheng were supported in part by NSFC under grant
No. 62088102.

References

Ekin Akyürek, Afra Feyza Akyürek, and Jacob
Andreas. 2020. Learning to recombine and re-
sample data for compositional generalization. In
International Conference on Learning Represen-
tations.

Shengnan An, Zeqi Lin, Bei Chen, Qiang Fu, Nan-
ning Zheng, and Jian-Guang Lou. 2023. Does
deep learning learn to abstract? a systematic
probing framework. In The Eleventh Interna-
tional Conference on Learning Representations.

Jacob Andreas. 2020. Good-enough compositional
data augmentation. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 7556–7566.

Yoshua Bengio, Jérôme Louradour, Ronan Col-
lobert, and Jason Weston. 2009. Curriculum
learning. In Proceedings of the 26th annual
international conference on machine learning,
pages 41–48.

Ben Bogin, Shivanshu Gupta, and Jonathan Berant.
2022. Unobserved local structures make com-
positional generalization hard. arXiv preprint
arXiv:2201.05899.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, et al. 2020. Language mod-
els are few-shot learners. Advances in neural
information processing systems, 33:1877–1901.

Xinyun Chen, Chen Liang, Adams Wei Yu, Dawn
Song, and Denny Zhou. 2020. Compositional
generalization via neural-symbolic stack ma-
chines. Advances in Neural Information Pro-
cessing Systems, 33:1690–1701.

Noam Chomsky. 1957. Syntactic structures (the
hague: Mouton, 1957). Review of Verbal Behav-
ior by BF Skinner, Language, 35:26–58.

Aakanksha Chowdhery, Sharan Narang, Jacob De-
vlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, et al. 2022.
Palm: Scaling language modeling with pathways.
arXiv preprint arXiv:2204.02311.

Róbert Csordás, Kazuki Irie, and Juergen Schmid-
huber. 2021. The devil is in the detail: Simple
tricks improve systematic generalization of trans-
formers. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 619–634.

Andrew Drozdov, Nathanael Schärli, Ekin
Akyürek, Nathan Scales, Xinying Song, Xinyun

11036

https://openreview.net/forum?id=QB1dMPEXau5
https://openreview.net/forum?id=QB1dMPEXau5
https://openreview.net/forum?id=QB1dMPEXau5

Chen, Olivier Bousquet, and Denny Zhou. 2022.
Compositional semantic parsing with large lan-
guage models. arXiv preprint arXiv:2209.15003.

Jeffrey L. Elman. 1993. Learning and development
in neural networks: the importance of starting
small. Cognition, 48:71–99.

Jerry A Fodor and Ernest Lepore. 2002. The com-
positionality papers. Oxford University Press.

Daniel Furrer, Marc van Zee, Nathan Scales, and
Nathanael Schärli. 2020. Compositional gen-
eralization in semantic parsing: Pre-training
vs. specialized architectures. arXiv preprint
arXiv:2007.08970.

Yinuo Guo, Hualei Zhu, Zeqi Lin, Bei Chen, Jian-
Guang Lou, and Dongmei Zhang. 2021. Re-
visiting iterative back-translation from the per-
spective of compositional generalization. In Pro-
ceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 7601–7609.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. 2020. Measuring massive multitask
language understanding. In International Con-
ference on Learning Representations.

Jonathan Herzig and Jonathan Berant. 2021. Span-
based semantic parsing for compositional gen-
eralization. In Proceedings of the 59th Annual
Meeting of the Association for Computational
Linguistics and the 11th International Joint Con-
ference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 908–921.

Jonathan Herzig, Peter Shaw, Ming-Wei Chang,
Kelvin Guu, Panupong Pasupat, and Yuan Zhang.
2021. Unlocking compositional generalization
in pre-trained models using intermediate repre-
sentations. arXiv preprint arXiv:2104.07478.

Jordan Hoffmann, Sebastian Borgeaud, Arthur
Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hen-
dricks, Johannes Welbl, Aidan Clark, et al. 2022.
Training compute-optimal large language mod-
els.

Arian Hosseini, Ankit Vani, Dzmitry Bahdanau,
Alessandro Sordoni, and Aaron Courville.
2022. On the compositional generalization
gap of in-context learning. arXiv preprint
arXiv:2211.08473.

Rohit J Kate, Yuk Wah Wong, Raymond J Mooney,
et al. 2005. Learning to transform natural to
formal languages. In AAAI, volume 5, pages
1062–1068.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, et al. 2019. Measuring
compositional generalization: A comprehensive
method on realistic data. In International Con-
ference on Learning Representations.

Najoung Kim and Tal Linzen. 2020. Cogs: A
compositional generalization challenge based
on semantic interpretation. In Proceedings of
the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages
9087–9105.

Najoung Kim, Tal Linzen, and Paul Smolensky.
2022. Uncontrolled lexical exposure leads
to overestimation of compositional generaliza-
tion in pretrained models. arXiv preprint
arXiv:2212.10769.

Brenden Lake and Marco Baroni. 2018. General-
ization without systematicity: On the composi-
tional skills of sequence-to-sequence recurrent
networks. In International conference on ma-
chine learning, pages 2873–2882. PMLR.

Itay Levy, Ben Bogin, and Jonathan Berant.
2022. Diverse demonstrations improve in-
context compositional generalization. arXiv
preprint arXiv:2212.06800.

Chenyao Liu, Shengnan An, Zeqi Lin, Qian Liu,
Bei Chen, Jian-Guang Lou, Lijie Wen, Nanning
Zheng, and Dongmei Zhang. 2021. Learning
algebraic recombination for compositional gen-
eralization. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021,
pages 1129–1144.

Jiachang Liu, Dinghan Shen, Yizhe Zhang,
William B Dolan, Lawrence Carin, and Weizhu
Chen. 2022. What makes good in-context exam-
ples for gpt-3? In Proceedings of Deep Learning
Inside Out (DeeLIO 2022): The 3rd Workshop
on Knowledge Extraction and Integration for
Deep Learning Architectures, pages 100–114.

Qian Liu, Shengnan An, Jian-Guang Lou, Bei
Chen, Zeqi Lin, Yan Gao, Bin Zhou, Nanning

11037

Zheng, and Dongmei Zhang. 2020. Composi-
tional generalization by learning analytical ex-
pressions. Advances in Neural Information Pro-
cessing Systems, 33:11416–11427.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian
Riedel, and Pontus Stenetorp. 2022. Fantasti-
cally ordered prompts and where to find them:
Overcoming few-shot prompt order sensitivity.
In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics
(Volume 1: Long Papers), pages 8086–8098.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming
Yang, and Graham Neubig. 2022. Language
models of code are few-shot commonsense learn-
ers. arXiv preprint arXiv:2210.07128.

R Montague. 1974. English as a formal language.
Formal Philosophy: Selected Papers of Richard
Montague.

Inbar Oren, Jonathan Herzig, and Jonathan Berant.
2021. Finding needles in a haystack: Sampling
structurally-diverse training sets from synthetic
data for compositional generalization. In Pro-
ceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
10793–10809.

Roma Patel and Ellie Pavlick. 2021. Mapping lan-
guage models to grounded conceptual spaces. In
International Conference on Learning Represen-
tations.

Gabriel Poesia, Alex Polozov, Vu Le, Ashish Ti-
wari, Gustavo Soares, Christopher Meek, and
Sumit Gulwani. 2021. Synchromesh: Reliable
code generation from pre-trained language mod-
els. In International Conference on Learning
Representations.

Linlu Qiu, Peter Shaw, Panupong Pasupat, Tianze
Shi, Jonathan Herzig, Emily Pitler, Fei Sha, and
Kristina Toutanova. 2022. Evaluating the im-
pact of model scale for compositional gener-
alization in semantic parsing. arXiv preprint
arXiv:2205.12253.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Su-
sannah Young, et al. 2021. Scaling language
models: Methods, analysis & insights from train-
ing gopher. arXiv preprint arXiv:2112.11446.

Douglas Roland, Frederic Dick, and Jeffrey L El-
man. 2007. Frequency of basic english gram-
matical structures: A corpus analysis. Journal
of memory and language, 57(3):348–379.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2021. Learning to retrieve prompts for in-context
learning. arXiv preprint arXiv:2112.08633.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat,
and Kristina Toutanova. 2021. Compositional
generalization and natural language variation:
Can a semantic parsing approach handle both?
In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics
and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long
Papers), pages 922–938.

Richard Shin, Christopher Lin, Sam Thomson,
Charles Chen Jr, Subhro Roy, Emmanouil An-
tonios Platanios, Adam Pauls, Dan Klein, Jason
Eisner, and Benjamin Van Durme. 2021. Con-
strained language models yield few-shot seman-
tic parsers. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 7699–7715.

Shaden Smith, Mostofa Patwary, Brandon Norick,
Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George
Zerveas, Vijay Korthikanti, et al. 2022. Us-
ing deepspeed and megatron to train megatron-
turing nlg 530b, a large-scale generative lan-
guage model. arXiv preprint arXiv:2201.11990.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya
Gupta, Adrià Garriga-Alonso, et al. 2022. Be-
yond the imitation game: Quantifying and ex-
trapolating the capabilities of language models.
arXiv preprint arXiv:2206.04615.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raf-
fel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Don-
ald Metzler, et al. 2022. Emergent abilities
of large language models. arXiv preprint
arXiv:2206.07682.

John M Zelle and Raymond J Mooney. 1996. Learn-
ing to parse database queries using inductive

11038

logic programming. In Proceedings of the na-
tional conference on artificial intelligence, pages
1050–1055.

Luke S Zettlemoyer and Michael Collins. 2012.
Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial
grammars. arXiv preprint arXiv:1207.1420.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victo-
ria Lin, et al. 2022a. Opt: Open pre-trained
transformer language models. arXiv preprint
arXiv:2205.01068.

Yiming Zhang, Shi Feng, and Chenhao Tan. 2022b.
Active example selection for in-context learning.
arXiv preprint arXiv:2211.04486.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein,
and Sameer Singh. 2021. Calibrate before use:
Improving few-shot performance of language
models. In International Conference on Machine
Learning, pages 12697–12706. PMLR.

Wang Zhu, Peter Shaw, Tal Linzen, and Fei Sha.
2021. Learning to generalize compositionally by
transferring across semantic parsing tasks. arXiv
preprint arXiv:2111.05013.

11039

This is the Appendix of the paper: How Do
In-Context Examples Affect Compositional Gener-
alization?

A Grammar

Part of the grammar used in constructing COFE

is listed in Table 4. Note that the max recursive
times of R-Production Rules is 2 in prompting ex-
amples and 12 in test cases. The target-side gram-
mar follows the reconstruction in An et al. (2023).
Overall, the original target grammar of COGS is
reconstructed to be chain-structured. Concretely,
first, the original output tokens in COGS are capital-
ized; then, the variables (e.g., “x_1”) in the original
grammar are aligned and replaced with their cor-
responding terminals; finally, the output clauses
are grouped as the function format, in which the
function name belongs to “PRED-FUNC” and the
arguments are ordered as “AGENT”, “THEME”,
and “RECIPIENT”. Moreover, if “PRED-FUNC”
does not contain one or some arguments, the po-
sitions of these arguments are filled with “NONE”
terminal. For the two R-Production rules in Table 4,
the first is in chain structure and the second is in
nested structure. Moreover, the whole nested “PP-
FUNC” will be filled into the “PRED-FUNC” as
an argument, rather than concatenated to the tail of
the “CLAUSE”.

B Details of Fine-Tuning

The fine-tuned GPT2-Large contains 762M param-
eters. For fine-tuning, we take 50,000 training steps
with 8 batch size and 1e-5 learning rate (without
warm-up strategy). We set weight decay as 1e-2
and label smoothing factor as 1e-1. For inference
with GPT2-Large, we set beam size as 5 and set
max length as 1,024.

C Details of Implementation

C.1 Algorithm

Algorithm 1 shows the greedy searching algo-
rithm for constructing COFE.

C.2 Key Designs

We give detailed descriptions of some key designs
in Algorithm 1.

• P(T): Return the leaf nodes TL on the tree;

• S(T): Return the structural combinations on
the tree, i.e., T1

S ∪T>1
S ;

Algorithm 1 Greedy-Search Algorithm for Con-
structing COFE

Given:
(X,Y): Source and target parse trees in one test case;
B: Example bank;
(Xi,Yi) ∈ B: One candidate case in example bank;
XA and YA: Aiming combination;
wp, ws, wc: Weights for primitive coverage, structural
similarity, and complexity penalty;
P(·): primitives;
S(·): structural combinations;

Return:
C: Selected in-context examples;

1: C = {}
2: while |C| < n do
3: max_score = 0
4: candidate = None
5: for (Xi,Yi) ∈ B do
6: Assert XA /∈ S(Xi)
7: Assert YA /∈ S(Yi)
8: prim_score = 0
9: stru_score = 0

10: for element ∈ P(Xi) ∪ P(Yi) do
11: if element ∈ P(X) ∪ P(Y) then
12: prim_score += wp

13: end if
14: end for
15: for element ∈ S(Xi) ∪ S(Yi) do
16: if element ∈ S(X)∪ S(Y) and element /∈ S(C)

then
17: stru_score += ws

18: end if
19: end for

comp_penalty = wp · depth(Xi)
score = prim_score + stru_score - comp_penalty

20: if score > max_score then
21: max_score = score
22: candidate = (Xi,Yi)
23: end if
24: end for
25: C.add(candidate)
26: end while

• wp, ws, wc: The initial scores for matching
primitives, structural combinations, and com-
plexity penalty, respectively. A higher w
means that the corresponding element is pri-
oritized in greedy search.

• element /∈ S(C): Already covered elements
will not be awarded again, thus encouraging
high diversity.

• depth(T): return the depth of the tree. Note
that depth(Xi) = depth(Yi) in COFE.

C.3 Prompt Order

We take the structure-closer order, i.e., the exam-
ples in C with a higher stru_score are placed closer
to the test case. In Section 4.4, we show the ro-
bustness to the other two orders: random order, i.e.,
all selected in-context examples in C are randomly

11040

Table 4: Part of the grammar used in constructing COFE.

Formal English Grammar Semantic Representation Type

active-verb / passive-verb ↠ Sv PRED-FUNC ↠ SP

T-Production Rule
subject / direct-object / indirect-object ↠ Sn AGENT / THEME / RECIPIENT ↠ SE

pp-mod / pp-s ↠ Sn PP-FUNC / PP-S ↠ SE

conj ↠ that CP-CONCAT ↠ CCOMP
prep ↠ in / on / beside PP-CONCAT ↠ IN / ON / BESIDE

sentence ↠ subj active-verb CLAUSE ↠ PRED-FUNC (AGENT, NONE, NONE)
N-Production Rulesentence ↠ subj active-verb direct-obj indirect-obj CLAUSE ↠ PRED-FUNC (AGENT, THEME, RECIPIENT)

subject / direct-object / indirect-object ↠ pp-mod AGENT / THEME / RECIPIENT ↠ PP-FUNC

sentence ↠ sentence conj sentence CLAUSE ↠ CLAUSE CP-CONCAT CLAUSE
R-Production Rule

pp-mod ↠ pp-s prep pp-mod PP-FUNC ↠ PP-CONCAT (PP-S, PP-FUNC)

shuffled, and atom-closer order, i.e., the examples
in C with a higher prim_score are placed closer to
the test case.

C.4 Max Depth in T>1
S

Since the max repetition times for LongChain and
DeepNest are 2 (as described in Section 2.2), we
set the max depth in T>1

S as 2 in S(T).

C.5 Similarity Under Diversity and
Complexity Settings

Table 5: Statistics of different versions of COFE
(PhraReco category).

Setting
Average Coverage

TL TN T1
S T>1

S

Default (Low Diversity, Mid Complexity) 100% 100% 84.4% 19.8%
High Diversity 100% 100% 84.4% 19.8%

Low Complexity 100% 100% 84.4% 19.8%
High Complexity 100% 100% 84.4% 19.8%

While changing diversity and complexity in vari-
ants of COFE in Section 4.3, the primitive coverage
and structural similarity are still satisfied. Table 5
shows that onPhraReco, the statistics of coverage
in different diversity and complexity settings are
kept identical to the full similarity setting in COFE.

C.6 Excluding NL-Side Matching

For excluding source-side matching in Section 5,
besides removing the first term in Equation 2, we
also limit the matching of X1

S . Concretely, we
require that the sentence rule in test case should not
be covered by in-context examples. The sentence
rule is an N-Production rule that contains the non-
terminal “sentence” as the left hand. To achieve
this, we filter out test cases that can not meet this
constraint. Finally, 1,037 out of 4,785 test cases
are kept in this variant of COFE.

C.7 Fictional Words

For each target-side word that contain l characters,
we sequentially and randomly sample l characters
from alphabet as a fictional word to replace the
original word. In addition, for the experiments on
fictional words, we take the atom-closer prompt
order, since the model with this order performs
better the default structure-closer order.

D Excluding Target-Side Matching

In Section 5, we show that the performance drops
with excluding the source-side matching. Here, we
examine the effect of target-side matching. For
constructing data, we directly remove the second
term in Equation 2. As shown in Table 6, the per-
formances with or without target-side matching are
nearly identical. Such an observation is similar to
the comparison between oracle and non-oracle set-
tings in Qiu et al. (2022) that also utilized COGS
benchmark, but different from Poesia et al. (2021)
which suggested the importance of target-side sim-
ilarity in code generation tasks. We suppose there
are mainly two reasons that could cause this dif-
ference. On the one hand, different from general
code generation tasks, the test suite for compo-
sitional generalization requires the exclusion of
certain aiming combinations. Therefore, the perfor-
mance bottleneck in compositional generalization
benchmarks mainly lies in the lacked aiming combi-
nations. On the other hand, in most compositional
generalization benchmarks, the source-side match-
ing could largely take over the target-side matching,
since the terminals and rules in source grammar in
these benchmarks are mapped many-to-one to the
target grammar. Therefore, when seeking for the
source-side matching, the target-side matching is
also improved.

11041

Table 6: Performances under only matching source side.

Model Setting PrimSubs PrimAlte PhraReco LongChain DeepNest Average

code-davinci-002
matching both side 99.8 99.7 65.3 87.0 26.0 75.6

only matching source side 99.3 99.7 63.2 88.9 25.8 75.4

text-davinci-002
matching both side 99.7 99.4 39.4 80.2 12.7 66.3

only matching source side 98.8 99.6 35.6 81.1 12.5 65.5

code-cushman-002
matching both side 98.9 99.0 28.5 64.0 15.1 61.1

only matching source side 98.6 99.4 26.7 66.8 16.3 61.6

code-cushman-001
matching both side 99.1 98.4 20.7 11.1 8.9 47.6

only matching source side 99.2 99.6 17.4 13.1 8.6 47.6

davinci
matching both side 97.5 95.4 12.3 13.4 1.4 44.0

only matching source side 97.7 94.7 7.2 14.7 2.1 43.3

E Illustration of Defined Notations

Figure 11 illustrates the notations defined in Sec-
tion 3.2 based on a concrete expression “Jackson
in a room observed a baby”.

Note that for all sub-structures in T1
S ∪T>1

S , we
require them to be complete sub-structures.

Definition: Complete sub-structure (CSS). A
CSS is a subgraph in a tree T, satisfying that if an
internal node in T and one of its child nodes are
covered in this CSS, all other child nodes must be
also covered in this CSS.

F Case Study

We provide case study to further understanding
the performance of compositional generalization
observed in the main text. For ease of reading, we
include the following contents in the caption of
figures.

F.1 Two Types of Errors in DeepNest

Figure 12 shows two error cases in DeepNest with
code-davinci-002 model and full similarity setting.
The overall structure of predictions are close to
the ground truth, but the model makes mistakes
on some local parts. Concretely, some local se-
mantics are incorrect (in red), and some words are
redundant (in gray).

Moreover, we also calculate the word-level cov-
erage in predictions. Besides the instance-level
accuracy, we further investigate a word-level error
rate on DeepNest. We find that in DeepNest, 96.8%
of the words in the ground truth are contained by
the predictions from code-davinci-002 (while only
48.8% for GPT2-Large). It indicates that the low
instance-level accuracy is mainly caused by the
wrong positions of words and redundant words.

F.2 Structural Errors with Fictional Words

Figure 13 shows the comparison of performance
between fictional words (left) and commonly used
words (right). For the provided contexts on the left
and right, the only difference is that the target-side
words on the left are randomly selected charac-
ters while on the right they are uppercase of the
source-side words. It shows that by changing only
the target-side words, the model not only makes
word-level errors (i.e., missing two words “ES” and
“NVCWI” in prediction), it also generates the wrong
parentheses structure (i.e., generate a 2-depth struc-
ture while in ground truth it is 3-depth).

F.3 Fail to Recognize Semantic Equivalence

Figure 14 shows the comparison of performances
between excluding NL-side matching (left) and
containing NL-side matching (right). For the test
input “Matthew shipped the professor a chair .”,
it contains the sentence structure “subject verb ob-
ject_1 object_2” behind the NL expression. Con-
text on the left does not explicitly contain this sen-
tence structure, but it contains a semantically equiv-
alent structure (i.e., “subject verb object_2 to ob-
ject_1”). However, the model generates the correct
prediction on the right while fails on the left. Con-
cretely, according to the wrong prediction on the
left, the model perhaps considers that the semantics
of “subject verb object_1 object_2” is equivalent
with “subject verb object_1 to object_2”.

F.4 Low Diversity Block Generalization

Figure 15 shows the comparison of performances
on PhraReco under high diversity (left) and low
diversity (right). For the test input “A girl in the
house slept”, “subject slept” is one element con-
tained in T>1

S . This element is repeatedly covered
in the context on the right (low diversity) while only
covered once on the left (high diversity). However,

11042

under high repetitiveness, the model fails on the test
case, but succeed when there is low repetitiveness.

F.5 High Complexity Block Generalization
Figure 16 shows the comparison of performance
on PhraReco under low complexity (left) and high
diversity (right). With low complexity, the test case
is covered by simple and short in-context examples,
and the model succeeds on the test case. With
high complexity, the test case is covered by more
complex and longer examples, and the model fails
on the test case.

G Full Results

Due to the page limitation for main text, here we
list our full results in Section 4. The results in
Assembling are the best performance under each
category among all combinations of factors.

11043

Jackson in a room observed a baby

pp-s prep pp-mod active-verb object

subject

sentenceFull Structure 𝐓𝑁𝐓𝐿

𝐓𝑆1 𝐓𝑆>1

. . .

pp-mod

Jackson in a room observed a baby

pp-s prep pp-mod active-verb object

subject

sentence

pp-mode

Jackson in a room observed a baby

pp-s prep pp-mod active-verb object

subject

sentence

pp-mod

Jackson in a room observed a baby

pp-s prep pp-mod active-verb object

subject

sentence

pp-mod

Jackson in a room observed a baby

pp-s prep pp-mod active-verb object

subject

sentence

pp-mod

Jackson in a room observed a baby

pp-s prep pp-mod active-verb object

subject

sentence

pp-mode

Jackson in a room observed a baby

pp-s prep pp-mod active-verb object

subject

sentence

pp-mod

Jackson in a room observed a baby

pp-s prep pp-mod active-verb object

subject

sentence

pp-mod

Jackson in a room observed a baby

pp-s prep pp-mod active-verb object

subject

sentence

pp-mod

𝐓𝑨

Figure 11: Illustration of defined notations. This test case belongs to PhraReco category. TA means the aiming
combination in this test case.

11044

Model: code-davinci-002

Category: DeepNest

Setting: full similarity setting

context:

context:

input: A host was sold the donut on the bench beside a table .

output: SELL (NONE , ON (DONUT , BESIDE (BENCH , TABLE

)) , HOST)

input: Liam gave the monkey a chalk in the container .

output: GIVE (LIAM , IN (CHALK , CONTAINER) , MONKEY)

input: A dog gave Emma the drink in the house .

output: GIVE (DOG , IN (DRINK , HOUSE) , EMMA)

input: The dog gave the spoon beside the table to Olivia .

output: GIVE (DOG , BESIDE (SPOON , TABLE) , OLIVIA)

input: A child was lended a cake on a stool in a garden by the

dog .

output: LEND (DOG , ON (CAKE , IN (STOOL , GARDEN)) ,

CHILD)

input: Emma mailed a boy a cake on a paper in a room .

output: MAIL (EMMA , ON (CAKE , IN (PAPER , ROOM)) ,

BOY)

input: Emma gave the cake on the table on the bed to Olivia .

output: GIVE (EMMA , ON (CAKE , ON (TABLE , BED)) ,

OLIVIA)

input: A girl gave Olivia a cake on a table .

output: GIVE (GIRL , ON (CAKE , TABLE) , OLIVIA)

input: A dog gave a girl the cake beside the bed on a chair .

output: GIVE (DOG , BESIDE (CAKE , ON (BED , CHAIR)) ,

GIRL)

input: Charlotte offered the boy a cake on the tree on a plate .

output: OFFER (CHARLOTTE , ON (CAKE , ON (TREE , PLATE

)) , BOY)

input: A dog gave Olivia a cake on the table on a stool in the

container on the bench on a plate .

label:

GIVE (DOG , ON (CAKE , ON (TABLE , IN (STOOL , ON (

CONTAINER , ON (BENCH , PLATE))))) , OLIVIA)

pred:

GIVE (DOG , ON (CAKE , ON (TABLE , ON (STOOL , IN (

CONTAINER , ON (BENCH , PLATE))))) , OLIVIA)

Model: code-davinci-002

Category: DeepNest

Setting: full similarity setting

context:

input: The girl posted a teacher the cake in a condo .

output: POST (GIRL , IN (CAKE , CONDO) , TEACHER)

input: Olivia lended a politician a game beside a cup in a room

.

output: LEND (OLIVIA , BESIDE (GAME , IN (CUP , ROOM)) ,

POLITICIAN)

input: Emma sold the girl a cake in the trailer beside a warrior

.

output: SELL (EMMA , IN (CAKE , BESIDE (TRAILER ,

WARRIOR)) , GIRL)

input: Oliver was given a melon in the car beside a bed .

output: GIVE (NONE , IN (MELON , BESIDE (CAR , BED)) ,

OLIVER)

input: A politician packed the cake in a house .

output: PACK (POLITICIAN , IN (CAKE , HOUSE) , NONE)

input: The girl ate the cup on a glacier on the bed .

output: EAT (GIRL , ON (CUP , ON (GLACIER , BED)) ,

NONE)

input: A cat was served a cake in the pod beside a table by

Liam .

output: SERVE (LIAM , IN (CAKE , BESIDE (POD , TABLE)) ,

CAT)

input: Oliver ate the jacket in a bag on a table .

output: EAT (OLIVER , IN (JACKET , ON (BAG , TABLE)) ,

NONE)

input: Lucas was given the cake in a house in a garden by a

goose .

output: GIVE (GOOSE , IN (CAKE , IN (HOUSE , GARDEN)) ,

LUCAS)

input: Emma ate the cake in the drawer on a tree .

output: EAT (EMMA , IN (CAKE , ON (DRAWER , TREE)) ,

NONE)

input: A politician ate the cake in a cup in the garden beside a

bed in a house in a trailer in the car on the tree in the pod in a

bag on a glacier in a condo .

label:

EAT (POLITICIAN , IN (CAKE , IN (CUP , BESIDE (GARDEN ,

IN (BED , IN (HOUSE , IN (TRAILER , ON (CAR , IN (TREE , IN

(POD , ON (BAG , IN (GLACIER , CONDO))))))))))) ,

NONE)

pred:

EAT (POLITICIAN , IN (CAKE , IN (CUP , IN (GARDEN ,

BESIDE (BED , IN (HOUSE , IN (TRAILER , IN (CAR , ON (

TREE , IN (POD , IN (BAG , ON (GLACIER , IN (CONDO ,

NONE))))))))))) , NONE)

Figure 12: Two error cases in DeepNest with code-davinci-002 model and full similarity setting. The overall
structures of predictions in error cases are close to the ground truth, but the model makes mistakes on some local
parts. Concretely, some local semantics are incorrect (in red), and some words are redundant (in gray).

11045

Model: code-davinci-002

Category: PhraReco

Setting: fictional words (full similarity setting)

context:

input: William shortened the cookie on a tray .

output: UPVIENL (ZKCJBMB , ZY (TXHMRM , UECQ) , NONE)

input: The girl proved that Olivia ate the baby on a stage .

output: QXFTO (LAWW , NONE , NONE) CCOMP ULX (

ESTEVR , ZY (VYVA , PEDQY) , NONE)

input: Elizabeth screamed .

output: KXSKRS (OWKPPDAJM , NONE , NONE)

input: A hero screamed .

output: KXSKRS (ZUNS , NONE , NONE)

input: The crocodile screamed .

output: KXSKRS (QPAKTMJAF , NONE , NONE)

input: Olivia respected that Asher returned a ball on the table

in a house to a baby .

output: GAFPLFB (ESTEVR , NONE , NONE) CCOMP IEFKEF (

AFQWF , ZY (HFJZ , ES (RGIJS , NVCWI)) , VYVA)

input: A kitty gave a scientist a cake in a can in the house .

output: FMBI (CYQUL , ES (QXGW , ES (VSP , NVCWI)) ,

GFJNRFBWV)

input: The cat was given the mandarin in the room in the house

.

output: FMBI (NONE , ES (PLNLARRT , ES (ETIO , NVCWI)) ,

MXR)

input: The baby floated a cake beside the cabinet in the house

.

output: PSEGL (VYVA , CIDPYO (QXGW , ES (DBZKXEC ,

NVCWI)) , NONE)

input: A boy confessed that Olivia returned the girl the donut

on the tripod in the house .

output: RKKPVRU (CRD , NONE , NONE) CCOMP IEFKEF (

ESTEVR , ZY (QXKYR , ES (OEHBXJ , NVCWI)) , LAWW)

input: The baby on a tray in the house screamed .

label:

KXSKRS (ZY (VYVA , ES (UECQ , NVCWI)) , NONE , NONE)

pred:

KXSKRS (ZY (VYVA , UECQ) , NONE , NONE)

Model: code-davinci-002

Category: PhraReco

Setting: commonly used words (full similarity setting)

context:

input: William shortened the cookie on a tray .

output: SHORTEN (WILLIAM , ON (COOKIE , TRAY) , NONE)

input: The girl proved that Olivia ate the baby on a stage .

output: PROVE (GIRL , NONE , NONE) CCOMP EAT (OLIVIA

, ON (BABY , STAGE) , NONE)

input: Elizabeth screamed .

output: SCREAM (ELIZABETH , NONE , NONE)

input: A hero screamed .

output: SCREAM (HERO , NONE , NONE)

input: The crocodile screamed .

output: SCREAM (CROCODILE , NONE , NONE)

input: Olivia respected that Asher returned a ball on the table

in a house to a baby .

output: RESPECT (OLIVIA , NONE , NONE) CCOMP RETURN (

ASHER , ON (BALL , IN (TABLE , HOUSE)) , BABY)

input: A kitty gave a scientist a cake in a can in the house .

output: GIVE (KITTY , IN (CAKE , IN (CAN , HOUSE)) ,

SCIENTIST)

input: The cat was given the mandarin in the room in the house

.

output: GIVE (NONE , IN (MANDARIN , IN (ROOM , HOUSE)

) , CAT)

input: The baby floated a cake beside the cabinet in the house

.

output: FLOAT (BABY , BESIDE (CAKE , IN (CABINET ,

HOUSE)) , NONE)

input: A boy confessed that Olivia returned the girl the donut

on the tripod in the house .

output: CONFESS (BOY , NONE , NONE) CCOMP RETURN (

OLIVIA , ON (DONUT , IN (TRIPOD , HOUSE)) , GIRL)

input: The baby on a tray in the house screamed .

label:

SCREAM (ON (BABY , IN (TRAY , HOUSE)) , NONE , NONE)

pred:

SCREAM (ON (BABY , IN (TRAY , HOUSE)) , NONE , NONE)

Figure 13: Comparison of performance between fictional words (left) and commonly used words (right). For the
provided contexts on the left and right, the only difference is that the target-side words on the left are randomly
selected characters while on the right they are uppercase of the source-side words. It shows that by changing only
the target-side words, the model not only makes word-level errors (i.e., missing two words “ES” and “NVCWI” in
prediction), it also generates the wrong parentheses structure (i.e., generate a 2-depth structure while in ground truth
it is 3-depth).

11046

Model: code-davinci-002

Category: PrimAlte

Setting: exclude NL-side matching

context:

input: A governor was passed a chalk beside the computer

beside a stage by Matthew .

output: PASS (MATTHEW , BESIDE (CHALK , BESIDE (

COMPUTER , STAGE)) , GOVERNOR)

input: A cat offered the rose to a professor .

output: OFFER (CAT , ROSE , PROFESSOR)

input: A chair was rented to Emma by a cat .

output: RENT (CAT , CHAIR , EMMA)

input: A cookie was given to Hazel by Matthew .

output: GIVE (MATTHEW , COOKIE , HAZEL)

input: Benjamin lended the brain to a professor .

output: LEND (BENJAMIN , BRAIN , PROFESSOR)

input: Grace was lended the chair by a boy .

output: LEND (BOY , CHAIR , GRACE)

input: A chair was sold to James by Ava .

output: SELL (AVA , CHAIR , JAMES)

input: The girl shipped a cookie in a container to Scarlett .

output: SHIP (GIRL , IN (COOKIE , CONTAINER) , SCARLETT

)

input: A banana was fed to the professor by Emma .

output: FEED (EMMA , BANANA , PROFESSOR)

input: Matthew lended a cake beside the chair to the doctor .

output: LEND (MATTHEW , BESIDE (CAKE , CHAIR) ,

DOCTOR)

input: Matthew shipped the professor a chair .

label:

SHIP (MATTHEW , CHAIR , PROFESSOR)

pred:

SHIP (MATTHEW , PROFESSOR , CHAIR)

Model: code-davinci-002

Category: PrimAlte

Setting: full similarity setting

context:

input: A chair was sold to James by Ava .

output: SELL (AVA , CHAIR , JAMES)

input: Grace was lended the chair by a boy .

output: LEND (BOY , CHAIR , GRACE)

input: A girl awarded a professor the box .

output: AWARD (GIRL , BOX , PROFESSOR)

input: The girl shipped a cookie in a container to Scarlett .

output: SHIP (GIRL , IN (COOKIE , CONTAINER) , SCARLETT

)

input: Matthew lended a cake beside the chair to the doctor .

output: LEND (MATTHEW , BESIDE (CAKE , CHAIR) ,

DOCTOR)

input: Matthew lended Emma a cake .

output: LEND (MATTHEW , CAKE , EMMA)

input: Harper offered the professor the pickle .

output: OFFER (HARPER , PICKLE , PROFESSOR)

input: Matthew mailed Emma a cake .

output: MAIL (MATTHEW , CAKE , EMMA)

input: Matthew handed Emma a strawberry in the house .

output: HAND (MATTHEW , IN (STRAWBERRY , HOUSE) ,

EMMA)

input: A dog fed the professor the cake .

output: FEED (DOG , CAKE , PROFESSOR)

input: Matthew shipped the professor a chair .

label:

SHIP (MATTHEW , CHAIR , PROFESSOR)

pred:

SHIP (MATTHEW , CHAIR , PROFESSOR)

Figure 14: Comparison of performances between excluding NL-side matching (left) and containing NL-side
matching (right). For the test input “Matthew shipped the professor a chair .”, it contains the sentence structure
“subject verb object_1 object_2” behind the NL expression. Context on the left does not explicitly contain this
sentence structure, but it contains a semantically equivalent structure (i.e., “subject verb object_2 to object_1”).
However, the model generates the correct prediction on the right while fails on the left. Concretely, according to the
wrong prediction on the left, the model perhaps considers that the semantics of “subject verb object_1 object_2” is
equivalent with “subject verb object_1 to object_2”.

11047

Model: code-davinci-002

Category: PhraReco

Setting: high diversity

context:

input: A cake was forwarded to Levi by Charlotte .

output: FORWARD (CHARLOTTE , CAKE , LEVI)

input: A cake rolled .

output: ROLL (NONE , CAKE , NONE)

input: Emma rolled a teacher .

output: ROLL (EMMA , TEACHER , NONE)

input: A rose was helped by a dog .

output: HELP (DOG , ROSE , NONE)

input: The sailor dusted a boy .

output: DUST (SAILOR , BOY , NONE)

input: Evelyn rolled the girl .

output: ROLL (EVELYN , GIRL , NONE)

input: The girl needed to cook .

output: NEED (GIRL , NONE , NONE) XCOMP COOK (GIRL ,

NONE , NONE)

input: The captain ate .

output: EAT (CAPTAIN , NONE , NONE)

input: Emma broke a girl in the house .

output: BREAK (EMMA , IN (GIRL , HOUSE) , NONE)

input: The monster slept .

output: SLEEP (MONSTER , NONE , NONE)

input: A girl in the house slept .

label:

SLEEP (IN (GIRL , HOUSE) , NONE , NONE)

pred:

SLEEP (IN (GIRL , HOUSE) , NONE , NONE)

Model: code-davinci-002

Category: PhraReco

Setting: low diversity (full similarity setting)

context:

input: Emma broke a girl in the house .

output: BREAK (EMMA , IN (GIRL , HOUSE) , NONE)

input: Liam respected that Noah slept .

output: RESPECT (LIAM , NONE , NONE) CCOMP SLEEP (

NOAH , NONE , NONE)

input: Emma liked that Jack slept .

output: LIKE (EMMA , NONE , NONE) CCOMP SLEEP (JACK ,

NONE , NONE)

input: Luke slept .

output: SLEEP (LUKE , NONE , NONE)

input: Elizabeth slept .

output: SLEEP (ELIZABETH , NONE , NONE)

input: Amelia slept .

output: SLEEP (AMELIA , NONE , NONE)

input: The fish slept .

output: SLEEP (FISH , NONE , NONE)

input: The monster slept .

output: SLEEP (MONSTER , NONE , NONE)

input: A girl tolerated that Amelia slept .

output: TOLERATE (GIRL , NONE , NONE) CCOMP SLEEP (

AMELIA , NONE , NONE)

input: The girl wished that Ava slept .

output: WISH (GIRL , NONE , NONE) CCOMP SLEEP (AVA ,

NONE , NONE)

input: A girl in the house slept .

label:

SLEEP (IN (GIRL , HOUSE) , NONE , NONE)

pred:

SLEEP (GIRL , IN (NONE , HOUSE) , NONE)

Figure 15: Comparison of performances on PhraReco under high diversity (left) and low diversity (right). For the
test input “A girl in the house slept”, “subject slept” is one element contained in T>1

S . This element is repeatedly
covered in the context on the right (low diversity) while only covered once on the left (high diversity). However,
under high repetitiveness, the model fails on the test case, but succeed when there is low repetitiveness.

11048

Model: code-davinci-002

Category: PhraReco

Setting: low complexity

context:

input: Liam appreciated a mouse on the gravel .

output: APPRECIATE (LIAM , ON (MOUSE , GRAVEL) , NONE

)

input: A cat ate a basket beside the table .

output: EAT (CAT , BESIDE (BASKET , TABLE) , NONE)

input: Luna ate .

output: EAT (LUNA , NONE , NONE)

input: A dog ate .

output: EAT (DOG , NONE , NONE)

input: The prince ate .

output: EAT (PRINCE , NONE , NONE)

input: The coach ate .

output: EAT (COACH , NONE , NONE)

input: A monster ate .

output: EAT (MONSTER , NONE , NONE)

input: The priest ate .

output: EAT (PRIEST , NONE , NONE)

input: The captain ate .

output: EAT (CAPTAIN , NONE , NONE)

input: A mouse ate .

output: EAT (MOUSE , NONE , NONE)

input: A mouse beside the table ate .

label:

SLEEP (IN (GIRL , HOUSE) , NONE , NONE)

pred:

SLEEP (IN (GIRL , HOUSE) , NONE , NONE)

Model: code-davinci-002

Category: PhraReco

Setting: high complexity

context:

input: Emma liked a mouse on a table beside the machine .

output: LIKE (EMMA , ON (MOUSE , BESIDE (TABLE ,

MACHINE)) , NONE)

input: The boy ate the drink in a house beside the table .

output: EAT (BOY , IN (DRINK , BESIDE (HOUSE , TABLE)) ,

NONE)

input: A girl liked that Emma ate .

output: LIKE (GIRL , NONE , NONE) CCOMP EAT (EMMA ,

NONE , NONE)

input: Emma said that a dog ate .

output: SAY (EMMA , NONE , NONE) CCOMP EAT (DOG ,

NONE , NONE)

input: The father liked that the boy ate .

output: LIKE (FATHER , NONE , NONE) CCOMP EAT (BOY ,

NONE , NONE)

input: A princess proved that Emma ate .

output: PROVE (PRINCESS , NONE , NONE) CCOMP EAT (

EMMA , NONE , NONE)

input: Emma liked that the teacher ate .

output: LIKE (EMMA , NONE , NONE) CCOMP EAT (

TEACHER , NONE , NONE)

input: A horse said that Emma respected that William ate .

output: SAY (HORSE , NONE , NONE) CCOMP RESPECT (

EMMA , NONE , NONE) CCOMP EAT (WILLIAM , NONE ,

NONE)

input: The spokesman hoped that a girl liked that a turtle ate .

output: HOPE (SPOKESMAN , NONE , NONE) CCOMP LIKE (

GIRL , NONE , NONE) CCOMP EAT (TURTLE , NONE , NONE)

input: A mouse hoped that a girl hoped that Olivia ate .

output: HOPE (MOUSE , NONE , NONE) CCOMP HOPE (GIRL

, NONE , NONE) CCOMP EAT (OLIVIA , NONE , NONE)

input: A mouse beside the table ate .

label:

EAT (BESIDE (MOUSE , TABLE) , NONE , NONE)

pred:

EAT (MOUSE , BESIDE (NONE , TABLE) , NONE)

Figure 16: Comparison of performance on PhraReco under low complexity (left) and high diversity (right). With
low complexity, the test case is covered by simple and short in-context examples, and the model succeeds on the test
case. With high complexity, the test case is covered by more complex and longer examples, and the model fails on
the test case.

11049

Table 7: Full results.

Model Primitive
Similarity Diversity Complexity

PrimSubs PrimAlte PhraReco LongChain DeepNest Average
Rough Precise Low High Low Mid High

code-davinci-002

✓ 92.2 77.1 60.8 62.1 12.3 60.9

✓ ✓ ✓ ✓ ✓ 99.8 99.7 65.3 87.0 26.0 75.6

✓ ✓ ✓ ✓ 97.7 92.1 77.6 80.4 18.3 73.2

✓ ✓ ✓ ✓ ✓ - - 80.0 87.6 26.2 64.6

✓ ✓ ✓ ✓ ✓ - - 67.6 87.3 25.6 60.2

✓ ✓ ✓ ✓ ✓ - - 56.9 87.6 26.0 56.8

Assembling Desired Factors 99.8 99.7 80.0 87.6 26.2 78.7

text-chat-davinci-002

✓ 92.2 75.4 47.0 65.0 6.3 57.2

✓ ✓ ✓ ✓ ✓ 99.5 99.3 53.4 87.7 18.9 71.8

✓ ✓ ✓ ✓ 96.1 89.7 62.9 80.1 11.7 68.1

✓ ✓ ✓ ✓ ✓ - - 69.2 87.6 18.2 58.3

✓ ✓ ✓ ✓ ✓ - - 55.1 87.6 19.0 53.9

✓ ✓ ✓ ✓ ✓ - - 45.1 88.2 19.2 50.8

Assembling Desired Factors 99.5 99.3 69.2 88.2 19.2 75.1

text-davinci-002

✓ 88.5 66.4 38.7 46.5 2.9 48.6

✓ ✓ ✓ ✓ ✓ 99.7 99.4 39.4 80.2 12.7 66.3

✓ ✓ ✓ ✓ 94.9 86.7 55.9 66.3 8.1 62.4

✓ ✓ ✓ ✓ ✓ - - 60.6 78.7 12.3 50.5

✓ ✓ ✓ ✓ ✓ - - 43.2 79.9 12.9 45.3

✓ ✓ ✓ ✓ ✓ - - 33.5 80.2 12.8 42.2

Assembling Desired Factors 99.7 99.4 60.6 80.2 12.9 70.6

code-cushman-002

✓ 82.6 55.6 21.3 29.3 5.0 38.8

✓ ✓ ✓ ✓ ✓ 98.9 99.0 28.5 64.0 15.1 61.1

✓ ✓ ✓ ✓ 94.0 77.7 31.4 44.7 10.3 51.6

✓ ✓ ✓ ✓ ✓ - - 40.8 62.4 14.9 39.4

✓ ✓ ✓ ✓ ✓ - - 31.9 64.3 15.8 37.3

✓ ✓ ✓ ✓ ✓ - - 22.6 64.5 14.6 33.9

Assembling Desired Factors 98.9 99.0 40.8 64.5 15.8 63.8

code-cushman-001

✓ 76.6 60.7 16.9 5.0 1.0 32.0

✓ ✓ ✓ ✓ ✓ 99.1 98.4 20.7 11.1 8.9 47.6

✓ ✓ ✓ ✓ 92.5 86.0 24.7 8.0 3.5 42.9

✓ ✓ ✓ ✓ ✓ - - 31.4 12.8 8.4 17.5

✓ ✓ ✓ ✓ ✓ - - 23.2 12.7 8.9 14.9

✓ ✓ ✓ ✓ ✓ - - 18.6 11.5 8.7 12.9

Assembling Desired Factors 99.1 98.4 31.4 12.8 8.9 50.1

code-cushman-001

✓ 69.4 52.3 9.4 2.3 0.2 26.7

✓ ✓ ✓ ✓ ✓ 97.5 95.4 12.3 13.4 1.4 44.0

✓ ✓ ✓ ✓ 79.4 66.6 18.8 4.3 1.3 34.1

✓ ✓ ✓ ✓ ✓ - - 20.0 10.2 1.3 10.5

✓ ✓ ✓ ✓ ✓ - - 14.7 13.8 1.4 10.0

✓ ✓ ✓ ✓ ✓ - - 7.8 13.5 1.3 7.5

Assembling Desired Factors 97.5 95.4 20.0 13.8 1.4 45.6

Fine-Tuned GPT2-Large - 93.6 97.9 14.0 5.4 0.0 42.2

11050

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitations

�3 A2. Did you discuss any potential risks of your work?
Ethics Statement

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 3 & Section 4.1

�3 B1. Did you cite the creators of artifacts you used?
Section 1

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 2.2

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Appendix D.5

C �3 Did you run computational experiments?
Section 4 & Section 5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 2.3 & Limitations

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

11051

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 2.3 & Section 4.1

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Appendix 1

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Not applicable. Left blank.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

11052

