
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 11211–11236

July 9-14, 2023 ©2023 Association for Computational Linguistics

Few-shot Event Detection: An Empirical Study and a Unified View

Yubo Ma1, Zehao Wang2, Yixin Cao3†, Aixin Sun1†

1 S-Lab, Nanyang Technological University
2 KU Leuven 3 Singapore Management University

yubo001@e.ntu.edu.sg

Abstract

Few-shot event detection (ED) has been widely
studied, while this brings noticeable discrep-
ancies, e.g., various motivations, tasks, and
experimental settings, that hinder the under-
standing of models for future progress. This
paper presents a thorough empirical study, a
unified view of ED models, and a better uni-
fied baseline. For fair evaluation, we compare
12 representative methods on three datasets,
which are roughly grouped into prompt-based
and prototype-based models for detailed anal-
ysis. Experiments consistently demonstrate
that prompt-based methods, including Chat-
GPT, still significantly trail prototype-based
methods in terms of overall performance. To in-
vestigate their superior performance, we break
down their design elements along several di-
mensions and build a unified framework on
prototype-based methods. Under such unified
view, each prototype-method can be viewed a
combination of different modules from these
design elements. We further combine all ad-
vantageous modules and propose a simple yet
effective baseline, which outperforms existing
methods by a large margin (e.g., 2.7% F1 gains
under low-resource setting). 1

1 Introduction

Event Detection (ED) is the task of identifying
event triggers and types in texts. For example,
given “Cash-strapped Vivendi wants to sell Univer-
sal Studios”, it is to classify the word “sell” into a
TransferOwnership event. ED is a fundamental step
in various tasks such as successive event-centric in-
formation extraction (Huang et al., 2022; Ma et al.,
2022b; Chen et al., 2022), knowledge systems (Li
et al., 2020; Wen et al., 2021), story generation (Li
et al., 2022a), etc. However, the annotation of event
instances is costly and labor-consuming, which mo-

†Corresponding Author.
1Our code will be publicly available at

https://github.com/mayubo2333/fewshot_ED.

Model

Train Predict Train Predict

Model

Train

Source Target

(a) low-resource setting (b) class-transfer setting

Model

Figure 1: Task settings to access Generalization (a) and
Transferability (b). Colors denote event types.

tivates the research on improving ED with limited
labeled samples, i.e., the few-shot ED task.

Extensive studies have been carried out on few-
shot ED. Nevertheless, there are noticeable discrep-
ancies among existing methods from three aspects.
(1) Motivation (Figure 1): Some methods focus on
model’s generalization ability that learns to classify
with only a few samples (Li et al., 2022b). Some
other methods improve the transferability, by intro-
ducing additional data, that adapts a well-trained
model on the preexisting schema to a new schema
using a few samples (Lu et al., 2021). There are
also methods considering both abilities (Liu et al.,
2020; Hsu et al., 2022). (2) Task setting: Even
focusing on the same ability, methods might adopt
different task settings for training and evaluation.
For example, there are at least three settings for
transferability: episode learning (EL, Deng et al.
2020; Cong et al. 2021), class-transfer (CT, Hsu
et al. 2022) and task-transfer (TT, Lyu et al. 2021;
Lu et al. 2022). (3) Experimental Setting: Even fo-
cusing on the same task setting, their experiments
may vary in different sample sources (e.g., a subset
of datasets, annotation guidelines, or external cor-
pus) and sample numbers (shot-number or sample-
ratio). Table 1 provides a detailed comparison of
representative methods.

In this paper, we argue the importance of a uni-
fied setting for a better understanding of few-shot
ED. First, based on exhaustive background investi-
gation on ED and similar tasks (e.g., NER), we con-

11211

Table 1: Noticeable discrepancies among existing few-shot ED methods. Explanations of task settings can be found
in Section 2.1, which also refer to different motivations: LR for generalization, EL, CT, and TT for transfer abilities.
Dataset indicates the datasets on which the training and/or evaluation is conducted. Sample Number refers to the
number of labeled samples used. Sample Source refers to where training samples come from. Guidelines: example
sentences from annotation guidelines. Datasets: subsets of full datasets. Corpus: (unlabeled) external corpus.

Method Task setting Experimental setting
LR EL CT TT Dataset Sample Number Sample Source

Pr
ot

ot
yp

e-
ba

se
d

Seed-based (Bronstein et al., 2015) ✓ ACE 30 Guidelines
MSEP (Peng et al., 2016) ✓ ✓ ACE 0 Guidelines
ZSL (Huang et al., 2018) ✓ ACE 0 Datasets
DMBPN (Deng et al., 2020) ✓ FewEvent {5,10,15}-shot Datasets
OntoED (Deng et al., 2021) ✓ ✓ MAVEN / FewEvent {0,1,5,10,15,20}% Datasets
Zhang’s (Zhang et al., 2021) ✓ ACE 0 Corpus
PA-CRF (Cong et al., 2021) ✓ FewEvent {5,10}-shot Datasets
ProAcT (Lai et al., 2021) ✓ ACE / FewEvent / RAMS {5,10}-shot Datasets
CausalED (Chen et al., 2021) ✓ ACE / MAVEN / ERE 5-shot Datasets
Yu’s (Yu et al., 2022) ✓ ACE 176 Guidelines + Corpus
ZED (Zhang et al., 2022a) ✓ MAVEN 0 Corpus
HCL-TAT (Zhang et al., 2022b) ✓ FewEvent {5,10}-shot Datasets
KE-PN (Zhao et al., 2022) ✓ ACE / MAVEN / FewEvent {1,5}-shot Datasets

Pr
om

pt
-b

as
ed

EERC (Liu et al., 2020) ✓ ✓ ✓ ACE {0,1,5,10,20}% Datasets
FSQA (Feng et al., 2020) ✓ ✓ ACE {0,1,3,5,7,9}-shot Datasets
EDTE (Lyu et al., 2021) ✓ ACE / ERE 0 -
Text2Event (Lu et al., 2021) ✓ ACE / ERE {1,5,25}% Datasets
UIE (Lu et al., 2022) ✓ ✓ ACE / CASIE {1,5,10}-shot/% Datasets
DEGREE (Hsu et al., 2022) ✓ ✓ ACE / ERE {0,1,5,10}-shot Datasets
PILED (Li et al., 2022b) ✓ ✓ ACE / MAVEN / FewEvent {5,10}-shot Datasets

duct an empirical study of twelve SOTA methods
under two practical settings: low-resource setting
for generalization ability and class-transfer setting
for transferability. We roughly classify the existing
methods into two groups: prototype-based mod-
els to learn event-type representations and proxim-
ity measurement for prediction and prompt-based
models that convert ED into a familiar task of Pre-
trained Language Models (PLMs).

The second contribution is a unified view of
prototype-based methods to investigate their su-
perior performance. Instead of picking up the
best-performing method as in conventional empir-
ical studies, we take one step further. We break
down the design elements along several dimen-
sions, e.g., the source of prototypes, the aggrega-
tion form of prototypes, etc. From this perspective,
five prototype-based methods on which we con-
duct experiment are instances of distinct modules
from these elements. And third, through analyzing
each effective design element, we propose a sim-
ple yet effective unified baseline that combines all
advantageous elements of existing methods. Ex-
periments validate an average 2.7% F1 gains un-
der low-resource setting and the best performance
under class-transfer setting. Our analysis also pro-
vides many valuable insights for future research.

2 Preliminary

Event detection (ED) is usually formulated as ei-
ther a span classification task or a sequence labeling
task, depending on whether candidate event spans
are provided as inputs. We brief the sequence la-
beling paradigm here because the two paradigms
can be easily converted to each other.

Given a dataset D annotated with schema E
(the set of event types) and a sentence X =
[x1, ..., xN]T ∈ D, where xi is the i-th word and
N the length of this sentence, ED aims to assign a
label yi ∈ (E ∪ {N.A.}) for each xi in X . Here
N.A. refers to either none events or events beyond
pre-defined types E. We say that word xi trigger-
ing an event yi if yi ∈ E.

2.1 Few-shot ED task settings

We categorize few-shot ED settings to four
cases: low-resource (LR), class-transfer (CT),
episode learning (EL) and task-transfer (TT). Low-
resource setting assesses the generalization ability
of few-shot ED methods, while the other three set-
tings are for transferability. We adopt LR and CT
in our empirical study towards practical scenarios.
More details can be found in Appendix A.1.
Low-resource setting assumes access to a dataset
D = (Dtrain,Ddev,Dtest) annotated with a label

11212

set E, where |Ddev| ≤ |Dtrain| ≪ |Dtest|. It as-
sesses the generalization ability of models by (1)
utilizing only few samples during training, and (2)
evaluating on the real and rich test dataset.
Class-transfer setting assumes access to a source
dataset D(S) with a preexisting schema E(S) and a
target dataset D(T) with a new schema E(T). Note
that D(S) and D(T), E(S) and E(T) contain dis-
joint sentences and event types, respectively. D(S)

contains abundant samples, while D(T) is the low-
resource setting dataset described above. Models
under this setting are expected to be pre-trained on
D(S) then further trained and evaluated on D(T).

2.2 Category of existing methods

We roughly group existing few-shot ED meth-
ods into two classes: prompt-based methods and
prototype-based methods. More details are intro-
duced in Appendix A.2.
Prompt-based methods leverage the rich language
knowledge in PLMs by converting downstream
tasks to the task with which PLMs are more fa-
miliar. Such format conversion narrows the gap
between pre-training and downstream tasks and
benefits knowledge induction in PLMs with lim-
ited annotations. Specifically, few-shot ED can
be converted to machine reading comprehension
(MRC, Du and Cardie 2020; Liu et al. 2020; Feng
et al. 2020), natural language inference (NLI, Lyu
et al. 2021), conditional generation (CG, Paolini
et al. 2021; Lu et al. 2021, 2022; Hsu et al. 2022),
and the cloze task (Li et al., 2022b). We give exam-
ples of these prompts in Table 6.
Prototype-based methods predict an event type
for each word/span mention by measuring its rep-
resentation proximity to prototypes. Here we de-
fine prototypes in a generalized format — it is an
embedding that represents some event type. For
example, Prototypical Network (ProtoNet, Snell
et al. 2017) and its variants (Lai et al., 2020a,b;
Deng et al., 2020, 2021; Cong et al., 2021; Lai
et al., 2021) construct prototypes via a subset of
sample mentions. In addition to event mentions, a
line of work leverage related knowledge to learn
or enhance prototypes’ representation, including
AMR graphs (Huang et al., 2018), event-event re-
lations (Deng et al., 2021), definitions (Shen et al.,
2021) and FrameNet (Zhao et al., 2022). Zhang
et al. (2022b) recently introduce contrastive learn-
ing (Hadsell et al., 2006) in few-shot ED task. Such
method also determines the event by measuring the

Norm

Average

Inner product

Softmax

Norm

Proto-enhanced CRF

JS Divergence

Sum

Softmax

Reparam

CRF Inference

Reparam

Average

Inner product

Softmax

Project

CRF Inference

la
be

l

la
be

l

Project

Average

Euclidean

Softmax

Inner product

Softmax

label

Scaled Inner

Softmax

Sum

Scaled Inner

Softmax

NormNorm

label

Norm

(a) CONTAINER (b) PA-CRF (c) L-TapNet-CDF

(d) ProtoNet (e) FSLS (f) Unified baseline

Figure 2: The architectures of five existing prototype-
based methods and the unified baseline. Given event
mention x and event type y, each sub-figure depicts how
to compute the logits(y|x). White circles: representa-
tion of predicted event hx. Purple circles: representation
of prototypes hcy (cy ∈ Cy). Yellow modules: transfer
functions. Green modules: distance functions. Blue
modules: aggregation form. Orange modules: CRF
modules. Dashed lines in (a) and (c) represent that their
CRFs are only used during inference.

distances with other samples and aggregates these
distances to evaluate an overall distance to each
event type. Therefore we view it as a generalized
format of prototype-based methods as well.

For comprehensiveness, we also include compet-
itive methods from similar tasks, i.e., Named Entity
Recognition and Slot Tagging, which are highly
adaptable to ED. Such expansion enriches the cate-
gorization and enables us to build a unified view in
Section 3. For instance, some methods (Hou et al.,
2020; Ma et al., 2022a) leverage label semantics to
enhance or directly construct the prototypes. Oth-
ers (Das et al., 2022) leverage contrastive learning
for better prototype representations.

3 A Prototype-based Unified View

Due to the superior performance (Sections 5 and
6), we zoom into prototype-based methods to pro-
vide a unified view towards a better understanding.
We observe that they share lots of similar com-
ponents. As shown in Table 2 and Figure 2, we
decompose prototype-based methods into 5 design
elements: prototype source, transfer function, dis-
tance function, aggregation form, and CRF module.
This unified view enables us to compare choices in
each design element directly. By aggregating the

11213

Table 2: Decomposing five prototype-based methods and unified baseline along design elements. "Both" in column
1 means both event mentions and label names for y are prototype sources. JSD: Jensen–Shannon divergence.M:
Projection matrix in TapNet. N (µ(h),Σ(h)): Gaussian distribution with mean µ(h) and covariance matrix Σ(h).

Method Prototype Cy Aggregation Distance d(u, v) Transfer f(h) CRF Module

ProtoNet (Snell et al., 2017) Event mentions feature ||u− v||2 h −
L-TapNet-CDT (Hou et al., 2020) Both feature −uT v/τ M h

||h|| CRF-Inference
PA-CRF (Cong et al., 2021) Event mentions feature −uT v h

||h|| CRF-PA
CONTAINER (Das et al., 2022) Event mentions score JSD(u||v) N (µ(h),Σ(h)) CRF-Inference
FSLS (Ma et al., 2022a) Label name − −uT v h −
Unified Baseline (Ours) Both score + loss −uT v/τ h

||h|| −

effective choices, we end with a Unified Baseline.
Formally, given an event mention x, prototype-

based methods predict the likelihood p(y|x) from
logits(y|x) for each y ∈ (E ∪ {N.A.})

p(y|x) = Softmaxy∼(E∪{N.A.})logits(y|x)

The general framework is as follows. Denote
the PLM’s output representation of event men-
tion x and data cy in prototype source Cy as hx
and hcy respectively, where h ∈ Rm and m is
the dimension of PLM’s hidden space. The first
step is to convert hx and hcy to appropriate rep-
resentations via a transfer function f(·). Then
the methods maintain either a single or multiple
prototypes cy’s for each event type, determined
by the adopted aggregation form. Third, the dis-
tance between f(hx) and f(hcy) (single proto-
type) or f(hcy)’s (multiple prototypes) is computed
via a distance function d(·, ·) to learn the proxim-
ity scores, i.e., logits(y|x). Finally, an optional
CRF module is used to adjust logits(y|x) for x in
the same sentence to model their label dependen-
cies. For inference, we adopt nearest neighbor
classification by assigning the sample with nearest
event type in ∪y∈(E∪{N.A.})Cy , i.e.,

ŷx = argmin
y∈(E∪{N.A.})

min
cy∈Cy

d(f(hx), f(hcy))

Next, we detail the five design elements:
Prototype source Cy (purple circles in Figure 2,
same below) indicates a set about the source of
data / information for constructing the prototypes.
There are mainly two types of sources:
(1) event mentions (purple circle without words):
ProtoNet and its variants in Figure 2(b),(c),(d) addi-
tionally split a support set Sy from training data as
prototype source, while contrastive learning meth-
ods in Figure 2(a) view every annotated mention as
the source (except the query one).

(2) Label semantics (purple ellipses with words):
Sometimes, the label name ly is utilized as the
source to enhance or directly construct the proto-
types. For example, FSLS in Figure 2(e) views
the text representation of type names as prototypes,
while L-TapNet-CDT in Figure 2(c) utilizes both
the above kinds of prototype sources.
Transfer function f : Rm → Rn (yellow mod-
ules) transfers PLM outputs into the distance space
for prototype proximity measurement. Widely used
transfer functions include normalization in Fig-
ure 2(b), down-projection in Figure 2(c), reparame-
terization in Figure 2(a), or an identity function.
Distance function d : Rn × Rn → R+ (green
modules) measures the distance of two transferred
representations within the same embedded space.
Common distance functions are euclidean distance
in Figure 2(d) and negative cosine similarity in
Figure 2(b),(c),(e).
Aggregation form (blue modules) describes how
to compute logits(y|x) based on a single or multi-
ple prototype sources. Aggregation may happen at
three levels.
(1) feature-level: ProtoNet and its variants in Fig-
ure 2(b),(c),(d) aims to construct a single proto-
type hc̄y for each event type y by merging various
features, which ease the calculation logits(y|x) =
−d(f(hx), f(hc̄y)).
(2) score-level: CONTAINER in Figure 2(a) views
each data as a prototype (they have multiple proto-
types for each type y) and computes the distance
d(f(hx), f(hcy)) for each cy ∈ Cy. These dis-
tances are then merged to obtain logits(y|x).
(3) loss-level: Such form has multiple parallel
branches b for each mention x. Each branch has its
own logits(b)(y|x) and is optimized with different
loss components during training. Thus it could be
viewed as a multi-task learning format. See unified
baseline in Figure 2(f).

11214

CRF module (orange modules) adjusts predictions
within the same sentence by explicitly consider-
ing the label dependencies between sequential in-
puts. The vanilla CRF (Lafferty et al., 2001) and
its variants in Figure 2(a),(b),(c) post additional
constraints into few-shot learning.

4 Experimental setup

4.1 Few-shot datasets and Evaluation

Dataset source. We utilize ACE05 (Doddington
et al., 2004), MAVEN (Wang et al., 2020) and
ERE (Song et al., 2015) to construct few-shot ED
datasets in this empirical study. Detailed statistics
about these three datasets are in Appendix B.1.
Low-resource setting. We adopt K-shot sampling
strategy to construct few-shot datasets for the low-
resource setting, i.e., sampling Ktrain and Kdev

samples per event type to construct the train and
dev sets, respectively.2 We set three (Ktrain,Kdev)
in our evaluation: (2, 1), (5, 2) and (10, 2). We fol-
low Yang and Katiyar (2020) taking a greedy sam-
pling algorithm to approximately select K samples
for each event type. See Appendix B.2 for details
and the statistics of the sampled few-shot datasets.
We inherit the original test set as Dtest.
Class-transfer setting. The few-shot datasets are
curated in two sub-steps: (1) Dividing both event
types and sentences in the original dataset into
two disjoint parts, named source dataset and target
dataset pool, respectively. (2) Sampling few-shot
samples from the target dataset pool to construct
target dataset. The same sampling algorithm as
in low-resource setting is used. Then we have the
source dataset and the sampled target dataset. See
Appendix B.2 for details and the statistics of the
sampled few-shot datasets.
Evaluation Metric We use micro-F1 score as the
evaluation metric. To reduce the random fluctu-
ation, the reported values of each setting are the
averaged score and sample standard deviation, of
results w.r.t 10 sampled few-shot datasets.

4.2 Evaluated methods

We evaluate 12 representative methods, including
vanilla fine-tuning, in-context learning, 5 prompt-

2Recent systematic research on few-shot NLP tasks (Perez
et al., 2021) is of opposition to introducing an additional dev
set for few-shot learning. We agree with their opinion but
choose to keep a very small dev set mainly for feasibility
consideration. Given the number of experiments in our empir-
ical study, it is infeasible to conduct cross-validation on every
single train set for hyperparameter search.

based and 5 prototype-based methods. These meth-
ods are detailed in Appendix B.3.
Fine-tuning To validate the effectiveness of few-
shot methods, we fine-tune a supervised classifier
for comparison as a trivial baseline.
In-context learning To validate few-shot ED tasks
still not well-solved in the era of Large Language
Models (LLMs), we design such baseline instruct-
ing LLMs to detect event triggers by the means of
in-context learning (ICL).
Prompt-based (1) EEQA (QA-based, Du and
Cardie 2020), (2) EETE (NLI-based, Lyu et al.
2021), (3) PTE (cloze task, Schick and Schütze
2021), (4) UIE (generation, Lu et al. 2022) and (5)
DEGREE (generation, Hsu et al. 2022).
Prototype-based (1) ProtoNet (Snell et al., 2017),
(2) L-TapNet-CDT (Hou et al., 2020), (3) PA-
CRF (Cong et al., 2021), (4) CONTAINER (Das
et al., 2022) and (5) FSLS (Ma et al., 2022a). See
Table 2 and Figure 2 for more details.

4.3 Implementation details

We unify PLMs in each method as much as
possible for a fair comparison in our empirical
study. Specifically, we use RoBERTa-base (Liu
et al., 2019) for all prototype-based methods and
three non-generation prompt-based methods. How-
ever, we keep the method’s original PLM for two
prompt-based methods with generation prompt,
UIE (T5-base, Raffel et al. 2020) and DE-
GREE (BART-large, Lewis et al. 2020). We
observe their performance collapses with smaller
PLMs. Regarding ICL method, we use Chat-
GPT (gpt-3.5-turbo-0301) as the language
model. See more details in Appendix B.4.

5 Results: Low-resource Learning

5.1 Overall comparison

We first overview the results of the 12 methods
under the low-resource setting in Table 3.
Fine-tuning. Despite its simpleness, fine-tuning
achieves acceptable performance. In particular, it
is even comparable to the strongest existing meth-
ods on MAVEN dataset, only being 1.1% and 0.5%
less under 5-shot and 10-shot settings. One possi-
ble reason that fine-tuning is good on MAVEN is
that MAVEN has 168 event types, much larger than
others. When the absolute number of samples is
relatively large, PLMs might capture implicit inter-
actions among different event types, even though
the samples per event type are limited. When the

11215

Table 3: Overall results of fine-tuning method, 10 existing few-shot ED methods, and the unified baseline under
low-resource setting. The best results are in bold face and the second best are underlined. The results are averaged
over 10 repeated experiments, and sample standard deviations are in the round bracket. The standard deviations are
derived from different sampling few-shot datasets instead of random seeds. Thus high standard deviation values
do not mean that no significant difference among these methods.

Method ACE05 MAVEN ERE
2-shot 5-shot 10-shot 2-shot 5-shot 10-shot 2-shot 5-shot 10-shot

Fine-tuning 33.3(4.4) 42.5(4.6) 48.2(1.5) 40.8(4.7) 52.1(0.7) 55.7(0.2) 32.9(2.1) 39.8(2.9) 43.6(1.7)
In-context Learning 38.9(3.0) 34.3(1.2) 36.7(0.8) 22.1(1.0) 22.7(0.3) 23.9(0.7) 24.2(3.3) 26.0(0.7) 25.5(1.7)

Pr
om

pt
-b

as
ed EEQA 24.1(12.2) 43.1(2.7) 48.3 (2.4) 33.4(9.2) 48.1(0.9) 52.5(0.5) 13.7(8.6) 34.4(1.7) 39.8(2.4)

EETE 15.7(0.6) 19.1(0.3) 21.4(0.2) 28.9(4.3) 30.6(1.3) 32.5(1.1) 10.6(2.3) 12.8(2.2) 13.7(2.8)
PTE 38.4(4.2) 42.6(7.2) 49.8(1.9) 41.3(1.4) 46.0(0.6) 49.5(0.6) 33.4(2.8) 36.9(1.3) 37.0(1.8)
UIE 29.3(2.9) 38.3(4.2) 43.4(3.5) 33.7(1.4) 44.4(0.3) 50.5(0.5) 19.7(1.5) 30.8(1.9) 34.1(1.6)
DEGREE 40.0(2.9) 45.5(3.2) 48.5(2.1) 43.3(1.0) 43.4(5.9) 45.5(4.3) 31.3(3.1) 36.0(4.6) 40.7(2.2)

Pr
ot

ot
yp

e-
bs

d ProtoNet 38.3(5.0) 47.2(3.9) 52.3(2.4) 44.5(2.2) 51.7(0.6) 55.4(0.2) 31.6(2.7) 39.7(2.4) 44.3(2.3)
PA-CRF 34.9(7.2) 48.1(3.9) 51.7(2.6) 44.8(2.2) 51.8(1.0) 55.3(0.4) 30.6(2.8) 38.0(3.9) 40.4(2.0)
L-TapNet-CDT 43.2(3.8) 49.8(2.9) 53.5(3.4) 48.6(1.2) 53.2(0.4) 56.1(0.9) 35.6(2.6) 42.7(1.7) 45.1(3.2)
CONTAINER 40.1(3.8) 47.7(3.3) 50.1(1.8) 44.2(1.4) 50.8(0.9) 52.9(0.3) 34.4(3.6) 39.3(1.9) 44.5(2.3)
FSLS 39.2(3.4) 47.5(3.2) 51.9(1.7) 46.7(1.2) 51.5(0.5) 56.2(0.2) 34.5(3.1) 39.8(2.5) 44.0(2.0)

Unified Baseline 46.0(4.6) 54.4(2.6) 56.7(1.5) 49.5(1.7) 54.7(0.8) 57.8(1.2) 38.8(2.4) 45.5(2.8) 48.4(2.6)

sample number is scarce, however, fine-tuning is
much poorer than existing competitive methods
(see ACE05). Thus, we validate the necessity and
progress of existing few-shot methods.
In-context learning. We find the performance of
ICL-based methods lags far behind that of tuning-
required methods, though the backbone of ICL ap-
proach (ChatGPT) is much larger than other PLMs
(<1B). A series of recent work (Ma et al., 2023;
Gao et al., 2023; Zhan et al., 2023) observe the sim-
ilar results as ours 3. Thus we validate few-shot ED
tasks could not be solved smoothly by cutting-edge
LLMs and deserves further exploration.
Prompt-based methods. Prompt-based methods
deliver much poorer results than expected, even
compared to fine-tuning, especially when the sam-
ple number is extremely scarce. It shows designing
effective prompts for ED tasks with very limited
annotations is still challenging or even impossible.
We speculate it is due to the natural gap between
ED tasks and pre-training tasks in PLMs.

Among prompt-based methods, PTE and DE-
GREE achieve relatively robust performance under
all settings. DEGREE is advantageous when the
sample size is small, but it cannot well handle a
dataset with many event types like MAVEN. When
sample sizes are relatively large, EEQA shows com-
petitive performance as well.

3We refer readers to Ma et al. (2023) for a more detailed
discussion on why ICL approaches stumble across few-shot
ED tasks.

5.2 Prototype-based methods
Since prototype-based methods have overall better
results, we zoom into the design elements to search
for effective choices based on the unified view.
Transfer function, Distance function, and CRF.
We compare combinations of transfer and distance
functions and four variants of CRF modules in Ap-
pendices C.1 and C.2. We make two findings: (1) A
scaled coefficient in the distance function achieves
better performance with the normalization transfer
function. (2) There is no significant difference be-
tween models with or without CRF modules. Based
on these findings, we observe a significant improve-
ment in five existing methods by simply substitut-
ing their d and f for more appropriate choices, see
Figure 3 and Appendix C.1. We would use these
new transfer and distance functions in further anal-
ysis and discussion.

ProtoNet (before adjust)
ProtoNet (after adjust)

CONTAINER (before adjust)
CONTAINER (after adjust)

FSLS (before adjust)
FSLS (after adjust)

40

45

50

55

2−shot 5−shot 10−shot
ACE05

F1
 s

co
re

35

40

45

2−shot 5−shot 10−shot
ERE

F1
 s

co
re

Figure 3: Results of existing methods before (dashed
lines) and after (solid lines) adjustment that substitute
their transfer and distance functions to appropriate ones.
See full results in Table 8.

Prototype Source. We explore whether label se-
mantic and event mentions are complementary pro-

11216

totype sources, i.e., whether utilizing both achieves
better performance than either one. We choose
ProtoNet and FSLS as base models which contain
only a single kind of prototype source (mentions
or labels). Then we combine the two models using
three aggregating forms mentioned in Section 3
and show their results in Figure 4. Observe that:
(1) leveraging label semantics and mentions as pro-
totype sources simultaneously improve the perfor-
mance under almost all settings, and (2) merging
the two kinds of sources at loss level is the best
choice among three aggregation alternatives.

ProtoNet FSLS Lf−ProtoNet Ls−ProtoNet Ll−ProtoNet

48

50

52

55

2−shot 5−shot 10−shot
MAVEN

F1
 s

co
re

32

36

40

44

2−shot 5−shot 10−shot
ERE

F1
 s

co
re

Figure 4: Results of three approaches aggregating label
semantics and event mentions on MAVEN and ERE
few-shot datasets. Lf: feature-level. Ls: score-level. Ll:
loss-level. See full results in Table 9.

Contrastive or Prototypical Learning. Next, we
investigate the effectiveness of contrastive learning
(CL, see CONTAINER) and prototypical learning
(PL, see ProtoNet and its variants) for event men-
tions. We compare three label-enhanced (since
we have validated the benefits of label semantics)
methods aggregating event mentions with different
approaches. (1) Ll-ProtoNet: the strongest method
utilizing PL in last part. (2) Ll-CONTAINER: the
method utilizing in-batch CL as CONTAINER
does. (3) Ll-MoCo: the method utilizing CL with
MoCo setting (He et al., 2020). The in-batch CL
and MoCo CL are detailed in Appendix C.4.

Figure 5 suggests CL-based methods outperform
Ll-ProtoNet. There are two possible reasons: (1)
CL has higher sample efficiency since every two
samples interact during training. PL, however, fur-
ther splits samples into support and query set dur-
ing training; samples within the same set are not in-
teracted with each other. (2) CL adopts score-level
aggregation while PL adopts feature-level aggrega-
tion. We find the former also slightly outperforms
the latter in Figure 4. We also observe that MoCo
CL usually has a better performance than in-batch
CL when there exists complicated event types (see
MAVEN), or when the sample number is relatively
large (see ACE 10-shot). We provide a more de-
tailed explanation in Appendix C.4.

Ll−ProtoNet Ll−CONTAINER Ll−MoCo

44
46
48
50
52
54
56

2 5 10
ACE05

F1
 s

co
re

48
50
52
54
56
58

2 5 10
MAVEN

F1
 s

co
re

Figure 5: Results of (label-enhanced) PL and CL meth-
ods on ACE05 and MAVEN few-shot datasets. See full
results on three datasets in Table 10.

5.3 The unified baseline
Here is a summary of the findings: (1) Scaled eu-
clidean or cosine similarity as distance measure
with normalized transfer benefits existing methods.
(2) CRF modules show no improvement in perfor-
mance. (3) Label semantic and event mentions are
complementary prototype sources, and aggregating
them at loss-level is the best choice. (4) As for
the branch of event mentions, CL is more advanta-
geous than PL for few-shot ED tasks. (5) MoCo
CL performs better when there are a good number
of sentences, otherwise in-batch CL is better.

Based on these findings, we develop a simple
but effective unified baseline as follows. We utilize
both label semantic and event mentions as proto-
type sources and aggregate two types of sources
at loss-level. Specifically, we assign two branches
with their own losses for label semantic and event
mentions respectively. Both two branches adopt
scaled cosine similarity dτ (u, v) = −uT v

τ as dis-
tance measure and normalization f(h) = h/∥h∥2
as transfer function. We do not add CRF modules.

For label semantic branch, we follow FSLS and
set the embeddings of event name as prototypes.
Here hx and hey represent the PLM representation
of event mention x and label name ey, respectively.

ey = Event_name(y)

logits(l)(y|x) = −dτ (f(hx), f(hey))
For event mention branch, we adopt CL which

aggregates prototype sources (event mentions) at
score-level. If the total sentence number in train
set is smaller than 128, we take in-batch CL (CON-
TAINER) strategy as below:

logits(m)(y|x) =
∑

x′∈Sy(x)

−d(f(hx), f(hx′))

|Sy(x)|

Sy(x) = {x′|(x′, y′) ∈ D, y′ = y, x′ ̸= x} is
the set of all other mentions with the same label.

11217

If the total sentence number in train set is larger
than 128, we instead take MoCo CL maintaining a
queue for Sy(x) and a momentum encoder.

We then calculate the losses of these two
branches and merge them for joint optimization:

p(l/m)(y|x) = Softmaxy[logits(l/m)(y|x)]
L(l/m)(y|x) = −

∑

(x,y)

ylog(p(l/m)(y|x))

L = L(l) + L(m)

The diagram of the unified baseline is illustrated
in Figure 2(f) and its performance is shown in Ta-
ble 3. Clearly, unified baseline outperforms all
existing methods significantly, 2.7% F1 gains on
average, under all low-resource settings.

6 Results: Class-transfer Learning

In this section, we evaluate existing methods and
the unified baseline under class-transfer setting.
Here we do not consider in-context learning be-
cause previous expetiments show it still lags far
from both prompt- and prototype-based methods.

6.1 Prompt-based methods

We first focus on 4 existing prompt-based methods
and explore whether they could smoothly trans-
fer event knowledge from a preexisting (source)
schema to a new (target) schema. We show re-
sults in Figure 6 and Appendix D.1. The findings
are summarized as follows. (1) The transfer of
knowledge from source event types to target event
types facilitates the model prediction under most
scenarios. It verifies that an appropriate prompt
usually benefits inducing the knowledge learned
in PLMs. (2) However, such improvement gradu-
ally fades with the increase of sample number from
either source or target schema. For example, the 5-
shot v.s 10-shot performance for PTE and UIE are
highly comparable. We speculate these prompts act
more like a catalyst: they mainly teach model how
to induce knowledge from PLMs themselves rather
than learn new knowledge from samples. Thus
the performance is at a standstill once the sample
number exceeds some threshold. (3) Overall, the
performance of prompt-based methods remains in-
ferior to prototype-based methods in class-transfer
setting (see black lines in Figure 6). Since simi-
lar results are observed in low-resource settings as
well, we conclude that prototype-based methods
are better few-shot ED task solver.

w. transfer w.o transfer

0

10

20

30

40

50

60

70

EEQA PTE UIE DEGREE
2−shot

F1
 s

co
re

0

10

20

30

40

50

60

70

EEQA PTE UIE DEGREE
5−shot

F1
 s

co
re

0

10

20

30

40

50

60

70

EEQA PTE UIE DEGREE
10−shot

F1
 s

co
re

(a) ACE05

w. transfer w.o transfer

0

10

20

30

40

50

60

70

EEQA PTE UIE DEGREE
2−shot

F1
 s

co
re

0

10

20

30

40

50

60

70

EEQA PTE UIE DEGREE
5−shot

F1
 s

co
re

0

10

20

30

40

50

60

70

EEQA PTE UIE DEGREE
10−shot

F1
 s

co
re

(b) MAVEN

Figure 6: Class-transfer results of prompt-based meth-
ods. We plot fine-tuning (red dash lines), best and
second best prototype-based methods (black solid/dash
lines) for comparison. See full results in Table 11.

6.2 Prototype-based methods

We further explore the transfer ability of exist-
ing prototype-based methods and unified baseline4.
Thanks to the unified view, we conduct a more
thorough experiment that enumerates all possible
combinations of models used in the source and tar-
get domain, to assess if the generalization ability
affects transferability. That is, the parameters in
PLMs will be shared from source to target model.
We show results in Figure 7 and Appendix D.2.
1. Is transfer learning effective for prototype-based
methods? It depends on the dataset (compare the
first row with other rows in each column). For
ACE05 and MAVEN datasets, the overall answer is
yes. Contrary to our expectation, transfer learning
affects most target models on ERE dataset nega-
tively, especially for 2- and 5-shot settings.
2. Do prototype-based methods perform better than
simple fine-tuning? It depends on whether fine-
tuning the source or target model. When fine-tuning
a source model (row 2), it sometimes achieves com-
parable even better performance than the prototype-
based methods (last 4 rows). When fine-tuning a
target model (column 1), however, the performance
drops significantly. Thus, we speculate that power-
ful prototype-based methods are more necessary in
target domain than source domain.

4Transfer and distance functions in all methods are substi-
tuted to appropriate ones and CRF modules are removed.

11218

(b1) MAVEN 2-shot (b2) MAVEN 5-shot (b3) MAVEN 10-shot

(a1) ACE05 2-shot (a2) ACE05 5-shot (a3) ACE05 10-shot

(c1) ERE 2-shot (c2) ERE 5-shot (c3) ERE 10-shot

Figure 7: Class-transfer results of fine-tuning methods and four prototype-based methods on three datasets. For
each matrix, row and column represent the source and target models, respectively. For example, the value in top-left
corners of every matrix means the performance when directly finetuning a model in target dataset (source: N.A. /
target: Fine-tuning). Each value is the results averaged over 10 repeated experiments. See full results in Table 12.

3. Is the choice of prototype-based methods impor-
tant? Yes. When we select inappropriate prototype-
based methods, they could achieve worse perfor-
mance than simple fine-tuning and sometimes even
worse than models without class transfer. For exam-
ple, CONTAINER and L-TapNet are inappropriate
source model for ACE05 dataset.
4. Do the same source and target models benefit the
event-related knowledge transfer? No. The figures
show the best model combinations often deviate
from the diagonals. It indicates that different source
and target models sometimes achieve better results.
5. Is there a source-target combination performing
well on all settings? Strictly speaking, the answer
is No. Nevertheless, we find that adopting FSLS
as the source model and our unified baseline as the
target model is more likely to achieve competitive
(best or second best) performance among all alter-
natives. It indicates that (1) the quality of different
combinations show kinds of tendency though no
consistent conclusion could be drawn. (2) a model
with moderate inductive bias (like FSLS) might be
better for the source dataset with abundant samples.
Then our unified baseline could play a role during
the target stage with limited samples.

7 Conclusion

We have conducted a comprehensive empirical
study comparing 12 representative methods un-
der unified low-resource and class-transfer set-
tings. For systematic analysis, we proposed a
unified framework of promising prototype-based
methods. Based on it, we presented a simple
and effective baseline that outperforms all existing
methods significantly under low-resource setting,
and is an ideal choice as the target model under
class-transfer setting. In the future, we aim to
explore how to leverage unlabeled corpus for few-
shot ED tasks, such as data augmentation, weakly-
supervised learning, and self-training.

Acknowlegement

This study is supported under the RIE2020 In-
dustry Alignment Fund – Industry Collaboration
Projects (IAF-ICP) Funding Initiative, the Singa-
pore Ministry of Education (MOE) Academic Re-
search Fund (AcRF) Tier 1 grant, as well as cash
and in-kind contribution from the industry part-
ner(s).

11219

Limitations

We compare 12 representative methods, present
a unified view on existing prototype-based meth-
ods, and propose a competitive unified baseline
by combining the advantageous modules of these
methods. We test all methods, including the unified
baseline, on three commonly-used English datasets
using various experimental settings and achieve
consistent results. However we acknowledge the
potential disproportionality of our experiments in
terms of language, domain, schema type and data
scarcity extent. Therefore, for future work, we aim
to conduct our empirical studies on more diverse
event-detection (ED) datasets.

We are fortunate to witness the rapid develop-
ment of Large Language Models (LLMs Brown
et al. 2020b; Ouyang et al. 2022; Chung et al.
2022) in recent times. In our work, we set in-
context learning as a baseline and evaluate the
performance of LLMs on few-shot ED tasks. We
find current LLMs still face challenges in deal-
ing with Information Extraction (IE) tasks that re-
quire structured outputs (Qin et al., 2023; Josifoski
et al., 2023). However, we acknowledge the ICL
approach adopted here is relatively simple. We do
not work hard to find the optimal prompt format,
demonstration selection strategy, etc., to reach the
upper bounds of LLMs’ performance. We view
how to leverage the power of LLMs on ED tasks
as an open problem and leave it for future work.

In this work, we focus more on the model aspect
of few-shot ED tasks rather than data aspect. In
other words, we assume having and only having
access to a small set of labeled instances. In the
future, we plan to explore how to utilize annotation
guidelines, unlabeled corpus and external struc-
tured knowledge to improve few-shot ED tasks.

References
Ofer Bronstein, Ido Dagan, Qi Li, Heng Ji, and Anette

Frank. 2015. Seed-based event trigger labeling: How
far can event descriptions get us? In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 372–376, Beijing,
China. Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,

Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020a.
Language models are few-shot learners. In Advances
in Neural Information Processing Systems.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020b. Language models are few-shot learners. In
Proceedings of the 34th International Conference on
Neural Information Processing Systems, NIPS’20,
Red Hook, NY, USA. Curran Associates Inc.

Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun.
2021. Honey or poison? solving the trigger curse
in few-shot event detection via causal intervention.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
8078–8088, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Meiqi Chen, Yixin Cao, Kunquan Deng, Mukai Li, Kun
Wang, Jing Shao, and Yan Zhang. 2022. ERGO:
Event relational graph transformer for document-
level event causality identification. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 2118–2128, Gyeongju, Republic
of Korea. International Committee on Computational
Linguistics.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for con-
trastive learning of visual representations. ICML’20.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models.

Xin Cong, Shiyao Cui, Bowen Yu, Tingwen Liu, Wang
Yubin, and Bin Wang. 2021. Few-Shot Event Detec-
tion with Prototypical Amortized Conditional Ran-
dom Field. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
28–40, Online. Association for Computational Lin-
guistics.

11220

https://doi.org/10.3115/v1/P15-2061
https://doi.org/10.3115/v1/P15-2061
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.637
https://doi.org/10.18653/v1/2021.emnlp-main.637
https://aclanthology.org/2022.coling-1.185
https://aclanthology.org/2022.coling-1.185
https://aclanthology.org/2022.coling-1.185
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.18653/v1/2021.findings-acl.3
https://doi.org/10.18653/v1/2021.findings-acl.3
https://doi.org/10.18653/v1/2021.findings-acl.3

Sarkar Snigdha Sarathi Das, Arzoo Katiyar, Rebecca
Passonneau, and Rui Zhang. 2022. CONTaiNER:
Few-shot named entity recognition via contrastive
learning. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 6338–6353, Dublin,
Ireland. Association for Computational Linguistics.

Shumin Deng, Ningyu Zhang, Jiaojian Kang, Yichi
Zhang, Wei Zhang, and Huajun Chen. 2020. Meta-
learning with dynamic-memory-based prototypical
network for few-shot event detection. In Proceedings
of the 13th International Conference on Web Search
and Data Mining. ACM.

Shumin Deng, Ningyu Zhang, Luoqiu Li, Chen Hui,
Tou Huaixiao, Mosha Chen, Fei Huang, and Huajun
Chen. 2021. OntoED: Low-resource event detection
with ontology embedding. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 2828–2839, Online. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen,
Zhiyuan Liu, Haitao Zheng, and Maosong Sun. 2022.
OpenPrompt: An open-source framework for prompt-
learning. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 105–113, Dublin, Ire-
land. Association for Computational Linguistics.

George Doddington, Alexis Mitchell, Mark Przybocki,
Lance Ramshaw, Stephanie Strassel, and Ralph
Weischedel. 2004. The automatic content extrac-
tion (ACE) program – tasks, data, and evaluation. In
Proceedings of the Fourth International Conference
on Language Resources and Evaluation (LREC’04),
Lisbon, Portugal. European Language Resources As-
sociation (ELRA).

Xinya Du and Claire Cardie. 2020. Event extraction by
answering (almost) natural questions. In Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 671–683,
Online. Association for Computational Linguistics.

Rui Feng, Jie Yuan, and Chao Zhang. 2020. Probing
and fine-tuning reading comprehension models for
few-shot event extraction. CoRR, abs/2010.11325.

Alexander Fritzler, Varvara Logacheva, and Maksim
Kretov. 2019. Few-shot classification in named entity
recognition task. New York, NY, USA. Association
for Computing Machinery.

Jun Gao, Huan Zhao, Changlong Yu, and Ruifeng Xu.
2023. Exploring the feasibility of chatgpt for event
extraction.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimension-
ality reduction by learning an invariant mapping. In
2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’06).

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for un-
supervised visual representation learning. In 2020
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 9726–9735.

Yutai Hou, Wanxiang Che, Yongkui Lai, Zhihan Zhou,
Yijia Liu, Han Liu, and Ting Liu. 2020. Few-shot
slot tagging with collapsed dependency transfer and
label-enhanced task-adaptive projection network. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1381–
1393, Online. Association for Computational Linguis-
tics.

I-Hung Hsu, Kuan-Hao Huang, Elizabeth Boschee,
Scott Miller, Prem Natarajan, Kai-Wei Chang, and
Nanyun Peng. 2022. DEGREE: A data-efficient
generation-based event extraction model. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1890–1908, Seattle, United States. Association for
Computational Linguistics.

Jiaxin Huang, Chunyuan Li, Krishan Subudhi, Damien
Jose, Shobana Balakrishnan, Weizhu Chen, Baolin
Peng, Jianfeng Gao, and Jiawei Han. 2021. Few-
shot named entity recognition: An empirical baseline
study. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Process-
ing, pages 10408–10423, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Kuan-Hao Huang, I-Hung Hsu, Prem Natarajan, Kai-
Wei Chang, and Nanyun Peng. 2022. Multilin-
gual generative language models for zero-shot cross-
lingual event argument extraction. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 4633–4646, Dublin, Ireland. Association for
Computational Linguistics.

Lifu Huang, Heng Ji, Kyunghyun Cho, Ido Dagan, Se-
bastian Riedel, and Clare Voss. 2018. Zero-shot
transfer learning for event extraction. In Proceedings
of the 56th Annual Meeting of the Association for

11221

https://doi.org/10.18653/v1/2022.acl-long.439
https://doi.org/10.18653/v1/2022.acl-long.439
https://doi.org/10.18653/v1/2022.acl-long.439
https://doi.org/10.1145/3336191.3371796
https://doi.org/10.1145/3336191.3371796
https://doi.org/10.1145/3336191.3371796
https://doi.org/10.18653/v1/2021.acl-long.220
https://doi.org/10.18653/v1/2021.acl-long.220
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.acl-demo.10
https://doi.org/10.18653/v1/2022.acl-demo.10
http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2020.emnlp-main.49
http://arxiv.org/abs/2010.11325
http://arxiv.org/abs/2010.11325
http://arxiv.org/abs/2010.11325
https://doi.org/10.48550/ARXIV.2303.03836
https://doi.org/10.48550/ARXIV.2303.03836
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.18653/v1/2020.acl-main.128
https://doi.org/10.18653/v1/2020.acl-main.128
https://doi.org/10.18653/v1/2020.acl-main.128
https://doi.org/10.18653/v1/2022.naacl-main.138
https://doi.org/10.18653/v1/2022.naacl-main.138
https://doi.org/10.18653/v1/2021.emnlp-main.813
https://doi.org/10.18653/v1/2021.emnlp-main.813
https://doi.org/10.18653/v1/2021.emnlp-main.813
https://doi.org/10.18653/v1/2022.acl-long.317
https://doi.org/10.18653/v1/2022.acl-long.317
https://doi.org/10.18653/v1/2022.acl-long.317
https://doi.org/10.18653/v1/P18-1201
https://doi.org/10.18653/v1/P18-1201

Computational Linguistics (Volume 1: Long Papers),
pages 2160–2170, Melbourne, Australia. Association
for Computational Linguistics.

Martin Josifoski, Marija Sakota, Maxime Peyrard, and
Robert West. 2023. Exploiting asymmetry for syn-
thetic training data generation: Synthie and the case
of information extraction.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling
sequence data. In Proceedings of the Eighteenth
International Conference on Machine Learning.

Viet Lai, Franck Dernoncourt, and Thien Huu Nguyen.
2021. Learning prototype representations across few-
shot tasks for event detection. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 5270–5277, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Viet Dac Lai, Franck Dernoncourt, and Thien Huu
Nguyen. 2020a. Exploiting the matching information
in the support set for few shot event classification. In
Advances in Knowledge Discovery and Data Mining:
24th Pacific-Asia Conference, PAKDD 2020.

Viet Dac Lai, Thien Huu Nguyen, and Franck Dernon-
court. 2020b. Extensively matching for few-shot
learning event detection. In Proceedings of the First
Joint Workshop on Narrative Understanding, Story-
lines, and Events, pages 38–45, Online. Association
for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Manling Li, Alireza Zareian, Ying Lin, Xiaoman Pan,
Spencer Whitehead, Brian Chen, Bo Wu, Heng Ji,
Shih-Fu Chang, Clare Voss, Daniel Napierski, and
Marjorie Freedman. 2020. GAIA: A fine-grained
multimedia knowledge extraction system. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics: System Demon-
strations, pages 77–86, Online. Association for Com-
putational Linguistics.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 73–82, Sofia, Bulgaria.
Association for Computational Linguistics.

Qintong Li, Piji Li, Wei Bi, Zhaochun Ren, Yuxuan Lai,
and Lingpeng Kong. 2022a. Event transition plan-
ning for open-ended text generation. In Findings of

the Association for Computational Linguistics: ACL
2022, pages 3412–3426, Dublin, Ireland. Association
for Computational Linguistics.

Sha Li, Liyuan Liu, Yiqing Xie, Heng Ji, and Jiawei Han.
2022b. Piled: An identify-and-localize framework
for few-shot event detection.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7999–8009, Online. Association for
Computational Linguistics.

Jian Liu, Yubo Chen, Kang Liu, Wei Bi, and Xiaojiang
Liu. 2020. Event extraction as machine reading com-
prehension. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1641–1651, Online. Association
for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong
Tang, Annan Li, Le Sun, Meng Liao, and Shaoyi
Chen. 2021. Text2Event: Controllable sequence-to-
structure generation for end-to-end event extraction.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
2795–2806, Online. Association for Computational
Linguistics.

Yaojie Lu, Qing Liu, Dai Dai, Xinyan Xiao, Hongyu
Lin, Xianpei Han, Le Sun, and Hua Wu. 2022. Uni-
fied structure generation for universal information
extraction. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5755–5772, Dublin,
Ireland. Association for Computational Linguistics.

Qing Lyu, Hongming Zhang, Elior Sulem, and Dan
Roth. 2021. Zero-shot event extraction via transfer
learning: Challenges and insights. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 322–332, Online.
Association for Computational Linguistics.

Jie Ma, Miguel Ballesteros, Srikanth Doss, Rishita
Anubhai, Sunil Mallya, Yaser Al-Onaizan, and Dan
Roth. 2022a. Label semantics for few shot named
entity recognition. In Findings of the Association for

11222

https://doi.org/10.48550/ARXIV.2303.04132
https://doi.org/10.48550/ARXIV.2303.04132
https://doi.org/10.48550/ARXIV.2303.04132
https://doi.org/10.18653/v1/2021.emnlp-main.427
https://doi.org/10.18653/v1/2021.emnlp-main.427
https://doi.org/10.18653/v1/2020.nuse-1.5
https://doi.org/10.18653/v1/2020.nuse-1.5
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-demos.11
https://doi.org/10.18653/v1/2020.acl-demos.11
https://aclanthology.org/P13-1008
https://aclanthology.org/P13-1008
https://aclanthology.org/P13-1008
https://doi.org/10.18653/v1/2022.findings-acl.269
https://doi.org/10.18653/v1/2022.findings-acl.269
https://doi.org/10.48550/ARXIV.2202.07615
https://doi.org/10.48550/ARXIV.2202.07615
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.emnlp-main.128
https://doi.org/10.18653/v1/2020.emnlp-main.128
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.18653/v1/2021.acl-long.217
https://doi.org/10.18653/v1/2021.acl-long.217
https://doi.org/10.18653/v1/2022.acl-long.395
https://doi.org/10.18653/v1/2022.acl-long.395
https://doi.org/10.18653/v1/2022.acl-long.395
https://doi.org/10.18653/v1/2021.acl-short.42
https://doi.org/10.18653/v1/2021.acl-short.42
https://doi.org/10.18653/v1/2022.findings-acl.155
https://doi.org/10.18653/v1/2022.findings-acl.155

Computational Linguistics: ACL 2022, pages 1956–
1971, Dublin, Ireland. Association for Computational
Linguistics.

Yubo Ma, Yixin Cao, YongChing Hong, and Aixin Sun.
2023. Large language model is not a good few-shot
information extractor, but a good reranker for hard
samples!

Yubo Ma, Zehao Wang, Yixin Cao, Mukai Li, Meiqi
Chen, Kun Wang, and Jing Shao. 2022b. Prompt
for extraction? PAIE: Prompting argument interac-
tion for event argument extraction. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6759–6774, Dublin, Ireland. Association for
Computational Linguistics.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Giovanni Paolini, Ben Athiwaratkun, Jason Krone, Jie
Ma, Alessandro Achille, Rishita Anubhai, Cicero
Nogueira dos Santos, Bing Xiang, and Stefano Soatto.
2021. Structured prediction as translation between
augmented natural languages.

Haoruo Peng, Yangqiu Song, and Dan Roth. 2016.
Event detection and co-reference with minimal su-
pervision. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, pages 392–402, Austin, Texas. Association for
Computational Linguistics.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021.
True few-shot learning with language models. In
Advances in Neural Information Processing Systems,
volume 34, pages 11054–11070.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is
chatgpt a general-purpose natural language process-
ing task solver?

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789,
Melbourne, Australia. Association for Computational
Linguistics.

Timo Schick and Hinrich Schütze. 2021. It’s not just
size that matters: Small language models are also few-
shot learners. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2339–2352, Online. Association
for Computational Linguistics.

Shirong Shen, Tongtong Wu, Guilin Qi, Yuan-Fang Li,
Gholamreza Haffari, and Sheng Bi. 2021. Adap-
tive knowledge-enhanced Bayesian meta-learning for
few-shot event detection. In Findings of the Associa-
tion for Computational Linguistics: ACL-IJCNLP
2021, pages 2417–2429, Online. Association for
Computational Linguistics.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017.
Prototypical networks for few-shot learning. In Pro-
ceedings of the 31st International Conference on Neu-
ral Information Processing Systems, NIPS’17, page
4080–4090, Red Hook, NY, USA.

Zhiyi Song, Ann Bies, Stephanie Strassel, Tom Riese,
Justin Mott, Joe Ellis, Jonathan Wright, Seth Kulick,
Neville Ryant, and Xiaoyi Ma. 2015. From light
to rich ERE: Annotation of entities, relations, and
events. In Proceedings of the The 3rd Workshop on
EVENTS: Definition, Detection, Coreference, and
Representation, pages 89–98, Denver, Colorado. As-
sociation for Computational Linguistics.

Xiaozhi Wang, Ziqi Wang, Xu Han, Wangyi Jiang, Rong
Han, Zhiyuan Liu, Juanzi Li, Peng Li, Yankai Lin,
and Jie Zhou. 2020. MAVEN: A Massive General
Domain Event Detection Dataset. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1652–
1671, Online. Association for Computational Linguis-
tics.

Haoyang Wen, Ying Lin, Tuan Lai, Xiaoman Pan, Sha
Li, Xudong Lin, Ben Zhou, Manling Li, Haoyu
Wang, Hongming Zhang, Xiaodong Yu, Alexander
Dong, Zhenhailong Wang, Yi Fung, Piyush Mishra,
Qing Lyu, Dídac Surís, Brian Chen, Susan Windisch
Brown, Martha Palmer, Chris Callison-Burch, Carl
Vondrick, Jiawei Han, Dan Roth, Shih-Fu Chang,
and Heng Ji. 2021. RESIN: A dockerized schema-
guided cross-document cross-lingual cross-media in-
formation extraction and event tracking system. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies:
Demonstrations, pages 133–143, Online. Association
for Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

11223

http://arxiv.org/abs/2303.08559
http://arxiv.org/abs/2303.08559
http://arxiv.org/abs/2303.08559
https://doi.org/10.18653/v1/2022.acl-long.466
https://doi.org/10.18653/v1/2022.acl-long.466
https://doi.org/10.18653/v1/2022.acl-long.466
https://doi.org/10.48550/ARXIV.2203.02155
https://doi.org/10.48550/ARXIV.2203.02155
https://doi.org/10.48550/ARXIV.2101.05779
https://doi.org/10.48550/ARXIV.2101.05779
https://doi.org/10.18653/v1/D16-1038
https://doi.org/10.18653/v1/D16-1038
https://proceedings.neurips.cc/paper/2021/file/5c04925674920eb58467fb52ce4ef728-Paper.pdf
https://doi.org/10.48550/ARXIV.2302.06476
https://doi.org/10.48550/ARXIV.2302.06476
https://doi.org/10.48550/ARXIV.2302.06476
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.findings-acl.214
https://doi.org/10.18653/v1/2021.findings-acl.214
https://doi.org/10.18653/v1/2021.findings-acl.214
https://doi.org/10.3115/v1/W15-0812
https://doi.org/10.3115/v1/W15-0812
https://doi.org/10.3115/v1/W15-0812
https://doi.org/10.18653/v1/2020.emnlp-main.129
https://doi.org/10.18653/v1/2020.emnlp-main.129
https://doi.org/10.18653/v1/2021.naacl-demos.16
https://doi.org/10.18653/v1/2021.naacl-demos.16
https://doi.org/10.18653/v1/2021.naacl-demos.16
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101

Yi Yang and Arzoo Katiyar. 2020. Simple and effective
few-shot named entity recognition with structured
nearest neighbor learning. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6365–6375,
Online. Association for Computational Linguistics.

Sung Whan Yoon, Jun Seo, and Jaekyun Moon. 2019.
TapNet: Neural network augmented with task-
adaptive projection for few-shot learning. In Pro-
ceedings of the 36th International Conference on
Machine Learning.

Pengfei Yu, Zixuan Zhang, Clare Voss, Jonathan May,
and Heng Ji. 2022. Building an event extractor with
only a few examples. In Proceedings of the Third
Workshop on Deep Learning for Low-Resource Nat-
ural Language Processing, pages 102–109, Hybrid.
Association for Computational Linguistics.

Qiusi Zhan, Sha Li, Kathryn Conger, Martha Palmer,
Heng Ji, and Jiawei Han. 2023. Glen: General-
purpose event detection for thousands of types.

Hongming Zhang, Haoyu Wang, and Dan Roth. 2021.
Zero-shot Label-aware Event Trigger and Argu-
ment Classification. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 1331–1340, Online. Association for Computa-
tional Linguistics.

Hongming Zhang, Wenlin Yao, and Dong Yu. 2022a.
Efficient zero-shot event extraction with context-
definition alignment. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
7169–7179, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Ruihan Zhang, Wei Wei, Xian-Ling Mao, Rui Fang,
and Dangyang Chen. 2022b. HCL-TAT: A hybrid
contrastive learning method for few-shot event detec-
tion with task-adaptive threshold. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 1808–1819, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Kailin Zhao, Xiaolong Jin, Long Bai, Jiafeng Guo,
and Xueqi Cheng. 2022. Knowledge-enhanced self-
supervised prototypical network for few-shot event
detection. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pages 6266–
6275, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

A Related Work

A.1 Taxonomy of task settings

Various solutions have been proposed to improve
the generalization and transfer abilities of few-shot
ED methods. There exists a bottleneck: the models
adopt very different tasks and experimental settings.
We categorize existing task settings to four cases as

shown in Figure 8: low-resource (LR), class trans-
fer (CL), episode learning (EL), and task transfer
(TT) settings. LR is used to evaluate the gener-
alization ability, learning rapidly with only few
examples in target domain. The other settings (CL,
EL, and TT) evaluate the transfer ability, adapting
a model trained with a preexisting schema with
abundant samples, to a new (target) schema with
only few examples. Based on the pros and cons pre-
sented here, we adopt the low-resource and class
transfer settings in our empirical study.
1. Low-resource setting assesses the generaliza-
tion ability of models by (1) utilizing only few
samples during training, (2) evaluating on the real
and rich test dataset. Conventionally, the few-shot
|Dtrain| and |Ddev| are downsampled from a full
dataset by two main strategies: (1) K-shot sam-
pling which picks out K samples for each event
type, or (2) ratio sampling which picks out partial
sentences with a fixed ratio. We view both sam-
pling strategies as reasonable and adopt K-shot
sampling in this work.

The surging development of PLMs makes train-
ing with only few (or even zero) examples possible,
and achieves acceptable performance (Devlin et al.,
2019; Raffel et al., 2020; Brown et al., 2020a). Ac-
cordingly, a series of prompt-based methods (Du
and Cardie, 2020; Liu et al., 2020; Feng et al., 2020;
Paolini et al., 2021; Lu et al., 2021; Deng et al.,
2021; Hsu et al., 2022; Li et al., 2022b) adopt such
setting to train and evaluate their models.
2. Class transfer setting assesses the transferabil-
ity of a model by providing abundant samples in
the source (preexisting) schema and scarce sam-
ples in target (new) schema. It trains a classifier in
source schema and then transfers such classifier to
the target schema with only few examples.

Such setting has been applied since an early
stage (Bronstein et al., 2015; Peng et al., 2016;
Zhang et al., 2021), and is often used together with
low-resource setting to additionally evaluate trans-
ferability of the models (Paolini et al., 2021; Lu
et al., 2021; Hsu et al., 2022).
3. Episode learning setting is a classical few-shot
setting. It has two phases, meta-training and meta-
testing, each of which consists of multiple episodes.
Each episode is a few-shot problem with its own
train (support) and test (query) sets and event-type
classes. Since the sets in each episode are sampled
uniformly having K different classes and each class
having N instances, episode learning is also known

11224

https://doi.org/10.18653/v1/2020.emnlp-main.516
https://doi.org/10.18653/v1/2020.emnlp-main.516
https://doi.org/10.18653/v1/2020.emnlp-main.516
https://doi.org/10.18653/v1/2022.deeplo-1.11
https://doi.org/10.18653/v1/2022.deeplo-1.11
http://arxiv.org/abs/2303.09093
http://arxiv.org/abs/2303.09093
https://doi.org/10.18653/v1/2021.findings-acl.114
https://doi.org/10.18653/v1/2021.findings-acl.114
https://aclanthology.org/2022.findings-emnlp.531
https://aclanthology.org/2022.findings-emnlp.531
https://aclanthology.org/2022.findings-emnlp.130
https://aclanthology.org/2022.findings-emnlp.130
https://aclanthology.org/2022.findings-emnlp.130
https://aclanthology.org/2022.findings-emnlp.467
https://aclanthology.org/2022.findings-emnlp.467
https://aclanthology.org/2022.findings-emnlp.467

support set

Train PredictTrain

Source TargetMeta-train Meta-test

query set

(c) episode learning setting (d) task-transfer setting

query setsupport set

Model ModelModel ModelModel

Train Predict Train Predict

Model

Train

Source Target

(a) low-resource setting (b) class-transfer setting

Model

Figure 8: Four few-shot settings summarized from previous work. Different colors represent different event types.
Different shapes represent samples with different tasks.

as N -way-K-shot classification.
Many existing few-shot ED methods adopt this

setting (Lai et al., 2020a,b; Deng et al., 2020; Cong
et al., 2021; Lai et al., 2021; Chen et al., 2021;
Zhang et al., 2022b; Zhao et al., 2022). However,
we argue that episode learning assumes an unreal-
istic scenario. First, during the meta-training stage,
a large number of episodes is needed, for example,
20,000 in Cong et al. (2021). Though the label
sets of meta-training and meta-testing stages are
disjoint, class transfer setting is more reasonable
when there are many samples in another schema.
Second, tasks with episode learning are evaluated
by the performance on samples of the test (query)
set in the meta-testing phase. The test sets are sam-
pled uniformly, leading to a significant discrepancy
with the true data distribution in many NLP tasks.
The absence of sentences without any events fur-
ther leads to distribution distortion. Further, each
episode contains samples with only K different
classes, where K is usually much smaller than the
event types in the target schema. All these factors
may lead to an overestimation on the ability of few-
shot learning systems. For above reasons, we do
not consider this setting in our experiments.
4. Task transfer setting is very similar to class
transfer. The main difference is that it relaxes the
constraint in source phase, from the same task with
different schema to different tasks.5 The develop-
ment of this setting also heavily relies on the suc-
cess of PLMs. Liu et al. (2020), Feng et al. (2020)
and Lyu et al. (2021) leverage model pre-trained
with SQuAD 2.0 (QA dataset, Rajpurkar et al.
2018) or MNLI (NLI dataset, Williams et al. 2018)
to improve the performance of zero-/few-shot ED
models. Paolini et al. (2021) and Lu et al. (2022)

5Generally speaking, all methods using PLMs belong to
this setting in which the source task is exactly the pre-training
task of PLMs, masked- or next-word prediction. In this work,
we limit the discussion of task transfer to which the source task
is another downstream task rather than the general pre-training
task in PLMs.

recently construct unified generation frameworks
on multiple IE tasks. Their experiments also reveal
that pre-training on these tasks benefits few-shot
ED. Though task transfer setting is reasonable and
promising, we do not include this setting out of its
extreme diversity and complexity. That is, there
are (1) too many candidate tasks as pre-training
tasks, and (2) too many optional datasets for each
pre-training task. Thus it is almost infeasible to
conduct a comprehensive empirical study on task
transfer setting.

A.2 Taxonomy of methods

We categorize existing methods to two main
classes, prompt-based methods and prototype-
based methods, and list them in Table 1. Here we
give a detailed introduction of existing methods.
Note that in our empirical study, we also include
some methods which are originally developed for
similar few-shot tasks but can be easily adapted to
ED. We leave a special subsection for them.
Few-shot ED methods. Due to the prohibitively
cost for labeling amounts of event mentions, few-
shot ED is a long-standing topic in event-related
research community. The proposed solutions are
mainly in two branches. The first branch, prototype-
based 6 methods, is a classical approach on few-
shot learning. It defines a single or multiple
prototypes for each event type representing the
label-wise properties. It then learns the embed-
ding representation of each sample via shorten-
ing the distance from its corresponding prototypes
given a distance/similarity metric. Bronstein et al.
(2015) and Peng et al. (2016) leverage the seed
instances in annotation guideline and mine the
lexical/semantic features of trigger words to ob-
tain the prototypes. Zhang et al. (2021) inherit
such paradigm and define prototypes as the aver-
age contextualized embeddings of the related trig-

6Different from other sections, here we adopt a chronolog-
ical order and firstly introduce prototype-based methods.

11225

ger words weakly labeled in external corpus. With
the help AMR Parsing, Huang et al. (2018) addi-
tionally consider the graph structures of preexist-
ing schema as prototypes, and encode AMR graph
representation of each event mention as represen-
tations. Deng et al. (2020) introduces Dynamic
Memory Network (DMN), while Lai et al. (2020a)
and Lai et al. (2021) introduce two different aux-
iliary losses improving intra-/inter-consistency of
different episodes to facilitate their prototype repre-
sentations. Deng et al. (2021) further consider the
relations among events to constrain the prototypes
and benefit both rare and new events. Cong et al.
(2021) amortize CRF module by modeling the tran-
sition probabilities of different event types with
their prototypes. Chen et al. (2021) leverage causal
inference and intervene on context via backdoor
adjustment during training to reduce overfitting of
trigger words for more robust prototypes. Recently,
Zhang et al. (2022a) and Zhang et al. (2022b) intro-
duce contrastive learning into few-shot ED task and
their proposed methods actually could be viewed as
generalized prototype-based methods with multiple
prototypes rather than one.

The other branch, prompting methods, is made
possible with the surge of development in PLMs.
Given a specific task, prompting methods map the
task format to a new format with which the PLMs
are more familiar, such as masked word predic-
tion (Schick and Schütze, 2021) and sequence gen-
eration (Raffel et al., 2020; Brown et al., 2020a).
Such format conversion narrows down the gaps
between pre-training tasks and downstream tasks,
which is beneficial for inducing learned knowledge
from PLMs with limited annotations. As for event
detection (and many other IE tasks), however, it
is not trivial to design a smooth format conver-
sion. One simple idea is leveraging one single
template to prompt both event types and their trig-
gers simultaneously (Paolini et al., 2021; Lu et al.,
2021). However, such prompting methods show
performance far from satisfactory, especially when
they are not enhanced by two-stage pre-training
and redundant hinting prefix (Lu et al., 2022). An-
other natural idea is enumerating all legal spans and
querying the PLMs whether each span belongs to
any class, or vice versa (Hsu et al., 2022). A major
limitation here is the prohibitively time complex-
ity, particularly when there are many event types.
Combining the merits of prompting methods and
conventional fine-tuning methods is another solu-

tion. Du and Cardie (2020) and Liu et al. (2020) use
QA/MRC format to prompt the location of trigger
words, while still predicting their event types via
an additional linear head. Lyu et al. (2021) first seg-
ment one sentence into several clauses and view the
predicates of clauses as trigger candidates. Then
they leverage NLI format to query the event types
of these candidates. Recently, Li et al. (2022b)
propose a strategy combining Pattern-Exploiting
Training (PET, Schick and Schütze 2021) and CRF
module. Initially, they conduct sentence-level event
detection determining whether one sentence con-
tains any event types or not. For each identified
event type, they further use a linear chain CRF to
locate the trigger word.
Few-shot NER/ST methods. There are several
models which are originally designed for similar
tasks like Named Entity Recognition (NER) and
Slot Tagging (ST) but could be applied to ED task.

Similar to ED methods, one classical paradigm
in NER is utilizing ProtoNet (Snell et al., 2017)
and its variants to learn one representative pro-
totypes for each class type with only few exam-
ples. Fritzler et al. (2019) firstly combine ProtoNet
and CRF module to solve NER tasks. Hou et al.
(2020) propose L-TapNet-CDT, which enhances
TapNet (Yoon et al., 2019), a variant of ProtoNet,
with textual label names and achieves great per-
formance among several ST tasks. Both methods
construct prototypes by computing the average em-
beddings of several sampled examples (support set).
Yang and Katiyar (2020) propose a simpler algo-
rithm, leveraging supervised classifier learned in
preexisting schema as feature extractor and adopt-
ing nearest neighbors classification during infer-
ence, and show competitive performance in class
transfer setting for few-shot NER task. Das et al.
(2022) introduce contrastive learning into few-shot
NER task. Ma et al. (2022a) recently developed a
simple but effective method on few-shot NER by
constructing prototypes only with their labels.

B Datasets and Models

We curate few-shot datasets used in this emprical
study from three full and commonly-used datasets:
ACE05 (Doddington et al., 2004), MAVEN (Wang
et al., 2020) and ERE (Song et al., 2015).

B.1 Full dataset

ACE05 is a joint information extraction dataset,
with annotations of entities, relations, and events.

11226

Table 4: Statistics of three full ED datasets.

Dataset ACE05 MAVEN ERE

#Event type 33 168 38

#Sents Train 14,024 32,360 14,736
Test 728 8,035 1,163

#Mentions Train 5,349 77,993 6,208
Test 424 18,904 551

We only use its event annotation for ED task. It
contains 599 English documents and 33 event types
in total. We split documents in ACE05 following
previous work (Li et al., 2013) to construct train
and test dataset respectively. MAVEN is a newly-
built large-scale ED dataset with 4480 documents
and 168 event types. We use the official split for
MAVEN dataset. ERE is another joint information
extraction dataset having a similar scale as ACE05
(458 documents, 38 event types). We follow the
preprocessing procedure in Lin et al. (2020). Ta-
ble 4 reports detailed statistics of the three datasets.

ED could be viewed as either a span classifi-
cation or a sequence labeling task. In our work,
we adopt span classification paradigm for MAVEN
dataset since it provides official spans for candi-
date triggers (including negative samples). For the
other two datasets, we follow sequence labeling
paradigm to predict the event type word by word.

B.2 Dataset construction

This section introduces how we construct few-shot
datasets from the three full ED datasets.
Low-resource setting. We downsample sentences
from original full training dataset to construct
Dtrain and Ddev, and inherit the original test set as
the unified Dtest. For Dtrain and Ddev, we adopt
K-shot sampling strategy that each event type has
(at least) K samples. Since our sampling is at
sentence-level and each sentence could have multi-
ple events, the sampling is NP-complete7 and un-
likely to find a practical solution satisfying exactly
K samples for each event type. Therefore, we fol-
low Yang and Katiyar (2020) and Ma et al. (2022a)
and adopt a greedy sampling algorithm to select
sentences, as shown in Alg. 1. Note that the actual
sample number of each event type can be larger
than K under this sampling strategy. The statistics
of the curated datasets are listed in Table 5 (top).
Class-Transfer setting This setting has a more

7The Subset Sum Problem, a classical NP-complete prob-
lem, can be reduced to this sampling problem.

Algorithm 1 Greedy Sampling

Require: shot number K, original full dataset
D = {(X,Y)} tagged with label set E

1: Sort E based on their frequencies in {Y} as
an ascending order

2: S ← ϕ, Counter← dict()
3: for y ∈ E do
4: Counter(y)← 0
5: end for
6: for y ∈ E do
7: while Counter(y) < K do
8: Sample (X,Y) ∈ D s.t.∃j, yj = y
9: D ← D\(X,Y)

10: Update Counter (not only y but all
event types in Y)

11: end while
12: end for
13: for s ∈ S do
14: S ← S\s and update Counter
15: if ∃y ∈ E, s.t. Counter(y) < K then
16: S ← S⋃ s
17: end if
18: end for
19: return S

Table 5: The statistics of curated datasets for few-shot
ED tasks. Top: Low-resource setting. Bottom: Class
transfer setting. We set different random seeds and
generate 10 few-shot sets for each setting. We report
their average statistics.

Low-resource # Labels # Sent # Event # Avg shot

ACE05
2-shot

33
47.7 76.4 2.32

5-shot 110.7 172.2 5.22
10-shot 211.5 317.5 9.62

MAVEN
2-shot

168
152.6 530.1 3.16

5-shot 359.6 1226.3 7.30
10-shot 705.1 2329.2 13.86

ERE
2-shot

38
43.6 108.9 2.87

5-shot 102.5 249.9 6.58
10-shot 197.1 472.3 12.43

Class-transfer # Labels # Sent # Event # Avg shot

ACE05
2-shot

23
37.1 50.2 2.18

5-shot 84.6 113.0 4.91
10-shot 159.8 209.9 9.13

MAVEN
2-shot

48
84.3 97.4 2.03

5-shot 211.3 236.6 4.93
10-shot 417.3 453.6 9.45

ERE
2-shot

28
39.7 66.1 2.36

5-shot 95.0 153.5 5.48
10-shot 182.5 291.0 10.39

11227

complicated curation process, and roughly consists
of two sub-steps: (1) Dividing both event types and
sentences in the original dataset into two disjoint
parts named source dataset and target dataset pool.
(2) Using the entire source dataset, and selecting
few-shot samples from the target pool to construct
target set.

For step (1), we follow Huang et al. (2018) and
Chen et al. (2021) to pick out the most frequent 10,
120, and 10 event types from ACE05, MAVEN and
ERE dataset respectively, as E(S). The remaining
types are E(T). Then we take sentences containing
any annotations in E(T) to D

(T)
full for enriching the

sampling pool of target dataset as much as possible,

D
(T)
full = {(X, R(Y ;E(S)))|(X,Y) ∈ D,∃yj ∈ E(T)}

where R(Y ;E(S) represents the relabeling op-
eration that substituting any yj ∈ E(S)) to N.A.
to avoid information leakage. The remaining sen-
tences are collected as D(S).

D(S) = {(X, R(Y ;E(T)))|(X,Y) /∈ D
(T)
full}

For step (2), we adopt the same strategy as low-
resource setting to sample K-shot D(T)

train and D
(T)
dev

from target sampling pool D(T)
full. Statistics of cu-

rated datasets are summarized in Table 5 (bottom).

B.3 Existing methods
We conduct our empirical study on twelve represen-
tative existing methods. Besides vanilla fine-tuning
and in-context learning, five of them are prompt-
based and the other five are prototype-based.
1. Prompt-based methods leverage the rich knowl-
edge in PLMs by converting specific downstream
tasks to the formats that PLMs are more familiar
with. We give examples about prompt format of
the five prompt-based methods in Table 6.
EEQA/EERC (Du and Cardie, 2020; Liu et al.,
2020): a QA/MRC-based method which first ex-
tracts the trigger word with a natural language
query then classifies its type with an additional
classifier.
EDTE (Lyu et al., 2021): a NLI-based method
which enumerates all event types and judges
whether a clause is entailed by any event. The
clause is obtained by SRL processing and the trig-
ger candidate is the predicate of each clause.
PTE (Schick and Schütze, 2021): a cloze-style
prompt method which enumerates each word in the

sentence and predicts whether it is the trigger of
any event type.
UIE (Lu et al., 2022): a generation based method
that takes in a sentence and outputs a filled univer-
sal template, indicating the trigger words and their
event types in the sentence.
DEGREE (Hsu et al., 2022): also adopts a gen-
eration paradigm but it enumerates all event types
by designing type-specific template, and outputs
related triggers (if have).
2. Prototype-based methods predict an event type
for each word or span by measuring the representa-
tion proximity between the samples and the proto-
types for each event type.
Prototypical Network (Snell et al., 2017): a clas-
sical prototype-based method originally developed
for episode learning. Huang et al. (2021) adapt
it to low-resource setting via further splitting the
training set into support set Sy and query set Qy.
The prototype c̄y of each event type is constructed
by averaged PLM representations of samples in Sy.

hc̄y =
1

Sy
∑

s∈Sy

hs

For samples x in Qy during training, or in the test
set during inference, logits(y|x) is defined as the
negative euclidean distance between h(x) and c̄y.

logits(y|x) = −||hx − hc̄y ||2

L-TapNet-CDT (Hou et al., 2020): a ProtoNet-
variant method with three main improvements: (1)
it introduces TapNet, a variant of ProtoNet. Tap-
Net’s main difference from ProtoNet lies in a pro-
jection spaceM analytically constructed. The dis-
tance is computed in the subspace spanned byM.

logits(y|x) = −||M(hx − hc̄y)||2

(2) the basis in column space of M⊥ is aligned
with label semantic, thusM(E) is label-enhanced.
(3) a collapsed dependency transfer (CDT) module
is used solely during inference stage to scale the
event-type score.

logits(y|x)← logits(y|x) + TRANS(y)

PA-CRF (Cong et al., 2021): a ProtoNet-variant
method with a CRF module as well. Different
from CDT, however, the transition scores are ap-
proximated between event types based on the their
prototypes and learned during training.

11228

Table 6: Prompt examples for different methods based on a sentence example X: The current government was formed
in October 2000, in which the word formed triggering an Start-Org event. The underline part in UIE prompt is their
designed Structured Schema Instructor (SSI), and the DESCRIPTION(y) in DEGREE prompt is a description about
event type y ∈ E written in natural languages. We refer readers for their original paper in details.

Method Prompt Input Output

EEQA (Du and Cardie, 2020) X. What is the trigger in the event? formed.

EDTE
(Lyu et al., 2021)

Premise: X. Hypothesis: This text is about a Start-Org event. Yes.
· · · · · ·

Premise: X. Hypothesis: This text is about an Attack event. No.

PTE
(Schick and Schütze, 2021)

X. The word formed triggers a/an [MASK] event. Start-Org
· · · · · ·

X. The word current triggers a/an [MASK] event. N.A.

UIE (Lu et al., 2022) <spot> Start-org <spot> Attack <spot> ... <spot>. X. (Start-Org: formed)

DEGREE
(Hsu et al., 2022)

X. DESCRIPTION(Start-Org). Event trigger is [MASK]. Event trigger is formed
· · · · · ·

X. DESCRIPTION(Attack). Event trigger is [MASK]. Event trigger is N.A.

FSLS (Ma et al., 2022a): a recently proposed few-
shot NER method that generalizes well to ED task.
The prototype of each event type is not constructed
from support set Sy but from the label semantic, i.e.
the PLM representation of the label name.

ey = Event_name(y)

logits(y|x) = hTxhey

CONTAINER (Das et al., 2022): a contrastive
learning approach. We view it as a generalized
Prototype-based method since both of their moti-
vations are to pull together the representations of
samples with same event types. Different from Pro-
toNet, there is no explicit division between support
set and query set during training process. Instead
each sample acts as query and other samples as
support samples. For example, given sample x
with event type e, its special supported set can be
viewed as:

Sy(x) = {x′|(x′, y′) ∈ D, y′ = y, x′ ̸= x}

Then its score related to e is calculated as the aver-
age distance with samples in Sy(x).

logits(y|x) =
∑

x′∈Sy(x)

−d(f(hx), f(hx′))

|Sy(x)|

B.4 Implementation Details
For all methods, we initialize their pre-trained
weights and further train them using Huggingface
library.8 Each experiment is run on single NVIDIA-
V100 GPU, and the final reported performance

8https://huggingface.co/

for each setting (e.g., ACE 2-shot) is the averaged
result w.r.t ten distinct few-shot training datasets
which are sampled with different random seeds. We
further detail the implementation of all methods.
1. In-context learning

Instruction
User Assume you are an event-instance annotator.

Given a sentence, you need to (1) identify the word
or phrase triggering the event in the sentence, and (2)
classify its event type. The possible event types are
listed as below: Transport, Attack, Injure, . . .

ChatGPT Yes, I understand.
User Please note that your annotation results must fol-

low such format: “Answer: ([Event_1], [Trigger_1])
<SEP> ([Event_2], [Trigger_2]) <SEP> . . . ”. If you
do not find any event in this sentence, just output
“Answer: No events found.”

ChatGPT No problem. Let’s start!
———————————————————–

Demonstration
User Sentence: He ’s retired with the US Army.
ChatGPT Answer: (End-Position, retired)
User Sentence: I wouldn’t be surprised if this Arroyo

character (who was killed by police as he tried to flee)
had a serious criminal past but has been allowed to
walk free due to our lax judicial process.

ChatGPT Answer: (Die, killed) <SEP> (Acquit, walk
free)

User Sentence: Granting a local sheik power to set up
an administrative committee representing the groups
in the region.

ChatGPT Answer: No events found.
———————————————————–

Question
User Hariri submitted his resignation during a 10-

minute meeting with the head of state at the Baabda
presidential palace, outside the capital.

We use ChatGPT (gpt-3.5-turbo-0301)
provided by OpenAI APIs 9 for in-context learning.

9https://platform.openai.com/docs/api-reference

11229

The prompt simulates and records the chatting his-
tory between the user and the model. We show one
example as above. The prompt consists of three
parts: (1) the instruction telling LLMs the task pur-
poses and input-output formats, (2) the demonstra-
tion showcasing several input-output pairs to teach
LLMs the task and (3) the input of test instance.
We feed the prompt into LLMs and expect them to
generate extracted answers. Specifically, we set the
temperature as 0 and maximum output token as 128.
We make all samples in few-shot train set as demon-
stration samples if their total length is smaller than
the maximum input token length (4096). Otherwise
we retrieve similar demonstration samples for each
test instance to fill up the input prompt. The sim-
ilarity between two instances are measured from
their embeddings (Gao et al., 2021). For MAVEN
dataset, we further sample a test subset, with 1000
instances, from the original one for our evaluation.
2. Prompt-based methods We keep all other hy-
perparameters the same as in their original papers,
except learning rates and epochs. We grid-search
best learning rates in [1e-5, 2e-5, 5e-5, 1e-4] for
each setting. As for epochs, we find the range of
appropriate epochsis highly affected by the prompt
format. Therefore we search for epochs method by
method without a unified range.
EEQA (Du and Cardie, 2020): We use their orig-
inal code10 and train it on our datasets.
EDTE (Lyu et al., 2021): We use their original
code11 and train it on our datasets.
PTE (Schick and Schütze, 2021): We implement
this method on OpenPrompt (Ding et al., 2022).
UIE (Lu et al., 2022): We use their original code12

and train it on our datasets.
DEGREE (Hsu et al., 2022): We reproduce this
method based on their original code13 and train it
on our datasets. And we drop event keywords not
occurring in few-shot training dataset from prompt
to avoid information leakage.
3. Prototype-base methods We build a codebase
based on the unified view. We then implement
these methods directly on the unified framework,
by having different choices for each design ele-
ment. To ensure the correctness of our codebase,
we also compare between results obtained from our
implementation and original code for each method,

10https://github.com/xinyadu/eeqa
11https://github.com/veronica320/Zeroshot-Event-

Extraction
12https://github.com/universal-ie/UIE
13https://github.com/PlusLabNLP/DEGREE

and find they achieving similar performance on
few-shot ED datasets.

For all methods (including unified baseline), we
train them with the AdamW (Loshchilov and Hut-
ter, 2017) optimizer with linear scheduler and 0.1
warmup step. We set weight-decay coefficient as
1e-5 and maximum gradient norms as 1.0. We add
a 128-long window centering on the trigger words
and only encode the words within the window;
in other words, the maximum encoding sequence
length is 128. The batch size is set as 128, and train-
ing steps as 200 if the transfer function is scaled
(see Section 5.2) otherwise 500. We grid-search
best learning rates in [1e-5, 2e-5, 5e-5, 1e-4] for
each setting. For ProtoNet and its variants, we fur-
ther split the sentences into support set and query
set. The number in support set KS and query set
KQ are (1, 1) for 2-shot settings, (2, 3) for 5-shot
settings. The split strategy is (2, 8) for 10-shot
dataset constructed from MAVEN and (5, 5) for
others. For methods adopting MoCo-CL setting
(also see Section 5.2), we maintain a queue stor-
ing sample representations with length 2048 for
ACE/ERE 2-shot settings and 8192 for others. For
methods adopting CRF, we follow default hyperpa-
rameters about CRF in their original papers. For
methods adopting scaled transfer functions, we grid
search the scaled coefficient τ in [0.1, 0.2, 0.3].

C Low-resource Setting-Extended

C.1 Transfer function and Distance function

We consider several combinations about distance
and transfer functions listed in Table 7. We choose
cosine similarity (S), negative euclidean distance
(EU) and their scaled version (SS/SEU) as dis-
tance functions. And we pick out identify (I),
down-projection (D) and their normalization ver-
sion (N/DN) as transfer function. We additionally
consider the KL-reparameterization combination
(KL-R) used in CONTAINER.

We conduct experiments with four existing
prototype-based methods14 by only changing their
transfer and distance functions. We illustrate their
results on ACE dataset in Figure 9. (1) From com-
parison about performance in ProtoNet and TapNet,
we find TapNet, i.e., the down-projection transfer,
shows no significant improvement on few-shot ED
tasks. (2) A scaled coefficient in distance function

14We degrade L-TapNet-CDT to TapNet, and do not include
PA-CRF here, because CRF and label-enhancement are not
the factors considered in this subsection.

11230

Table 7: Variants on distance function d(u, v) (top) and
transfer function f(h) (bottom).

Distance function d(u, v)

Cosine similarity (S) uT v
Scaled cosine similarity (SS) uT v/τ
JS Divergence (KL) JSD(u||v)
Euclidean distance (EU) −||u− v||2
Scaled euclidean distance (SEU) −||u− v||2/τ

Transfer function f(h)

Identify (I) h
Down-projection (D) Mh
Reparameterization (R) N (µ(h),Σ(h))
Normalization (N) h/||h||
Down-projection + Normalization (DN) Mh/||h||

achieves strong performance with normalization
transfer function, while the performance collapses
(failing to converge) without normalization. (3) For
ProtoNet and TapNet, scaled euclidean distance
(SEU) is a better choice for distance function, while
other methods prefer scaled cosine similarity (SS).
Based on the findings above, we substitute d and
f to the most appropriate for all existing methods
and observe a significant improvement on all three
datasets, as shown in Table 8.

C.2 CRF module
We explore whether CRF improves the perfor-
mance of few-shot ED task. Based on Ll-MoCo
model we developed in Section 5.2, we conduct
experiment with three different CRF variants, CDT
(CRF inference Hou et al. 2020), vanilla CRF (Laf-
ferty et al., 2001) and PA-CRF (Cong et al., 2021),
on ACE05 and MAVEN datasets. Their results
are in Figure 10. It shows different CRF variants
achieve similar result compared with model with-
out CRF, while a trained CRF (and its prototype-
enhanced variant) slightly benefits multiple-word
triggers when the sample is extremely scarce (see
ACE05 2-shot). These results are inconsistent with
other similar sequence labeling tasks such as NER
or slot tagging, in which CRF usually significantly
improves model performance. We speculate it is
due to that the pattern of triggers in ED task is rel-
atively simple. To validate such assumption, we
count all triggers in ACE05 and MAVEN datasets.
We find that above 96% of triggers are single words,
and most of the remaining triggers are verb phrases
Thus the explicit modeling of transfer dependency
among different event types is somewhat not very
meaningful under few-shot ED task. Hence, we
drop CRF module in the unified baseline.

40

45

50

2−shot 5−shot 10−shot
ProtoNet

F1
 s

co
re

EU−I
SI−N
SEU−N 35

40

45

50

2−shot 5−shot 10−shot
TapNet

F1
 s

co
re

EU−D
SI−DN
SEU−DN

40

45

50

2−shot 5−shot 10−shot
CoNTaiNER

F1
 s

co
re

KL−R
SS−N
SEU−N 40

45

50

55

2−shot 5−shot 10−shot
FSLS

F1
 s

co
re

S−I
SS−N

Figure 9: Performance of different (d, f) combinations
on ACE05.

C.3 Prototype source

We discuss the benefit of combining two kinds of
prototype sources in Section 5.2, i.e., label seman-
tic and event mentions, and show some results in
Figure 4. Here we list full results on all three
datasets in Table 9. The results further validate
our claims: (1) leveraging both label semantics
and mentions as prototype sources improve perfor-
mance under almost all settings. (2) Merging the
two kinds of sources at the loss-level is the best
choice among the three aggregation alternatives.

no−crf crf−inference crf crf−pa

0

10

20

30

40

50

Overall =1 >=2
2−shot

F1
 s

co
re

0

20

40

60

Overall =1 >=2
5−shot

F1
 s

co
re

0

20

40

60

Overall =1 >=2
10−shot

F1
 s

co
re

(a) ACE05

no−crf crf−inference crf crf−pa

0

10

20

30

40

50

Overall =1 >=2
2−shot

F1
 s

co
re

0

20

40

Overall =1 >=2
5−shot

F1
 s

co
re

0

20

40

60

Overall =1 >=2
10−shot

F1
 s

co
re

(b) MAVEN

Figure 10: Overall performance of different CRF vari-
ants on ACE05 and MAVEN datasets. We also provide
performance grouped by trigger word length: = 1: sin-
gle trigger words. ≥ 2: trigger phrases.

C.4 Contrastive Learning

Contrastive Learning (CL Hadsell et al. 2006) is ini-
tially developed for self-supervised representation

11231

Table 8: Performance comparison of methods w/ and w/o adjustment on distance function d and transfer function f .
The most appropriate distance functions are scaled euclidean distance (SEU) for ProtoNet and TapNet and scaled
cosine similarity (SS) for other two. The most appropriate transfer function is normalization (N) for all four existing
methods. The results are averaged among 10 repeated experiments and sample standard deviations are in round
brackets. We highlight the better one for each method w/ and w/o adjustment.

Methods ACE05 MAVEN ERE
2-shot 5-shot 10-shot 2-shot 5-shot 10-shot 2-shot 5-shot 10-shot

ProtoNet w/o adjust 38.3(5.0) 47.2(3.9) 52.3(2.4) 44.5(2.2) 51.7(0.6) 55.4(0.2) 31.6(2.7) 39.7(2.4) 44.3(2.3)

w/ adjust 39.3(4.6) 49.8(4.3) 52.6(1.9) 46.7(1.6) 52.8(0.6) 56.5(0.6) 32.6(3.0) 40.1(1.9) 44.2(1.9)

TapNet w/o adjust 38.7(4.3) 49.1(4.5) 51.2(1.7) 45.7(1.8) 51.7(1.1) 55.0(0.7) 35.3(3.8) 40.2(2.5) 44.7(2.9)
w/ adjust 37.2(5.6) 49.8(3.1) 52.0(1.9) 46.1(1.9) 51.9(0.6) 55.0(0.6) 37.0(4.0) 43.4(1.9) 46.4(2.9)

CONTAINER w/o adjust 40.1(3.8) 47.7(3.3) 50.1(1.8) 44.2(1.4) 50.8(0.9) 52.9(0.3) 34.4(3.6) 39.3(1.9) 44.5(2.3)
w/ adjust 44.0(3.2) 51.1(1.1) 53.1(1.8) 44.6(1.7) 52.1(0.5) 55.1(0.4) 36.5(4.1) 42.0(1.9) 45.4(1.5)

FSLS w/o adjust 39.2(3.4) 47.5(3.2) 51.9(1.7) 46.7(1.2) 51.5(0.5) 56.2(0.2) 34.5(3.1) 39.8(2.5) 44.0(2.0)
w/ adjust 43.1(3.4) 51.0(2.4) 54.4(1.5) 48.3(1.6) 53.4(1.6) 56.1(0.7) 35.7(2.1) 40.6(2.4) 45.4(1.7)

Table 9: Performance with different (1) prototype sources and (2) aggregation form. ProtoNet: only event mentions.
FSLS: label semantic. Lf-ProtoNet: aggregate two types of prototype sources at feature-level. Ls-ProtoNet: at
score-level. Ll-ProtoNet: at loss-level. The results are averaged over 10 repeated experiments and sample standard
deviations are in round brackets.

Methods ACE05 MAVEN ERE
2-shot 5-shot 10-shot 2-shot 5-shot 10-shot 2-shot 5-shot 10-shot

ProtoNet 39.3(4.6) 49.8(4.3) 52.6(1.9) 46.7(1.6) 52.8(0.6) 56.0(0.6) 32.6(3.0) 40.1(1.9) 44.2(1.9)
FSLS 43.0(3.4) 50.6(2.4) 54.1(1.5) 48.3(1.6) 53.4(0.2) 56.1(0.7) 35.7(2.1) 40.6(2.4) 45.4(1.7)

Lf-ProtoNet 41.9(3.8) 50.8(3.0) 52.9(2.4) 49.0(1.1) 53.4(1.0) 56.3(0.7) 35.3(3.6) 41.8(1.8) 45.3(2.2)
Ls-ProtoNet 42.7(4.8) 51.2(2.9) 52.7(1.7) 49.3(1.9) 53.5(0.7) 56.5(0.1) 36.0(2.5) 41.3(3.6) 44.8(2.5)
Ll-ProtoNet 43.3(4.0) 50.9(2.7) 53.0(2.1) 50.2(1.5) 54.3(0.8) 56.7(0.6) 37.6(3.1) 43.0(2.4) 45.3(1.9)

learning and is recently used to facilitate super-
vised learning as well. It pulls samples with same
labels together while pushes samples with distinct
labels apart in their embedding space. We view CL
as a generalized format of prototype-based meth-
ods and include it to the unified view. Under such
view, every sample is a prototype and each single
event type could have multiple prototypes. Given
an event mention, its distances to the prototypes
are computed and aggregated by event types to
determine the overall distance to each event type.

Two types of Contrastive Learning
We name the representation of event mention as

query and prototypes (i.e., other event mentions) as
keys. Then CL could be further split into two cases,
in-batch CL (Chen et al., 2020) and MoCo CL (He
et al., 2020), according to where their keys are from.
In-batch CL views other event mentions within the
same batch as the keys, and the encoder for com-
puting the queries and keys in batch-CL is updated
end-to-end by back-propagation. For MoCo CL,
the encoder for key is momentum-updated along
the encoder for query, and it accordingly maintains
a queue to store keys and utilizes them multiple

times once they are previously computed. We refer
readers to MoCo CL (He et al., 2020) for the details
of in-batch CL and MoCo CL.

CONTAINER (Das et al., 2022) adopts in-batch
CL setting for few-shot NER model and we trans-
fer it to ED domain in our empirical study. We
further compare the two types of CL for our unified
baseline with effective components in Section 5.2
and present the full results in Table 10. We observe
in-batch CL outperforms MoCo-CL when the num-
ber of the sentence is small, and the situation re-
verses with the increasing of sentence number. We
speculate it is due to two main reasons: (1) When
all sentences could be within the single batch, in-
batch CL is a better approach since it computes
and updates all representations of keys and queries
end-to-end by back propagation, while MoCo-CL
computes the key representation by a momentum-
updated encoder with gradient stopping. When the
sentence number is larger than batch size, however,
in-batch CL lose the information of some samples
in each step, while MoCo-CL keeps all samples
within the queue and leverages these approximate
representations for a more extensive comparison

11232

and learning. (2) MoCo-CL also has an effect of
data-augmentation under few-shot ED task, since
the sentence number is usually much smaller than
the queue size. Then the queue would store mul-
tiple representations for each sample, which are
computed and stored in different previous steps.
The benefits of such data augmentation take effect
when there are relatively abundant sentences and
accordingly diverse augmentations.

D Class-transfer Setting-Extended

D.1 Prompt-based methods
We list the results of existing prompt-based meth-
ods on class-transfer setting in Table 11. See de-
tailed analysis in Section 6.1.

D.2 Prototype-based methods
We list the results of existing prototype-based meth-
ods plus our developed unified baseline under class-
transfer setting in Table 12. Note that we substitute
the appropriate distance functions d and transfer
functions f obtained in Section 5.2 for existing
methods. See detailed analysis in Section 6.2.

11233

Table 10: Performance with three label-enhanced approaches. The number in square bracket represents (average)
sentence number under this setting. Averaged F1-scores with sample standard deviations on 10 repeated experiments
are shown.

Method
ACE05 MAVEN ERE

2-shot 5-shot 10-shot 2-shot 5-shot 10-shot 2-shot 5-shot 10-shot
[48] [111] [212] [153] [360] [705] [44] [103] [197]

Ll-ProtoNet 43.3(4.0) 50.9(2.7) 53.0(2.1) 50.2(1.5) 54.3(0.8) 56.7(0.6) 37.6(3.1) 43.0(2.4) 45.3(1.9)
Ll-CONTAINER 45.9(3.7) 54.0(2.6) 55.8(1.3) 49.2(1.6) 54.3(0.6) 57.3(0.7) 39.5(2.4) 45.5(2.8) 46.9(1.8)
Ll-MoCo 42.8(4.1) 53.6(4.1) 56.9(1.6) 49.5(1.7) 54.7(0.8) 57.8(1.2) 38.8(2.4) 46.0(3.0) 48.4(2.6)

Table 11: Prompt-based methods under class-transfer setting. Averaged F1-scores with sample standard deviations
on 10 repeated experiments are shown. We also list results of w/o and w/ transfer for comparison.

Method ACE05 MAVEN ERE
2-shot 5-shot 10-shot 2-shot 5-shot 10-shot 2-shot 5-shot 10-shot

EEQA w/o transfer 17.6(4.9) 33.2(3.8) 41.9(2.9) 14.9(4.4) 44.8(3.1) 53.9(0.7) 19.6(7.5) 36.8(3.1) 44.2(4.3)
w/ transfer 35.1(8.5) 52.5(6.1) 59.1(2.5) 35.0(4.7) 54.7(1.7) 60.0(0.7) 26.8(5.2) 39.1(3.1) 45.9(2.8)

PTE w/o transfer 39.7(4.1) 51.1(5.4) 54.5(3.0) 52.0(1.3) 61.0(1.4) 62.5(2.3) 47.1(4.9) 51.0(5.7) 54.1(4.1)
w/ transfer 49.1(4.9) 55.4(5.8) 54.2(4.4) 52.0(2.9) 60.8(1.0) 61.5(1.5) 42.6(3.7) 51.0(3.1) 55.3(2.3)

UIE w/o transfer 24.5(3.9) 39.3(3.2) 40.6(3.9) 25.3(8.1) 49.2(2.2) 57.4(2.3) 22.9(9.0) 35.1(4.2) 39.3(2.3)
w/ transfer 47.0(5.4) 54.0(4.2) 54.7(7.3) 40.3(1.7) 49.8(1.6) 54.1(1.5) 36.9(4.6) 41.1(4.2) 41.9(4.6)

DEGREE w/o transfer 33.4(6.6) 44.2(2.2) 50.5(6.3) 53.6(1.9) 56.9(5.7) 63.8(1.2) 39.1(5.9) 41.8(3.2) 43.9(6.2)
w/ transfer 52.4(3.7) 56.7(4.6) 59.0(4.7) 54.5(5.1) 59.6(6.3) 65.1(2.7) 50.1(3.6) 50.3(2.8) 48.5(2.5)

Table 12: Full results about prototype-based methods under class transfer setting. Averaged F1-scores with sample
standard deviations on 10 repeated experiments are shown. We enumerate all possible combinations on models of
source and target datasets.

Method ACE05 MAVEN ERE
Source Target 2-shot 5-shot 10-shot 2-shot 5-shot 10-shot 2-shot 5-shot 10-shot

_

Fi
ne

-t
un

in
g

28.1(9.9) 37.0(8.3) 45.8(4.0) 21.2(11.5) 46.6(4.2) 55.3(4.8) 40.4(3.8) 45.9(3.8) 48.2(2.2)
Fine-tuning 39.1(6.7) 49.5(11.9) 51.4(9.3) 44.4(1.8) 58.3(1.9) 63.0(1.9) 34.1(6.9) 47.0(4.5) 50.0(2.3)

CONTAINER 28.7(5.8) 37.4(11.6) 42.7(8.0) 49.4(2.8) 59.3(1.4) 63.6(1.7) 36.3(8.9) 47.3(3.7) 47.3(4.0)
L-TapNet 31.7(5.7) 41.5(4.2) 43.1(2.6) 40.0(1.8) 54.3(1.4) 59.9(1.4) 36.8(4.7) 44.0(5.3) 48.7(2.1)

FSLS 42.3(8.5) 51.6(6.9) 56.7(8.6) 47.1(2.7) 58.1(1.1) 62.9(1.6) 41.2(4.7) 49.8(3.6) 53.2(3.4)
Unified Baseline 39.8(6.0) 47.4(6.2) 54.3(6.4) 48.8(1.7) 58.8(1.0) 63.9(1.0) 39.8(5.2) 46.1(3.5) 50.8(3.4)

_

C
O

N
TA

IN
E

R 40.1(3.0) 47.3(5.8) 49.1(4.7) 47.9(3.5) 63.5(1.1) 68.5(2.1) 46.5(4.9) 49.2(3.0) 53.5(3.3)
Fine-tuning 37.2(9.5) 45.0(8.1) 52.7(8.7) 54.3(3.4) 64.3(1.1) 66.8(2.9) 35.0(4.0) 42.1(4.6) 47.6(4.0)

CONTAINER 30.6(5.4) 38.3(5.4) 37.6(4.5) 47.5(6.4) 57.1(3.4) 54.7(2.2) 42.1(4.8) 46.6(4.9) 51.7(2.9)
L-TapNet 33.0(2.7) 38.3(4.9) 41.6(3.6) 36.8(5.6) 43.4(3.1) 50.0(6.0) 39.6(4.4) 44.0(4.0) 48.5(2.7)

FSLS 42.8(8.0) 49.0(10.5) 53.4(11.8) 52.7(2.5) 62.2(1.5) 65.2(2.7) 39.0(5.5) 48.8(1.7) 50.8(3.1)
Unified Baseline 39.0(6.1) 45.9(9.4) 47.0(8.3) 52.8(2.1) 60.8(3.4) 60.0(4.9) 37.6(6.8) 45.9(4.5) 47.8(4.2)

_

L
-T

ap
N

et

42.6 (3.8) 50.8(4.1) 50.8(2.8) 53.2(2.3) 63.3(1.6) 68.5(0.7) 44.5(4.5) 52.3(2.1) 52.5(2.5)
Fine-tuning 43.9(11.4) 54.8(9.4) 57.2(5.0) 52.2(3.2) 64.4(2.1) 68.5(0.7) 38.8(3.7) 48.1(2.5) 51.7(3.6)

CONTAINER 34.4(4.7) 43.6(4.6) 45.3(4.2) 44.9(10.8) 63.4(2.8) 69.4(1.1) 39.5(4.6) 49.2(4.7) 52.8(3.3)
L-TapNet 37.2(4.6) 45.4(2.8) 45.1(3.7) 52.1(2.2) 62.6(2.6) 68.0(1.4) 44.9(5.4) 49.7(2.9) 52.0(5.2)

FSLS 51.8(6.4) 59.1(6.3) 60.4(6.7) 51.1(10.2) 63.8(2.2) 68.5(1.6) 45.0(5.6) 53.6(3.1) 54.2(2.2)
Unified Baseline 45.8(5.6) 52.7(6.9) 59.4(5.3) 56.1(2.1) 63.6(2.5) 68.0(1.8) 45.8(4.6) 51.2(2.9) 55.3(2.2)

_

FS
L

S

42.9(4.0) 49.9(4.3) 52.5(2.7) 43.5(4.9) 58.2(1.1) 64.1(0.7) 46.1(7.0) 49.3(3.9) 53.5(3.5)
Fine-tuning 49.6(5.2) 56.0(7.7) 56.5(6.5) 44.9(5.0) 59.2(2.0) 64.2(1.5) 39.1(5.0) 45.7(3.2) 51.3(3.6)

CONTAINER 32.0(4.5) 40.9(4.1) 45.1(3.8) 48.0(1.6) 59.2(3.2) 64.1(2.5) 40.0(3.6) 45.6(4.6) 48.9(4.5)
L-TapNet 36.8(3.0) 43.3(3.4) 47.1(2.7) 43.9(2.1) 55.9(1.9) 62.4(1.5) 44.1(4.6) 47.3(3.1) 51.0(2.7)

FSLS 51.7(7.3) 61.5(7.9) 66.2(4.3) 50.8(1.9) 59.3(1.9) 65.5(1.4) 46.4(3.4) 54.4(3.5) 56.2(2.2)
Unified Baseline 44.5(8.5) 53.4(7.2) 57.7(6.4) 50.6(3.3) 59.7(0.7) 64.0(0.8) 46.1(4.4) 50.4(4.4) 55.1(2.1)

_

U
ni

fie
d

B
as

el
in

e 47.4(5.8) 55.9(3.4) 56.8(3.4) 49.1(1.2) 63.9(1.1) 68.2(1.3) 51.7(5.9) 57.1(2.0) 56.8(4.0)
Fine-tuning 51.2(4.8) 58.6(8.3) 61.9(8.7) 52.0(1.1) 63.6(2.2) 68.1(1.4) 40.0(5.9) 51.8(4.5) 57.1(3.4)

CONTAINER 34.3(3.5) 43.9(4.9) 50.9(3.1) 51.7(2.0) 63.7(1.4) 67.8(1.5) 47.5(4.6) 51.7(3.7) 55.0(2.9)
L-TapNet 42.3(4.0) 49.0(4.6) 51.6(3.7) 49.1(3.2) 63.5(2.1) 67.5(1.3) 47.2(6.1) 53.4(2.0) 55.0(3.6)

FSLS 56.4(5.6) 61.4(6.7) 67.3(4.2) 55.7(2.7) 64.8(1.7) 68.9(1.4) 47.6(4.1) 57.1(2.8) 58.6(4.0)

Unified Baseline 49.6(6.5) 60.0(6.0) 64.1(7.2) 52.9(3.3) 63.8(2.6) 69.2(0.7) 45.4(4.4) 53.5(2.3) 57.4(3.8)

11234

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

After the acknowledgement, before the reference.

�7 A2. Did you discuss any potential risks of your work?
To our best knowledge, our work is an empirical study based on previous work and there is no
potential risks of our work.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
In abstract and Section 1.

�3 A4. Have you used AI writing assistants when working on this paper?
We use ChatGPT to polish our paper, mainly on abstract and limitation part.

B �3 Did you use or create scientific artifacts?
In Section 4.1, Appendix B.1 and Appendix B.2

�3 B1. Did you cite the creators of artifacts you used?
In Section 4.1 and Appendix B.1

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
In Appendix B.2

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
In Appendix B.2

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
To our best knowledge, no such problems in three datasets we use.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
In Appendix B.1

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
In Appendix B.2

C �3 Did you run computational experiments?
In Section 4.2, Section 4.3 and Appendix B.4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
In Section 4.3 and Appendix B.4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

11235

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
In Appendix B.4

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
In Section 4.2 and Appendix B.4

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
In Appendix B.4

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

11236

