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Abstract

The Relational Triple Extraction (RTE) task
is a fundamental and essential information ex-
traction task. Recently, the table-filling RTE
methods have received lots of attention. De-
spite their success, they suffer from some in-
herent problems such as underutilizing regional
information of triple. In this work, we treat the
RTE task based on table-filling method as an
Object Detection task and propose a one-stage
Object Detection framework for Relational
Triple Extraction (OD-RTE). In this frame-
work, the vertices-based bounding box detec-
tion, coupled with auxiliary global relational
triple region detection, ensuring that regional
information of triple could be fully utilized.
Besides, our proposed decoding scheme could
extract all types of triples. In addition, the neg-
ative sampling strategy of relations in the train-
ing stage improves the training efficiency while
alleviating the imbalance of positive and neg-
ative relations. The experimental results show
that 1) OD-RTE achieves the state-of-the-art
performance on two widely used datasets (i.e.,
NYT and WebNLG). 2) Compared with the
best performing table-filling method, OD-RTE
achieves faster training and inference speed
with lower GPU memory usage. To facilitate
future research in this area, the codes are pub-
licly available at https://github.com/
NingJinzhong/ODRTE.

1 Introduction

The Relational Triple Extraction (RTE for short)
aims to extract triples of the form (head, relation,
tail) consisting of entity pairs and their relations
from unstructured text, which is an important task
of information extraction. In the early stage, tradi-
tional pipeline methods (Zelenko et al., 2003; Zhou
et al., 2005; Chan and Roth, 2011) usually decom-
pose the RTE task into two independent steps of
named entity recognition and relation extraction.
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Figure 1: A Comparison of Object Detection and Rela-
tional Triple Extraction based on table-filling method.
PB denotes relation "place_of_birth" and PL denotes
relation "place_lived". Note that the table cells (repre-
sentations of token pairs), the table, and the table regions
occupied by the triples are aligned to the pixels, the im-
age, and the objects on the visual side, respectively.

Although the pipelined approach is flexible, it ig-
nores the correlation between the two tasks and
suffers from error propagation (Ren et al., 2022).

To overcome this problem, some researchers try
to use end-to-end joint entity and relation extraction
models to solve the RTE task. These joint extrac-
tion models can be divided into four categories:
tagging-based methods (Zheng et al., 2017; Wei
et al., 2020; Zheng et al., 2021; Ren et al., 2022),
table-filling methods (Wang et al., 2020; Ren et al.,
2021; Shang et al., 2022a), text generation meth-
ods (Zeng et al., 2018, 2020; Ye et al., 2021) and
graph-linking methods (Shang et al., 2022b). And
the recently proposed table-filling method OneRel
(Shang et al., 2022a) and the graph-linking method
DirectRel (Shang et al., 2022b) achieve state-of-
the-art performance and enable one-module and
one-step extraction of relational triples.

Despite the promising success of existing joint
methods, they suffer from the several problems1:
(1) For table-filling methods, such as TPLinker
(Wang et al., 2020), GRTE(Ren et al., 2021) and
OneRel (Shang et al., 2022a), the triple’s regional

1The specific explanations are shown in the Appendix.B
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information is insufficiently used during the extrac-
tion process. (2) Referring to OneRel, the current
state-of-the-art method for table-filling, it fails to
extract all types of triples. (3) Most existing meth-
ods, including OneRel and DirectRel, involve all
relations in the training stage. The redundant rela-
tions involved in training will not only dominate
the negative relation samples and make the model
results more biased towards the negative relation
samples, but also reduce the training efficiency.

Different from the above studies, we present a
novel perspective on the task of relational triple
extraction based on the table-filling method. We
observed a high similarity between the table-filling-
based RTE task and the object detection (OD)
task in computer vision (CV). As shown in Fig-
ure 1, they all need to locate Regions of Interest
(ROIs) in a two-dimensional array of pixels or to-
ken pairs. Further, inspired by the keypoint-based
one-stage object detection methods (Duan et al.,
2019; Law and Deng, 2018; Zhou et al., 2019),
we propose a one-stage Object Detection frame-
work for Relational Triple Extraction (short for
OD-RTE) to address the relational triple detection
problem.

Specifically, for the three problems in the exist-
ing methods mentioned above, the point-by-point
solution of our proposed method is described as fol-
lows: (1) OD-RTE directly predicts the bounding
boxes through identifying and grouping four ver-
tices of each Region of Interest (shown in Figure
1). Vertices-based bounding box detection, coupled
with global relational triple region detection, allows
triple regional information to be better exploited
compared to existing table-filling methods. (2) We
propose the vertices-based relational triple encod-
ing scheme and the Bidirectional Diagonal Walk
(Bi-DW) decoding algorithm to ensure that OD-
RTE has the ability to extract all types of triples.
(3) During the training stage, we introduce a rela-
tion negative sampling strategy, which improves
the training efficiency while alleviating the prob-
lem of imbalanced positive and negative relations
in the full-relation training strategy.

The main contributions of this work can be sum-
marized as follows:

• Treating the relational triple extraction task
based on the table-filling method as an object
detection task, we propose a one-stage triple
extractor called OD-RTE. To the best of our
knowledge, this is the first end-to-end RTE

model based on the object detection frame-
work.

• Following our perspective, we propose
the vertices-based relational triple encoding
method and an auxiliary global relational
triple region detection task to make fuller use
of the triple regional information. And we fur-
ther propose the Bidirectional Diagonal Walk
decoding algorithm, which enables the model
to extract all types of triples.

• We introduce a relation negative sampling
strategy in the training stage to improve the
training efficiency while alleviating the prob-
lem of imbalanced positive and negative rela-
tions.

• We evaluate our model on two widely used
public datasets and the results show that our
model not only outperforms state-of-the-art
baselines, but also achieves an improvement
in computational efficiency.

2 Related Work

2.1 Relational triple extraction (RTE)

The RTE methods can be roughly divided into fol-
lowing four categories based on the idea of rela-
tional triple extraction. The first category is the
tagging-based method, which utilizes several corre-
lated sequence labeling modules to annotate head
entities, tail entities and even relations. For exam-
ple, the Novel Tagging Scheme proposed by Zheng
et al. (2017) firstly converts the RTE task into a
tagging problem. Then the CASREL proposed by
Wei et al. (2020) models relations as functions
that map subjects to objects in a sentence, which
naturally handles the overlapping problem. And
Zheng et al. (2021) proposed an extractor based
on Potential Relation and Global Correspondence
to alleviate the redundancy of relation prediction.
BiRTE (Ren et al., 2022) proposes a bidirectional
extraction framework based method that extracts
triples based on the entity pairs extracted from two
complementary directions. The second category
is the table-filling method, which determines the
head and tail entities by classifying the relation-
ships of token pairs. The typical representation of
the table-filling methods is TPLinker (Wang et al.,
2020), which introduces a novel handshaking tag-
ging scheme that aligns the boundary tokens of
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Figure 2: The overall architecture of OD-RTE. In this figure, the given input contains two SEO (Single Entity
Overlap) triples. The UL, UR, LL and LR denote the upper left vertex, upper right vertex, lower left vertex and
lower right vertex, respectively.
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Figure 3: Examples of how OD-RTE handles normal,
EPO (Entity Pair Overlap) and SOO (Subject Object
Overlap) triples.

entity pairs under each relation type. And the re-
cently proposed OneRel (Shang et al., 2022a) casts
joint extraction as a fine-grained triple classifica-
tion problem. The third category is the text gener-
ation methods (Zeng et al., 2018, 2020; Ye et al.,
2021), which employ the seq2seq structure to gen-
erate the triples. And the fourth category is the
graph-linking method (Shang et al., 2022b), which
models the triple extraction problem as a bipartite
graph linking problem of enumerated candidate
entities.

2.2 Object Detection (OD)

The Object Detection aims to locate and identify
objects of interest from natural images and is a fun-
damental but challenging task in Computer Vision.
Two-stage object detectors such as R-CNN (Gir-

shick et al., 2014), Faster-RCNN (Ren et al., 2015),
Mask-RCNN (He et al., 2017) have achieved great
success. Recently, one-stage OD models, such
as YOLO (Redmon et al., 2016), SSD (Liu et al.,
2016) and FCOS (Tian et al., 2019), have received
much attention due to their excellent real-time per-
formance. And our approach is also inspired by the
keypoint-based one-stage object detection method
(Duan et al., 2019; Law and Deng, 2018; Zhou
et al., 2019). Shen et al. (2021) also proposed a two-
stage detector which treats the nested named entity
recognition task as an OD task. Different from
their two-stage nested NER detector, our proposed
OD-RTE is a one-stage detector, which achieves
both performance and computational efficiency im-
provements on the RTE task.

3 Methodology

In this section, we first introduce the task definition.
Then we detail the implementation of OD-RTE,
whose overall structure of OD-RTE is shown in
Figure 2.

3.1 Task Definition

Given a sentence S = {w1, w2, · · · , wL}, where
L is the length of the sentence. The RTE task aims
to extract the set of all potential relational triples
Γ = {Γi |Γi = (hi, ri, ti) , i = 1, · · · , N } from S,
where hi, ti ∈ E, E is the set of all entities in S,
ri ∈ R and R = {r1, · · · , rK} is the K predefined
relations.
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3.2 Regarding RTE as OD

3.2.1 OD-style relational triple tagging
scheme

As can be seen from Figure 2, the head and tail
entities belonging to the same triple enclose a rect-
angular area in the table composed of representa-
tions of token pairs. The existing work illustrates
that entities in a triple can be determined by their
bounding token (Wei et al., 2020) and that one-
stage object detection can be achieved by identify-
ing and grouping the key points of the bounding
box (Duan et al., 2019; Law and Deng, 2018; Zhou
et al., 2019). Inspired by these ideas, we propose
to use the four vertices of the rectangular region
enclosed by the head and tail entity of a triple in
the relation-specific table to determine the ‘object’
region of the triple. Four vertices are used to deter-
mine its object region in the vertices tagging matrix:
(1) UL is the upper left vertex of the object region,
and also indicates the start position of both the head
entity and the tail entity in the triple. (2) UR is the
upper right vertex of the object region, and also
indicates the start position of the head entity and
the end position of the tail entity in the triple. (3)
LR is the lower right vertex of the object region
and also indicates the end position of both the head
entity and the tail entity in the triple. (4) LL is the
lower left vertex of the object region, which also
indicates the end position of the head entity and the
start position of the tail entity in the triple.

It is noted that when an entity in a triple contains
only one token, a table cell may serve as multiple
object area vertices at the same time. Here we
take the triple (‘Tom’, place_lived , ‘New York’) in
Figure 2 as an example, and the token pair ‘Tom’-
‘New’ is located at both the UL and LL vertices of
the object region. Meanwhile, the token pair ‘Tom’-
‘York’ is located at both the UR and LR vertices of
the object region. Moreover, it can be seen from
Figure 2 and Figure 3 that our proposed object
detection style tagging scheme can naturally cope
with different entity overlapping patterns, such as
EPO (Entity Pair Overlap), SEO (Single Entity
Overlap) and SOO (Subject Object Overlap).

3.2.2 Relational triple region regressor

For a given sentence S = {w1, w2, · · · , wL}, we
first use the pre-trained language model BERT (De-
vlin et al., 2019) to obtain the 768-dimensional
token representations of the sentence:

{h1, h2, · · · , hL} = BERT ({w1, w2, · · · , wL}) (1)

Relation negative sampling strategy: For the
predefined relation set R = {r1, · · · , rK}, we ob-
tain the sampled relation set R̃ by negative sam-
pling of relations to alleviate the imbalance of pos-
itive and negative relations:

R̃ = {r̃1, r̃2, · · · , r̃NS} = NegSample(R,NS) (2)

where the operation NegSample(R,NS) de-
notes retaining all positive relations in R while
randomly sampling the negative relations and en-
suring that the total number of positive and negative
relations is NS.

Token pair representation: The token pair rep-
resentation we used is similar to the existing table-
filling method (Wang et al., 2020; Shang et al.,
2022a). For the token pair (wi, wj), the represen-
tation of the token pair h(wi,wj) is computed as
follows:

h(wi,wj) = ReLU (Wtp [hi;hj ] + btp) (3)

where 1 � i, j � L, ReLU (·) is the ReLU
(Agarap, 2018) activation function, [·; ·] is the
concatenation operators, Wtp ∈ Rde×1536 and
btp ∈ Rde are learnable parameters.

Relation-specific vertice heatmaps: Then the
probability scores of each token pair (wi, wj) for
different vertices under the specific relation rm are
calculated as follows:

Score
(UL)
ijm = σ

(
WrmWULh(wi,wj) + bUL

rm

)
(4)

Score
(UR)
ijm = σ

(
WrmWURh(wi,wj) + bUR

rm

)
(5)

Score
(LL)
ijm = σ

(
WrmWLLh(wi,wj) + bLL

rm

)
(6)

Score
(LR)
ijm = σ

(
WrmWLRh(wi,wj) + bLR

rm

)
(7)

where 1 � m � NS, rm ∈ R̃,
WUL,WUR,WLL,WLR ∈ Rde×de , Wrm ∈
R1×de and bUL

rm , bUR
rm , bLLrm , bLRrm ∈ R are learn-

able parameters, σ denotes the sigmoid function,
Score

(UL)
ijm , Score

(UR)
ijm , Score

(LL)
ijm , Score

(LR)
ijm ∈

R is the probability score indicating the probabil-
ity that the token pair (wi, wj) is located at UL,
UR, LL and LR, respectively. When the probabil-
ity score about a vertex exceeds a threshold γ, the
token pair is tagged as that vertex.
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Global relational triple region detection: To
more fully utilize the information of the triple re-
gion in the table, we introduce the global relational
triple region detection as an auxiliary task. Each
element of the global dependency matrix is calcu-
lated as follows:

P
(global)
ij = σ

(
Wglobalh(wi,wj) + bglobal

)
(8)

where σ denotes the sigmoid function, Wglobal ∈
R1×de and bglobal ∈ R.

As shown in the green matrix in Figure 2, the
ground truth of P (global)

ij is as follows:

GT
(global)
ij =

{
1 if wi ∈ span (ei) , wj ∈ span (ej)

0 if else

(9)

where both ei and ej are entities in the entity set
E, the symbol ∃ means that the token is within the
span of the entity.

Loss Function: Based on the BCE (Binary
Cross Entropy) loss, we design the objective func-
tion considering two subtasks: i.e., vertice tagging
of token pairs and global triple region tagging. Cor-
respondingly, the objective function of OD-RTE is
defined as follows:

Lvertice =

∑
V ∈Υ

∑NS
m=1

∑L
i=1

∑L
j=1 BCE

(V )
ijm

4×NS × L× L
(10)

BCE
(V )
ijm = GT

(V )
ijm log

(
Score

(V )
ijm

)

+
(
1−GT

(V )
ijm

)
log

(
1− Score

(V )
ijm

) (11)

Lglobal =

∑L
i=1

∑L
j=1 BCE

(global)
ij

L× L
(12)

BCE
(global)
ij = GT

(global)
ij log

(
P

(global)
ij

)

+
(
1−GT

(global)
ij

)
log

(
1− P

(global)
ij

) (13)

Ltotal = Lvertice + λLglobal (14)

where λ ∈ R is the loss function tuning factor
which is set manually, Υ = {UL,UR,LL,LR} is
a set containing the names of all vertices, GT

(V )
ijm is

the ground truth of Score(V )
ijm. For example, if the

token pair (wi, wj) is located as both ‘UL’ and ‘LL’
under relation rm, then GT

(UL)
ijm = 1, GT

(LL)
ijm = 1,

GT
(UR)
ijm = 0 and GT

(LR)
ijm = 0.

3.2.3 Decoding Algorithm
For each sentence, the tagging results of all to-
ken pairs for different vertices under the relation
rn ∈ R(1 � n � K) are stored into the vertice tag-
ging matrix V Tn ∈ RL×L×4(as shown in figure 2).
We propose the Bidirectional Diagonal Walk (short
for Bi-DW) Decoding Algorithm to easily decode
the relational triples contained in each sentence
from two diagonal directions of the object region.
And the triples are decoded along two decoding di-
rections: decoding direction 1 (UL→UR→LR) and
decoding direction 2 (LR→LL→UL). Specifically,
for the decoding direction 1, we first enumerate all
token pairs located at the UL vertex, and then for
each UL token pair search for the following nearest
token pair located at the UR vertex. Next, for each
UR token pair, we search for the following nearest
token pair located at the LR vertex. As a result,
the tokens between vertices UL and UR form the
tail entity, and the tokens between vertices UR and
LR form the head entity. Similarly, the meaning
of decoding direction 2 (LR→LL→UL) is similar
to that of decoding direction 1 (UL→UR→LR).
Finally, the relational triples which are decoded by
decoding direction 1 and decoding direction 2 will
both be added to the final decoding results, which
ensures all types of nested triples can be decoded.
The Figure 6 in the Appendix illustrates the imple-
mentation of the Bi-DW Decoding Algorithm more
specifically.

3.2.4 OD-RTE versus Existing tabling-filling
methods

The similarities and differences between OD-RTE
and existing tabling-filling methods are summa-
rized as follows:

Similarity: The only similarity between OD-
RTE and existing table-filling methods is that they
both adopt the token pair representation as shown in
Equation 3, which is also used in TPLinker (Wang
et al., 2020) and OneRel (Shang et al., 2022a).

Differences: (1) In OD-RTE, we propose a new
encoding scheme and decoding algorithm of rela-
tional triples based on the object detection frame-
work. (2) Unlike existing table-filling methods
(Wang et al., 2020; Ren et al., 2021; Shang et al.,
2022a) that utilize only the head and tail informa-
tion of entities, OD-RTE is, to our knowledge, the
first table-filling method that introduces the infor-
mation of the whole triple region. (3) As shown in
Figure 2, OD-RTE uses different vertex heatmaps
to tag the vertex labels of each token pair separately,
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Model NYT* NYT WebNLG* WebNLG
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

CasRelBERT (Wei et al., 2020) 89.7 89.5 89.6 - - - 93.4 90.1 91.8 - - -
CasRelrandom(Wei et al., 2020) 81.5 75.7 78.5 - - - 84.7 79.5 82.0 - - -
TPLinker (Wang et al., 2020) 91.3 92.5 91.9 91.4 92.6 92.0 91.8 92.0 91.9 88.9 84.5 86.7
PRGCBERT (Zheng et al., 2021) 93.3 91.9 92.6 93.5 91.9 92.7 94.0 92.1 93.0 89.9 87.2 88.5
PRGCrandom(Zheng et al., 2021) 89.6 82.3 85.8 87.8 83.8 85.8 90.6 88.5 89.5 82.5 79.2 80.8
BiRTE (Ren et al., 2022) 92.2 93.8 93.0 91.9 93.7 92.8 93.2 94.0 93.6 89.0 89.5 89.3
GRTRBERT (Ren et al., 2021) 92.9 93.1 93.0 93.4 93.5 93.4 93.7 94.2 93.9 92.3 87.9 90.0
DirectRel (Shang et al., 2022b) 93.7 92.8 93.2 93.6 92.2 92.9 94.1 94.1 94.1 91.0 89.0 90.0
OneRel (Shang et al., 2022a) 92.8 92.9 92.8 93.2 92.6 92.9 94.1 94.4 94.3 91.8 90.3 91.0
OD-RTErandom 89.8 85.1 87.4 88.3 86.4 87.3 91.2 89.4 90.3 83.5 80.5 82.0
OD-RTE 93.5 93.9 93.7 94.2 93.6 93.9 94.6 95.1 94.9 92.8 92.1 92.5
-GRD 93.1 93.6 93.4 93.5 93.3 93.4 94.3 94.9 94.6 92.6 91.6 92.1
-RNS 93.7 93.5 93.6 94.0 93.1 93.5 94.4 93.9 94.1 92.5 90.7 91.6

Table 1: Precision (%), Recall (%) and F1-score (%) of the proposed OD-RTE method and baselines. The subscripted
BERT denotes using the pre-trained BERT encoder parameters and the subscripted random denotes using the
randomly initialized BERT encoder parameters. ‘-GRD’ denotes OD-RTE without the global relational triple region
detection module. ‘-RNS’ denotes OD-RTE without the relation negative sampling strategy.

Model
NYT∗ WebNLG∗

Normal EPO SEO SOO N=1 N=2 N=3 N=4 N≥5 Normal EPO SEO SOO N=1 N=2 N=3 N=4 N≥5
TPLinker 90.1 94.0 93.4 90.1‡ 90.0 92.8 93.1 96.1 90.0 87.9 95.3 92.5 86.0 88.0 90.1 94.6 93.3 91.6
PRGC 91.0 94.5 94.0 81.8 91.1 93.0 93.5 95.5 93.0 90.4 95.9 93.6 94.6 89.9 91.6 95.0 94.8 92.8
OneRel 90.6 95.1 94.8 90.8 90.5 93.4 93.9 96.5 94.2 91.9 95.4 94.7 94.9 91.4 93.0 95.9 95.7 94.5
DirectRel 91.7 94.8 94.6 90.0 91.7 94.1 93.5 96.3 92.7 92.0 97.1 94.5 94.6 91.6 92.2 96.0 95.0 94.9
OD-RTE 91.3 95.9 95.7 91.4 91.3 93.4 94.6 96.9 95.3 92.1 95.9 95.4 95.4 91.1 93.5 95.9 96.1 95.1

Table 2: F1-score (%) on sentences with different overlapping patterns and different triple numbers N . The symbol
‡ marks the results reported by PRGC (Zheng et al., 2021).

which makes it possible to assign multiple vertex
labels to the same token pair. This allows OD-RTE
to be more flexible in handling various types of
nested triples. However, in the existing tabling-
filling methods, a token pair will be assigned only
one label under a relation. (4) To the best of our
knowledge, OD-RTE is the first table-filling-based
RTE method that introduces the relation negative
sampling strategy instead of full relation training.

4 Experiments

4.1 Datasets

To provide a fair comparison with existing works
(Wang et al., 2020; Shang et al., 2022a), we
evaluate OD-RTE on two widely used bench-
mark datasets, i.e., NYT (Riedel et al., 2010) and
WebNLG (Gardent et al., 2017). Both datasets con-
tain two different versions: version 1 annotates the
whole entity span and version 2 annotates only the
last word of the entities. In this paper, the two
datasets are denoted as NYT and WebNLG for ver-
sion 1 and NYT∗ and WebNLG∗ for version 2. To
further evaluate the performance of OD-RTE when
facing different complex scenarios, we split the
test set based on the number of triples and entity
overlapping patterns in the sentence.

4.2 Experimental Settings

Consistent with all baseline models described in
Appendix.A, we used three standard evaluation
metrics, i.e., micro Precision (Prec.), Recall (Rec.)
and F1 score (F1). Following the baseline models,
for NYT∗ and WebNLG∗ , we use Partial Match-
ing: a predicted triple is considered correct only if
the relation and the last word of the head and tail
entities are correct. And for NYT and WebNLG,
Exact Matching is employed, i.e., the whole span
of the head and tail entities in the extracted triples
needs to be extracted completely.

All experiments are performed on a workstation
equipped with i7-11700@2.50GHz, 32G memory
and an RTX 3090 GPU. For pre-trained BERT, we
use the cased base version of the English BERT
published by Huggingface 2 and fine-tune it dur-
ing training. The hyper-parameters are determined
manually on the valid set using the grid search. And
we used the Adam optimizer to train our model
with a cosine annealing learning rate schedule for
all the datasets and a learning rate of 5e-5. In par-
ticular, the batch size is set to 6 and 16 on datasets
WebNLG/WebNLG∗ and NYT/NYT∗, respectively.
The representation dimension de of the token pairs

2https://huggingface.co/bert-base-cased
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is 768×3 and the maximum sequence length is
set to 100. The negative sampling number NS of
the relations is set to 20 for all datasets. The loss
function tuning factor λ is set to 0.01.

4.3 Results and Analysis

4.3.1 Main Results
We compare our proposed OD-RTE model with
seven strong baseline models and the experimental
results on all datasets are reported in Table 1. It can
be seen that OD-RTE outperforms all baselines and
achieves the state-of-the-art performance in terms
of F1 scores on all datasets. From the experimental
results, we can further observe that:

(1) Compared with the tagging-based meth-
ods (i.e., CasRel, PRGC and BiRTE), OD-RTE
achieves a significant performance improvement.
This indicates that the one-stage triple extraction
method adopted in our proposed method can ef-
fectively alleviate the error propagation and expo-
sure bias in the training stage compared with the
tagging-based methods with multi-module cascade
(Wang et al., 2020). In addition, the triple encod-
ing and decoding strategy applied in OD-RTE can
simultaneously decode triples that belong to the
same relation and the head entities or tail entities
are nested with each other, which cannot be han-
dled by the tagging-based methods.

(2) When compared with the table-filling meth-
ods (i.e., TPLinker, GRTR and OneRel), OD-RTE
still has superior performance. This verifies our
claim that the triple determination manner in OD-
RTE based on the four vertices of the object region
can make better use of the regional information for
triples.

(3) To verify the effectiveness and robustness
of OD-RTE decoder, we abandon the pre-trained
weights to randomly initialize the BERT. The ex-
perimental results show that OD-RTErandom still
outperforms CasRelrandom and PRGCrandom even
without the beneficiation from pre-trained BERT.
This indicates that the performance improvement
brought by OD-RTE comes not only from the pre-
trained BERT but also from its decoder itself.

(4) We can observe that without the global re-
lational triple region detection module, the per-
formance of OD-RTE decreases noticeably. This
shows that except for the vertices’ information, the
whole region information of the triple also has a
positive impact on the performance of OD-RTE.

(5) The results also show that the performance of

the model obviously degrades without the relation
negative sampling strategy and the detailed analysis
is described in Section 4.3.4.

4.3.2 Analysis on Different Sentence Types
To verify the ability of OD-RTE to handle different
overlapping patterns and multiple triples in a sen-
tence, we conduct the corresponding experiments
on NYT∗ and WebNLG∗. The four state-of-the-art
models are selected as the baselines and the de-
tailed experimental results are shown in Tabel 2.
It can be seen that our proposed OD-RTE model
achieves the state-of-the-art performance on 12 out
of 18 subsets of the two test sets, especially in
multiple triples (N > 3) and two complex over-
lapping patterns (SEO and SOO) scenarios. In the
table-filling method, the table consisting of token
pairs under each relation is severely sparse, i.e.,
the positive and negative examples of token pairs
are grossly imbalanced. The table composed of to-
ken pairs in OD-RTE has more non-zero elements
in the scenarios of SEO patterns, SOO patterns
and multiple triples, which alleviates the imbalance
of token pairs of positive and negative examples
to a certain extent. As a result, OD-RTE learns
more adequate positive sample information in sev-
eral complex scenarios mentioned above and thus
achieves the competitive performance.

4.3.3 Analysis on Model Efficiency
Compared with other table-filling methods, we
evaluate the efficiency of OD-RTE from three as-
pects, i.e., Training Time, Inference Time and GPU
Memory. The experimental results are shown in
Table 3. For fair comparison, the experimental
results of the above three efficiency evaluation met-
rics are all obtained with the same parameter set-
tings. From the experimental results, we can ob-
serve that OD-RTE outperforms TPLinker, GRTE
and OneRel while using the least single-epoch train-
ing time which illustrates the efficiency and strong
learning ability of OD-RTE. Additionally, OD-RTE
achieves the fastest inference speed, which illus-
trates the high efficiency of our proposed Bi-DW
decoding algorithm. Compared with the state-of-
the-art table-filling method OneRel, OD-RTE still
achieves a performance improvement while reduc-
ing the GPU memory usage by about 2/3 during
the training phase. OD-RTE does not rely on large
memory GPUs, which illustrates the economics
of training it. Although OD-RTE occupies slightly
more GPU memory than TPLinker, it brings signifi-
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Dataset Model Training Time(S) Inference Time(S) GPU Memory(MB) F1(%)

NYT

TPLinker 1601#‡ 45#‡ 6014#‡ 92.0
GRTE 931#‡ 43#‡ 18771#‡ 93.4

OneRel 1203#‡ 42#‡ 23703#‡ 92.9
OD-RTEwns 825# 38# 8389# 93.5

OD-RTE 798# 38# 8372# 93.9

WebNLG

TPLinker 602#‡ 13#‡ 5951#‡ 86.7
GRTE 118#‡ 13#‡ 15345#‡ 90.0

OneRel 89#‡ 11#‡ 21338#‡ 91.0
OD-RTEwns 78# 9# 8781# 91.6

OD-RTE 70# 9# 7515# 92.5

Table 3: Comparison of the efficiency with other table-filling methods. Training Time (S) means the time taken to
train an epoch. The Inference Time (S) denotes the time required to predict the triples of sentences in the whole
test set. GPU Memory (MB) represents the maximum amount of GPU memory that the model occupies during the
training phase. The superscript # indicates that the result is obtained on the NYT/WebNLG dataset with batch size
8/6 and the superscript ‡ marks results obtained by official implementations. OD-RTEwns is a version of OD-RTE
without relation negative sampling strategy.
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Figure 4: The effect of the relation negative sampling number NS on datasets NYT and WebNLG.

cant performance improvement, therefore choosing
OD-RTE is still cost-effective. In addition, OD-
RTE surpasses OD-RTEwns in performance and
efficiency metrics other than inference time, indi-
cating that relation negative sampling strategy can
not only improve the model efficiency, but also
help improve the model performance. Compared
with NYT, because of the large number of rela-
tions, the improvement brought by the negative
sampling strategy of relations is more significant
in WebNLG.

4.3.4 Analysis on Relation Negative Sampling

We also conduct experiments to verify the effect
of the relation negative sampling number NS on
the OD-RTE performance. Since both NYT and
WebNLG versions of the dataset contain the com-
plete span of entities, the performance of the model
on these two datasets can more intuitively reflect
the RTE performance in real scenarios. Therefore,
NYT and WebNLG are selected as the experimen-
tal datasets, and the experimental results are shown
in Figure 4. An interesting observation from the ex-
perimental results is that OD-RTE achieves the best

performance on both NYT and WebNLG datasets
when NS = 20. When NS is large than 20, the F1
score performance of OD-RTE shows a decreasing
trend as NS increased. This validates our motiva-
tion that the positive and negative relations in the
training data become imbalanced with the increase
of NS. At this time, the training of the model
will be dominated by negative relations and the
inference results of the model will be more biased
towards negative relations. Meanwhile, when NS
is less than 20, the performance of the model de-
creases as NS decreases. This suggests that when
the number of negative relations in the training data
is too small, the model will be under-trained caus-
ing performance degradation. In addition, it can
be seen that OD-RTE still outperforms the state-
of-the-art table-filling method OneRel when no
relational negative sampling is employed during
the training stage, i.e., when NS = 24 on NYT
and NS = 216 on WebNLG. This illustrates that
our proposed model can utilize the regional infor-
mation of triple more effectively than the existing
table-filling methods do.
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5 Conclusions

In this work, we treat the RTE task as an object de-
tection task from a novel perspective and propose
a one-stage relational triple extraction model OD-
RTE. The vertices-based relational triple encoding
method and Bi-DW decoding algorithm used in
OD-RTE enable it to handle various complex en-
tity scenarios. In addition, the negative sampling
strategy of relations in the training stage improves
the training efficiency while alleviating the imbal-
ance of positive and negative relations. Compared
with existing table-filling methods, our proposed
OD-RTE can more effectively utilize the regional
information for triple. Experimental results on pub-
lic datasets demonstrate that OD-RTE not only out-
performs other state-of-the-art models in multiple
complex scenarios, but also has high computational
efficiency.

Limitations

In this section, we would like to discuss two limita-
tions of OD-RTE as follows:

(1) In the current table-filling based RTE meth-
ods including OD-RTE, the issue of sparse labels in
the tables still exists. As cells of the table, the num-
ber of positive and negative token pairs is grossly
unbalanced. In this work, although we alleviate
the problem of unbalanced positive and negative
relations by introducing the relation negative sam-
pling strategy, the problem of unbalanced positive
and negative token pairs still exists and needs to be
addressed. We will try to mitigate the problem in
our future work.

(2) Currently, OD-RTE can only be applied to
the relational triple extraction task. In recent years,
the table-filling-based approaches have been widely
used for many information extraction tasks besides
the RTE task, such as opinion mining (Wu et al.,
2020) and named entity recognition (Li et al., 2022).
Therefore, in future work, we will try to extend the
object detection framework to other information
extraction tasks to let the model make full use of
the information of entity boundaries.
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A Other experimental settings

The other experimental settings we used are de-
scribed in detail as follows:

Statistical information of datasets: The statis-
tical information of the two datasets is shown in
Table 4.

Baselines: We compare OD-RTE with seven
state-of-the-art baseline models, including CasRel
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Dataset Relations
Sentences Details of test set

Train Valid Test Normal SEO EPO SOO N=1 N=2 N=3 N=4 N>5 Triples
NYT 24 56195 5000 5000 3222 1273 969 117 3240 1047 314 290 109 8120

WebNLG 216 5019 500 703 239 448 6 85 256 175 138 93 41 1607
NYT∗ 24 56195 4999 5000 3266 1297 978 45 3244 1045 312 291 108 8110

WebNLG∗ 171 5019 500 703 245 457 26 84 266 171 131 90 45 1591

Table 4: Statistics of datasets used in our experiments. N is the number of triples in a sentence.

Hyper-parameter Range
Batch size [4,6,8,16,32]
Init learning rate [5e-6,e-5,3e-5,5e-5]
Representation dimension de [768,2*768,3*768]
NS for NYT/NYT∗ [8,12,16,20,24]
NS for WebNLG/WebNLG∗ [10,20,60,100,140,180,216]
λ [1,0.1,0.01,0.0001]

Table 5: Hyperparameters and its search range.

Model Sub Task
NYT∗ WebNLG∗

Prec. Rec. F1 Prec. Rec. F1

PRGC
(h, t) 94.0 92.3 93.1 96.0 93.4 94.7
r 95.3 96.3 95.8 92.8 96.2 94.5

(h, r, t) 93.3 91.9 92.6 94.0 92.1 93.0

OneRel
(h, t) 93.3 93.4 93.3 96.2 96.5 96.3
r 96.7 96.9 96.8 96.7 97.0 96.8

(h, r, t) 92.8 92.9 92.8 94.1 94.4 94.3

DirectRel
(h, t) 94.1 93.2 93.7 95.8 95.9 95.8
r 97.3 96.4 96.9 96.8 96.7 96.7

(h, r, t) 93.7 92.8 93.2 94.1 94.1 94.1

OD-RTE
(h, t) 93.7 94.2 94.0 95.9 97.3 96.6
r 96.7 97.2 97.0 96.5 97.2 96.8

(h, r, t) 93.5 93.9 93.7 94.6 95.1 94.9

Table 6: Experimental results of different subtasks on
the NYT∗ and WebNLG∗ datasets. (h, t) denotes entity
extraction, r denotes relation classification, and (h, r, t)
denotes relational triple extraction.

(Wei et al., 2020), TPLinker (Wang et al., 2020),
PRGC (Zheng et al., 2021), BiRTE (Ren et al.,
2022), GRTE (Ren et al., 2021), DirectRel (Shang
et al., 2022b) and OneRel (Shang et al., 2022a).

Determination of hyperparameters: We deter-
mine the hyperparameters manually based on the
performance of the model on the valid set. The
search range of hyperparameters is shown in Table
5.

B Supplementary description of the
Introduction section

As for the issues with the existing methods dis-
cussed in the introduction of this paper, we sup-
plement the first two issues with a more detailed
description as follows:

(1) Regarding the problem that the existing table-
filling-based RTE methods make insufficient use
of the regional information of the triple, we illus-

Decoding Methods
NYT WebNLG

Prec. Rec. F1 Prec. Rec. F1
S-DW 94.2 92.5 93.3 92.8 91.3 92.0
RVW 94.5 92.4 93.4 93.0 90.5 91.7

Bi-DW∩ 94.4 92.6 93.5 93.0 90.6 91.8
Bi-DW 94.2 93.6 93.9 92.8 92.1 92.5

Table 7: Precision (%), Recall (%) and F1-score (%) of
different decoding algorithms. S-DW denotes for sin-
gle direction diagonal walk method, which only takes
the decoding result of decoding decoding direction 1
(UL→UR→LR). The decoding strategy applied in the S-
DW decoding method is also adopted in OneRel (Shang
et al., 2022a). RVW denotes the rectangle vertex walk
method, which collects relational triples along the new
decoding direction (UL→UR→LR→LL). In the Bi-
DW∩, only the relational triples that appear in the decod-
ing results of both decoding direction 1 and decoding
direction 2 will be inserted into the final decoding re-
sults.

trate it specifically using Figure 5. As can be seen
in Figure 5(a), a triple occupies a rectangular re-
gion in the table. However, existing table-filling
methods, such as TPLinker in Figure 5(b), GRTE
in Figure 5(c) and OneRel in Figure 5(d), utilize
only part of the table cells associated with the entity
head and tail information to tag the triples. This
leaves the triple region information in the table un-
derexploited. As shown in Figures 5(e) and 5(f),
OD-RTE can exploit all the table cells in the region
occupied by the triple.

(2) With respect to the problem that the state-of-
the-art table-filling method, OneRel, cannot extract
all types of triples, we illustrate it in detail with
two cases. The first case is shown in Figure 6. It
can be seen that OneRel cannot simultaneously de-
code both of the two triples that are nested in either
the head entity or the tail entity under the same
relation. The relational triple encoding scheme in
OD-RTE with the Bi-DW decoding algorithm can
handle this situation. The second case is shown
in Figure 7. It can be seen that if there is a single
token entity in the relational triple, the triple en-
coding scheme of original OneRel cannot encode
it validly. In triple encoding scheme of improved

11130



OneRel from the official implementation, the [unu]
character is inserted after each token to achieve
a valid encoding of the single token entity in the
triple. However, this not only doubles the sentence
length leading to a serious reduction in the com-
putational efficiency of the model, but also makes
the text sequences no longer natural language se-
quences affecting the fine-tuning performance of
the pre-trained BERT. But our proposed triple en-
coding scheme of OD-RTE can efficiently encode
relational triples containing single token entities.

C Results on Different Sub-tasks

To analyze the advantages of OD-RTE in relational
triple extraction process in detail, we conduct ex-
periments on two sub-tasks i.e., entity extraction
and relation classification. The experimental re-
sults are shown in Table 6, OD-RTE outperforms
all baseline methods in F1 score on each subtask.
The two subtasks of entity extraction and relation
classification in OD-RTE are jointly performed in
the same module in one stage, which allows the
two subtasks to interact while avoiding the accu-
mulation of errors caused by the cascade structure.
At the same time, compared with the state-of-the-
art table-filling method OneRel, OD-RTE can still
achieve a performance improvement, indicating
that it can more fully utilize the regional informa-
tion for triple.

D Analysis on Different Decoding
Methods

We conduct experiments to verify the performance
of different decoding methods. The results are re-
ported in Table 7. It can be seen that our proposed
Bi-DW decoding algorithm achieves the highest
recall rate while maintaining a high precision rate.
In addition, it should be noted that the Bi-DW al-
gorithm can simultaneously decode the triples of
nested head entities or tail entities under the same
relation (shown in Figure 6). However, other decod-
ing algorithms shown in Table 7, as well as some
state-of-the-art baseline models, such as PRGC,
OneRel, do not have this capability. This suggests
that the Bi-DW decoding algorithm is not only effi-
cient but also improves the performance.
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Figure 5: Comparison of different triple encoding schemes for table-filling-based RTE methods. For clarity of
expression, we employ the same tagging notation as in the original paper. The example sentence “Tom Mike lives in
Salt Lake City. ” in this figure contains a relational triple (‘Tom Mike’, place_lived, ‘Salt Lake City’).
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Figure 6: Comparison of OneRel and OD-RTE dealing with nested triples under the same relation. The example
sentence “Tom Mike lives in New York City. ” in this figure contains two relational triples (‘Tom Mike’, place_lived,
‘New York’) and (‘Tom Mike’, place_lived, ‘New York City’). The two relational triples share the same head entity
‘Tom Mike’. And the tail entities ‘New York’ and ‘New York City’ of the two relational triples are nested. The two
tokens in square brackets represent a token pair.
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Figure 7: Comparison of OneRel and OD-RTE dealing with triples containing single token entities. The example
sentence “Tom lives in New York. ” in this figure contains a relational triple (‘Tom’, place_lived, ‘New York’). The
symbol [usu] indicates the abbreviation of the unused token [unused1] in the vocabulary list of the BERT tokenizer.
‘Triple encoding scheme of original OneRel’ is described in the original paper for OneRel (Shang et al., 2022a).
‘Triple encoding scheme of improved OneRel’ comes from the official implementation of OneRel.
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