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Abstract

Accurate syntactic representations are essential
for robust generalization in natural language.
Recent work has found that pre-training can
teach language models to rely on hierarchical
syntactic features—as opposed to incorrect lin-
ear features—when performing tasks after fine-
tuning. We test what aspects of pre-training
are important for endowing encoder-decoder
Transformers with an inductive bias that favors
hierarchical syntactic generalizations. We fo-
cus on architectural features (depth, width, and
number of parameters), as well as the genre
and size of the pre-training corpus, diagnos-
ing inductive biases using two syntactic trans-
formation tasks: question formation and pas-
sivization, both in English. We find that the
number of parameters alone does not explain
hierarchical generalization: model depth plays
greater role than model width. We also find
that pre-training on simpler language, such as
child-directed speech, induces a hierarchical
bias using an order-of-magnitude less data than
pre-training on more typical datasets based on
web text or Wikipedia; this suggests that in
cognitively plausible language acquisition set-
tings, neural language models may be more
data-efficient than previously thought.

1 Introduction

Accurate syntactic representations are necessary
for robust generalization to new natural language
inputs and for the generation of correct outputs.
Consider the problem of identifying the subject of
“said” in the following sentence:

(1) Can you repeat what the senator next to the
cats said?

Typical language models (LMs), which receive lin-
ear sequences of words as input, could conceivably
rely on a linear or positional feature that usually,
but does not always, identifies the correct subject
of a verb. An LM could learn, for example, that

the first noun in the sentence is always the subject.
This heuristic works for many simple sentences,
but fails in Ex. (1): here, the first noun is “you”,
and so this heuristic would lead the LM to incor-
rectly interpret the sentence as meaning “Can you
repeat what you said?” The LM could also learn
that the subject of the verb is the noun closest to the
verb in the linear order of the sentence, in which
case it would interpret Ex. (1) as “Can you repeat
what the cats said?” By contrast, an LM that repre-
sents the sentence as hierarchically structured will
correctly identify senator as the subject of the em-
bedded clause that contains the verb said. This
example demonstrates that a preference for syn-
tactic features over linear features is required for
robust linguistic generalization.

The success of large-scale pre-training across
fine-tuning tasks suggests that exposure to natural
language may teach models to rely on appropri-
ate syntactic features instead of heuristics (even
though models still often rely on heuristics; Mc-
Coy et al. 2019). This hypothesis is supported by
the finding that, given minimal pairs of grammati-
cal and ungrammatical sentences, the probability
distribution over sentences defined by LMs often fa-
vors the grammatical sentence (Marvin and Linzen,
2018; Hu et al., 2020). A related line of work has
shown that, through pre-training, LMs can under
some circumstances acquire syntactic inductive bi-
ases which are then applied to fine-tuning tasks,
whereas models which have not been pre-trained
do not have such inductive biases (Warstadt and
Bowman 2020; Warstadt et al. 2020b; Lovering
et al. 2021; Mueller et al. 2022).

When does pre-training endow LMs with a syn-
tactic inductive bias? In this study, we address
two specific sub-questions: (1) Which architec-
tural features make a syntactic inductive bias more
likely to emerge in a Transformer LM? (2) How is
the inductive bias affected by the genre and size
of the pre-training corpus? We investigate these
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questions by evaluating a range of Transformer
encoder-decoder models based on T5 (Raffel et al.,
2020). We evaluate both existing publicly available
models and models that we pre-train ourselves; we
explore a variety of model widths (embedding and
hidden dimension, feed-forward layer size) and
depths (number of layers), and pre-train on cor-
pora of varying genres and sizes. We then evaluate
models’ inductive biases by observing their out-
of-distribution generalization when fine-tuned on
syntactic transformations tasks (§4). We find that
depth matters more than width for the acqui-
sition of hierarchical biases (§5), and that pre-
training on simpler language induces hierarchi-
cal biases using far less data (§6 and §7). This
last finding suggests that in language acquisition
settings in which the training corpus more closely
resembles the language that children are exposed to,
Transformers may be more sample-efficient than
previously thought.

Our code is available on GitHub.1

2 Background and Motivation

Every finite training set is consistent with multiple
generalizations. We use the term inductive bias to
refer to the set of assumptions that a model relies on
when generalizing to new data. Our usage includes
any factor that leads the model to generalize in one
way rather than another (Mitchell, 1980); this can
include not only the model’s architecture, but also
representations learned from prior or concurrent
training on tasks that are related to the target task
(Caruana, 1997), and in particular self-supervised
pre-training (Lovering et al., 2021).

We can infer a model’s inductive bias by observ-
ing how it generalizes out of distribution after train-
ing on a dataset that is compatible with multiple
generalizations. Applying this methodology, Mc-
Coy et al. (2018), McCoy et al. (2020), and Petty
and Frank (2021) find that LSTM and Transformer
encoder-decoder models trained from scratch (with-
out pre-training) on syntactic transformations, such
as converting a declarative sentence into a question
(§3), do not generalize in a hierarchical manner.
By contrast, Mueller et al. (2022) find that certain
pre-trained encoder-decoder models—including
T5 and BART (Lewis et al., 2020)—do general-
ize hierarchically after fine-tuning. Warstadt and
Bowman (2020) and Warstadt et al. (2020b) re-

1https://github.com/aaronmueller/
emergent-syntax

port similar results for the pre-trained masked LM
RoBERTa (Liu et al., 2019), though in their study a
robust syntactic inductive bias only emerged when
the training corpus was much larger than a human
might be exposed to.

Previous work on the effect of training corpus
size and genre on syntactic generalization includes
Huebner et al. (2021), who find that masked LMs
show stronger syntactic abilities after training on a
few million words of child-directed speech than a
similar amount of Wikipedia or news text; they do
not, however, explore whether similar abilities arise
from training on a larger amount of Wikipedia text.
Van Schijndel et al. (2019) report experimental re-
sults suggesting that scaling the training corpus or
model size is unlikely to result in human-like syn-
tactic abilities for LSTM LMs, but they only vary
model width and only train on Wikipedia data. We
fill the gap between these studies by investigating
the influence of multiple component of the Trans-
former architecture and by training on corpora of
varying genres and sizes.

Our work is related more broadly to the syntac-
tic LM evaluation literature. In this style of work,
evaluation is typically performed using minimal
pairs, where a grammatical and ungrammatical sen-
tence or completion are provided to a model, and
the model is expected to assign a higher probability
to the grammatical variant. Syntactic evaluations
have found that LSTM- (Hochreiter and Schmidhu-
ber, 1997) and Transformer-based (Vaswani et al.,
2017) LMs are sensitive to grammatical number
and gender in subject-verb agreement and reflex-
ives (Hu et al., 2020; Marvin and Linzen, 2018;
Goldberg, 2019; Lakretz et al., 2021; Gauthier
et al., 2020). LMs are also sensitive to filler-gap
dependencies (Wilcox et al., 2018) and, to a lesser,
extent, negative polarity items (Marvin and Linzen,
2018; Warstadt et al., 2020a). This holds across
languages (Mueller et al., 2020; Ravfogel et al.,
2018) and across grammatical/typological features
(Ravfogel et al., 2019).

Overall, prior work has shown that pre-training
can impart hierarchical inductive biases to LMs.
The goal of this study is to examine which aspects
of pre-training—specifically, architecture and train-
ing data—contribute to the emergence of this bias.

3 Syntactic Transformations

To evaluate the linguistic inductive biases of our
models, we employ the poverty of the stimulus
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Figure 1: The syntactic transformations paradigm. A pre-trained model is fine-tuned on examples that are consistent
with both syntactic (hierarchical) and positional/word order (linear) explanations. Then, it is evaluated on examples
where only a model with a syntactic inductive bias will produce the correct output. We investigate which components
of pre-training induce hierarchical inductive biases. Adapted from Warstadt et al. (2020b) and Mueller et al. (2022).

design (Wilson, 2006): we fine-tune a model on
ambiguous data and then evaluate it on out-of-
distribution examples where only the desired in-
ductive bias will result in the correct outputs. Here,
we use the syntactic transformations paradigm
(Frank and Mathis, 2007) summarized in Figure 1,
and observe whether models generalize accord-
ing to hierarchical linguistic rules or according to
surface heuristics based on word position or rela-
tive word ordering. We evaluate on English ques-
tion formation and passivization, using the English
datasets of Mueller et al. (2022) (themselves based
on McCoy et al. 2020).

3.1 Question Formation

Here, the task is to transform a declarative sentence
into a polar yes/no question by moving the auxiliary
verb to the start of the sentence. The competing hy-
potheses are MOVE-FIRST and MOVE-MAIN (see
Figure 1 for examples). We train the models on
sentences that are consistent with both hypotheses,
where the main auxiliary is always the linearly first
auxiliary in the input sentence. Then, in the gen-
eralization examples, we append a relative clause
(RC) to the subject, such that the main auxiliary
is now the linearly second auxiliary in the input.
A model that acquired MOVE-MAIN—that is, one
that has a hierarchical inductive bias—will cor-
rectly identify the main auxiliary verb and move it
to the front, meaning that it should still produce the
correct output. A model that learned MOVE-FIRST

will move the first auxiliary to the front, resulting
in ungrammatical outputs (Figure 1).

3.2 Passivization

In this task, the goal is to transform an active sen-
tence into a passive one. This requires various

insertions, deletions, reinflections, and movements,
making this task a potentially more difficult one
than question formation. Here, we evaluate the
movement of the object to the subject position. The
competing hypotheses here are MOVE-SECOND

and MOVE-MAIN. We train the models on sen-
tences where the object is always the linearly sec-
ond noun in the sentence. Then, in the generaliza-
tion examples, we append a prepositional phrase
(PP) to the subject, such that the object is now the
linearly third noun. If a model acquires the gen-
eralization MOVE-MAIN (consistent with a hierar-
chical inductive bias), it will detect the object and
move it to the front, producing the correct output.
If it acquires MOVE-SECOND, it will move the lin-
early second noun phrase even in the generalization
examples (where, again, the correct noun to move
is actually the linearly third one), and as such will
output ungrammatical sequences. For example:

(2) Passivization
a. Training: The raven observed the newts

(near the yak). ⇒ The newts (near the yak)
were observed by the raven.

b. Generalization: The salamander behind the
ravens applauded the peacock. ⇒ ?

c. MOVE-MAIN (correct): The peacock was
applauded by the salamander behind the
ravens.

d. MOVE-SECOND (incorrect): The ravens
were applauded by the salamander.

3.3 Evaluation Metrics

For both syntactic transformations, we evaluate
models’ outputs using two metrics. The first is
sequence accuracy, which measures the percent-
age of inputs for which the model’s full output se-
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quence is exactly correct. This is a strict metric that
does not capture solely the syntactic phenomenon
we investigate, but also penalizes the model for
other errors, such as word substitution errors. We
also report more targeted metrics for each of the
tasks: main auxiliary accuracy for question for-
mation, which measures how often the first word
of the output sentence is the main auxiliary; and
object accuracy for passivization, which measures
how often the noun that gets moved to the start of
the sentence is the object.

4 Overview of Experimental Paradigm

All of our experiments involve fine-tuning vari-
ants of T5, a Transformer encoder-decoder model
pre-trained using a span denoising objective: con-
tiguous token sequences are masked in the input
sequence and then reconstructed in the output se-
quence. We either use the publicly available pre-
trained “efficient” T5 models released by Tay et al.
(2022),2 or pre-train models ourselves using the
transformers library (Wolf et al., 2020).

The syntactic transformation datasets we fine-
tune on are the English datasets of Mueller et al.
(2022), which consist of 100,000 training exam-
ples; 10,000 in-distribution test examples, which
test whether the models have learned the task; and
10,000 out-of-distribution generalization examples,
which reveal models’ inductive biases.

We adopt Mueller et al.’s hyperparameters
(App. A). We fine-tune for 10 epochs (approxi-
mately 7500 training steps), and every 500 steps we
save a checkpoint and evaluate it. Across models,
accuracy on the in-distribution test set generally
reaches 100% within 500 steps (the first check-
point) and remains 100% throughout fine-tuning.
Because in-distribution test set accuracy may not
correlate with generalization accuracy, it is unclear
which checkpoint would yield the best accuracy on
the generalization set; we therefore report the mean
generalization accuracy across all checkpoints.

5 Architectural Effects

Which architectural features contribute to hierar-
chical generalization? Given that language is struc-

2The term “efficient” here contrasts the models of Tay et al.
(2022) with the original T5 models of Raffel et al. (2020),
which are Pareto-inefficient with respect to downstream per-
formance and number of parameters. The “efficient” models
achieve similar performance across tasks using fewer param-
eters by using a deeper (more layers) and narrower (smaller
hidden size/feed-forward size) architecture.

Tiny Mini Small Base

# Parameters 16M 31M 60M 220M
# Layers (NL) 4 4 6 12
Feedforward layer dimension (FF) 1024 1536 2048 3072
Embedding and hidden dimension (DM) 256 384 512 768
Key/value projection matrix dim. (KV) 32 32 32 64
# Heads per layer (NH) 4 8 8 12

Table 1: Architectural details for T5 variants from Tay
et al. (2022). # Layers is the number of layers in each
of the encoder and the decoder (multiply this number
by 2 to obtain the total number of layers in the model).

Figure 2: The Transformer encoder-decoder architec-
ture, annotated with the architectural hyperparameters
we vary.

tured hierarchically, we hypothesize that model
depth (number of layers) will be the most impor-
tant component, as deeper structure could more
easily allow for representations of deeper hierar-
chical structures (e.g., more complex syntax trees),
with recursive syntactic operations applied succes-
sively across layers (Murty et al., 2023).

5.1 Models

We fine-tune pre-trained models from Tay
et al. (2022), available on HuggingFace. We
train two sets of models. The first set
is google/t5-efficient-{tiny,mini,small,,
base}; see Table 1 for the hyperparameters of these
models, and Figure 2 for a diagram of the Trans-
former architecture that illustrates these hyperpa-
rameters. Note that multiple hyperparameter values
change at the same time when moving from, e.g.,
T5small to T5base.

The second set of models we use from Tay et al.
(2022) were derived from T5base by changing ex-
actly one hyperparameter value. For these more
controlled variants, we adopt Tay et al.’s nomen-
clature, which is based on the particular hyperpa-
rameter that is being changed, and its new value;
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for example, T5base-DM512 (which we abbrevi-
ate here to DM512) is identical to T5base, except
the embedding/hidden dimension (DM) is reduced
from 768 to 512. All of these models are trained
on approximately 34B words from the Colossal
Cleaned Common Crawl (C4) web text corpus.

5.2 Depth, not Scale, Predicts Syntactic Bias

We start by asking whether scale alone can explain
hierarchical generalization: Is there a monotonic
relationship between the number of parameters and
in generalization accuracy? We find that the an-
swer is no (Figure 3). For question formation, the
Spearman rank-order correlation between the num-
ber of parameters and accuracy is 0.51 (sequence)
and 0.58 (main auxiliary); for passivization, 0.75
(sequence) and 0.43 (object). While these are sig-
nificant correlations (p < .05, except for object
accuracy), if syntactic bias were predicted by scale
alone, we would expect these to be close to 1. Thus,
number of parameters alone is not sufficient to
explain the acquisition of a hierarchical bias.
This suggests that certain architectural components,
which may be correlated with scale, are more im-
portant than others.

Indeed, we find that increasing model depth has
a much stronger impact on accuracy than scaling
the model up by increasing the value of other ar-
chitectural hyperparameters (Figure 4): in a least
squares linear regression where the dependent vari-
able is sequence accuracy and independent variable
is number of parameters (normalized to the same
range as the accuracy values), the slope of the fitted
line is 0.70 when varying over number of layers,
but only 0.13 for embedding/hidden size, and 0.25
for feed-forward layer width. In particular, the
wide and shallow NL4 has more parameters than
the narrow and deep DM256, but achieves simi-
lar performance as DM256 on question formation
and significantly worse performance on passiviza-
tion (as a reminder, NL4 is T5base with 4 encoder
layers and 4 decoder layers, and DM256 is T5base
with embedding/hidden size 256). This suggests
that when scaling the architecture, model depth
is more important than other components for
enabling hierarchical generalization.

Is encoder depth or decoder depth more impor-
tant for hierarchical generalization, or is total depth
alone responsible for the patterns we find? We in-
vestigate this in App. B, with mixed results: for
passivization, reducing the depth of either compo-
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Figure 3: Generalization accuracies on question
formation (top) and passivization (bottom) using
T5{tiny,mini,small,base}, as well as variants of T5base where
we vary the number of layers, number of attention heads
per layer, embedding/hidden dimension, feed-forward
width, or key-value projection dimension. There is a
positive correlation between the number of parameters
and accuracy, but the trend is not monotonic. Certain
architectural features may therefore play a more impor-
tant role than others.

nent leads to similar drops in generalization accu-
racy, but for question formation, decoder depth has
a greater effect than encoder depth.

5.3 Syntactic Bias Correlates with
Downstream Performance

How well does syntactic generalization accuracy
correlate with performance on other tasks? We
address this question by correlating main auxil-
iary accuracy with validation perplexity, question
answering accuracy on SQuAD (Rajpurkar et al.,
2016), and scores on the SuperGLUE collection of
natural language understanding tasks (Wang et al.,
2019), all provided by Tay et al. (2022). We do not
report correlations with passivization accuracy, as
most models achieve 100% accuracy on this task,
which leaves little explainable variance.

We obtain Spearman correlations of 0.57 (p <.1)
for SuperGLUE, 0.34 (p >.1) for SQuAD, and 0.67
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Figure 4: Generalization sequence accuracies on ques-
tion formation (top) and passivization (bottom) using
architecturally modified versions of T5base. Decreasing
model depth (NL) results in the greatest drop in perfor-
mance, suggesting that model depth is more important
for learning syntax than other components. See App. C
for results when varying the number of attention heads
or key/value projection dimension.

(p <.05) for negative validation perplexity. In other
words, the correlation is weak but significant with
average SuperGLUE accuracy (Tay et al. do not
report accuracy for individual SuperGLUE tasks);
not significant with question answering; and rela-
tively strong and significant with language model-
ing performance more broadly. We note that since
the number of models is relatively modest, correla-
tions need to be quite strong to reach the statistical
significance threshold.

These correlations do not indicate that syntac-
tic abilities are causally implicated in the models’
improved performance on other tasks, but they do
show that the emergence of syntactic abilities
often co-occurs with better language modeling
performance and downstream performance. Fu-
ture work could employ causal analysis methods to
better understand how the emergence of syntactic
preferences affects (or does not affect) performance
across NLP tasks.

6 Corpus Genre

Large LMs are typically pre-trained on web text
and/or Wikipedia data—genres that are distinct
from the type of language that humans are exposed
to during childhood. Could the domain of pre-
training corpora explain why LMs require much
more data than humans to reach similar syntac-
tic abilities (Warstadt et al., 2020b)? Huebner
et al. (2021) report experiments that support this
hypothesis: they find that the RoBERTa masked
LM achieves higher accuracies on linguistic accept-
ability judgment benchmarks when it is pre-trained
on child-directed speech as opposed to a similar
amount of Wikipedia data. In this section, we inves-
tigate whether this applies to our paradigm by pre-
training encoder-decoder models on child-directed
speech and a similar amount of text drawn from the
English Wikipedia.

6.1 Models

We train models based on the T5 architecture
and objective (see §4) on the English portion
of CHILDES (MacWhinney, 2000), a 5M-word
child-directed speech corpus, and on an English
Wikipedia corpus from Huebner et al. (2021),
which consists of a similar number of sentences
as CHILDES. As Wikipedia sentences are longer,
the total number of words in the Wikipedia training
set we use here is approximately 10M.

We train models with eight hyperparameter con-
figurations on each dataset (Table 2): we either vary
the number of layers (NL ∈ {2, 4, 8, 16}), keeping
other hyperparameters, such as embedding/hidden
dimension and number of heads, constant; or we
keep the number of layers at 8 and vary other hy-
perparameters. While we only pre-train each con-
figuration once, we fine-tune each configuration
five times, with a different random seed each time.

Following Huebner et al., we modify the train-
ing hyperparameters to better suit the smaller and
simpler child-directed speech corpus: we reduce
the maximum sequence length to 128 and train a
SentencePiece tokenizer (Kudo and Richardson,
2018) with a reduced vocabulary size of 213 =
8192; this is motivated by children’s vocabulary
size of approximately 5,000–6,000 lemmas at age 6
(Biemiller, 2003). For the Wikipedia corpus, we
train SentencePiece tokenizers using vocab sizes
∈ {8192, 32768} and take the best-performing
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Data

Model Parameters NL FF DM KV NH CHILDES Wikipedia

Tiny 23M 8 1024 256 32 4 0.62 (.06) 0.07 (.02)
Mini 50M 8 1536 384 32 8 0.68 (.07) 0.35 (.08)
Small 75M 8 2048 512 32 8 0.73 (.04) 0.46 (.10)
Base 157M 8 3072 768 64 12 0.61 (.07) 0.45 (.09)
Large 268M 8 4096 1024 64 16 0.57 (.09) 0.26 (.09)

Small 31M 2 2048 512 32 8 0.49 (.04) 0.08 (.01)
Small 46M 4 2048 512 32 8 0.58 (.05) 0.35 (.08)
Small 75M 8 2048 512 32 8 0.73 (.04) 0.46 (.10)
Small 134M 16 2048 512 32 8 0.70 (.06) 0.48 (.08)

Table 2: Main auxiliary accuracies averaged across 5
fine-tuning random seeds (standard deviation across
seeds in parentheses) on the question formation gener-
alization dataset for various encoder-decoder models
pre-trained from scratch on 5M words of transcribed
child-directed speech or 10M words of Wikipedia text.

model for each hyperparameter configuration,3,4 as
it is not clear a priori whether a smaller vocabulary
would be beneficial for Wikipedia’s more complex
and diverse language. We use sequence packing,
where we concatenate multiple sentences from the
corpus into a single example such that the total
length of each training example is approximately
equal to the maximum sequence length.

When pre-training on child-directed speech, we
checkpoint every 10K training steps and find that
the best performance on our syntactic transforma-
tions tasks is achieved at 130K steps. We train on
the Wikipedia corpus for the same number of steps.

6.2 Results
We find that pre-training on child-directed
speech generally results in a greater ability to de-
tect the main verb, as compared to pre-training
on Wikipedia (Table 2). This holds across model
sizes and across model depths. The CHILDES-
pre-trained 8-layer variant of T5small performs best.
When fixing NL at 8 and varying other components
according to each model size’s default settings (as
in Table 1), we find that T5small performs best. In
the following experiment, we therefore focus on
T5small modified to have 8 encoder layers and 8
decoder layers.

7 How Much Data Leads to the
Emergence of a Syntactic Bias?

The next experiment we report has two goals.
First, we aim to replicate the finding that sim-

332768 is the vocab size for T5 (Raffel et al., 2020).
4The best vocab size varied depending on model size and

corpus size. Vocab size 8192 tends to work better for smaller
corpora and smaller models on average, and 32768 tends to
work better for larger corpora and larger models.

pler language gives rise to a stronger syntactic
bias. Second, we expand the range of corpus sizes
for the genres where larger corpora are available;
our goal is to determine how much data is neces-
sary to induce a hierarchical bias from each genre.
In addition to child-directed speech and English
Wikipedia, which we included in the previous ex-
periment, we also pre-train models on the Colossal
Cleaned Common Crawl (C4) web text corpus (Raf-
fel et al., 2020) and on Simple Wikipedia, which
contains text from the same domain as English
Wikipedia, but with a more limited vocabulary and
simpler sentence structures.

7.1 Method

We collect English Wikipedia data using
Wikidumps.5 We use the witokit library6

to preprocess the data. We pre-train on {1M,
10M, 100M, 1B} words of English Wikipedia
data, where words are counted before being
divided into subwords by the tokenizer. Our {1M,
10M}-word data is from Huebner et al. (2021);
our {100M, 1B}-word data is a concatenation
of their 10M-word dataset with the Wikidump
data that we download and preprocess. For C4,
we randomly shuffle the HuggingFace version
of the dataset7 and sample individual examples
until we have reached 1B words. We then create
{1M, 10M, 100M, 1B}-word datasets by uniformly
subsampling the data, ensuring that smaller
datasets are subsamples of larger datasets. For
CHILDES, we only have access to 5M words,
so we pre-train on {1M, 5M} words, where the
1M-word dataset is a uniform subsample of the
5M-word dataset.

We also download Simple Wikipedia
Wikidumps,8 and follow the same prepro-
cessing pipeline we used for the English Wikipedia.
Since we only have access to approximately 300M
words of Simple Wikipedia, we only pre-train on
{1M, 10M, 100M} words, where smaller datasets
are uniform subsamples of larger datasets.

For all genres and sizes, we use the best-
performing architecture from §6 (T5small with 8
encoder layers and 8 decoder layers), as well as the
best training hyperparameters from that experiment.
We tune over vocabulary size for each corpus style
and size. See App. A for details.

5https://dumps.wikimedia.org/enwiki/
6https://github.com/akb89/witokit
7https://huggingface.co/datasets/c4
8https://dumps.wikimedia.org/simplewiki/
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Figure 5: Generalization accuracies for question forma-
tion (top) and passivization (bottom) when pre-training
a small T5-like model (8 encoder layers and 8 decoder
layers) on corpora of various sizes and domains. Sim-
pler language induces syntactic generalization with less
data: CHILDES outperforms other datasets, and Simple
Wikipedia outperforms Wikipedia. Accuracies (points)
and standard deviations (shaded regions) are measured
across 5 random seeds of fine-tuning.

7.2 Results

Replicating and extending our results from §6, we
find that pre-training on simpler language in-
duces hierarchical generalization using less data
(Figure 5). For question formation, transcribed
child-directed speech, the simplest language style
we use, induces hierarchical generalization in well
over 50% of question formation generalization ex-
amples using just 5M words. For Simple Wikipedia
and C4, 100M words are required to reach this ac-
curacy level; for Wikipedia, 1B words. Models
pre-trained on Simple Wikipedia generalize in a
much more syntax-sensitive manner than models
pre-trained on a similar amount of Wikipedia data.

For passivization, generalization accuracies are
generally much higher, though the qualitative
trends we observe for question formation still hold:
child-directed speech induces hierarchical gener-

Main auxiliary Object
Dataset # Words accuracy accuracy

Wikipedia 100M 0.27 (.08) 0.98 (.01)
Wikipedia + CHILDES 105M 0.20 (.05) 0.99 (.01)

C4 100M 0.67 (.04) 1.00 (.00)
C4 + CHILDES 105M 0.60 (.05) 1.00 (.00)

CHILDES 5M 0.73 (.04) 0.99 (.00)

Table 3: Generalization accuracy for question forma-
tion and passivization using the 100M-word versions
of Wikipedia and C4, before and after concatenating
CHILDES. Accuracy is averaged over five fine-tuning
seeds (standard deviation over seeds in parentheses).

alization using less data, and Simple Wikipedia
induces hierarchical generalization using less data
than Wikipedia.

Could we narrow the gap between Wikipedia/C4
and CHILDES by simply concatenating CHILDES
to these datasets? The answer appears to be no:
performance does not significantly change when
concatenating CHILDES to Wikipedia, nor when
concatenating CHILDES to C4 (Table 3). Perhaps
the style of the different datasets is too dissimilar
for the model to form consistent generalizations
when exposed to both distributions simultaneously.
It could be more beneficial to run a two-phase pre-
training procedure, where we expose the model to
the simpler CHILDES dataset first, and then expose
it to Wikipedia or C4 only after it has acquired
the hierarchical inductive bias. We discuss this
hypothesis in more detail in §8.

8 Discussion

Why does depth facilitate the emergence of a
syntactic bias? Our first set of experiments sug-
gests that depth is the most important architectural
factor contributing to hierarchical generalization
in Transformers. This finding is consistent with
the suggestion of Tay et al. (2022), who advocate
for deeper and narrower architectures for the best
performance across NLP tasks. Why are deeper
models better in practice for many tasks and linguis-
tic evaluations, when in theory an arbitrarily wide
model can approximate any function with only two
layers (Hornik et al., 1989)?

One natural hypothesis is that Transformers gen-
eralize hierarchically on the basis of tree-structured
representations organized across layers, such that
higher layers represent larger constituents, and re-
cursive syntactic operations are applied across suc-
cessive layers; such a strategy arises more naturally
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in a deeper model. In recent work, Murty et al.
(2023) find evidence that the internal organization
of Transformer representations across layers be-
comes more tree-like over the course of training
on some tasks, and that this property predicts the
model’s compositional generalization. While they
fail to find a correlation between model depth and
the degree to which representations are tree-shaped,
this may be because they train relatively small mod-
els from scratch on synthetic datasets. In future
work, methods such as those of Murty et al. (2023)
may be used to measure the tree-likeness of Trans-
formers’ representations throughout pre-training
on natural language, and the degree to which the
tree-likeness of the pre-trained model correlates
with the its syntactic inductive bias for fine-tuning.

Why does simpler language teach syntax more
effectively? We find that pre-training on simpler
language, such as child-directed speech or Sim-
ple Wikipedia, enables hierarchical generalization
from far less pre-training data than more com-
plex language. Our findings from encoder-decoder
models are consistent with previous findings from
encoder-only masked LMs (Huebner et al., 2021),
and with work on language understanding from
speech (Gelderloos et al., 2020). The advantage
of child-directed speech may be attributable to re-
duced lexical complexity, reduced syntactic com-
plexity, or both (Soderstrom, 2007). Lower lexical
complexity—in this case, fewer word types—may
make it possible to learn the distribution of, say,
parts of speech from a smaller corpus, as the same
words would recur more often in different contexts.
Lower syntactic complexity could result in a higher
proportion of short sentences with unambiguous
syntactic structure, which could help bootstrap syn-
tactic learning. These two features are correlated in
natural child-directed speech, but could be disentan-
gled in future work by independently manipulating
the lexical and syntactic distributions.

Simpler language can be leveraged for more ef-
ficient pre-training. Our experiments show that
not all pre-training data is created equal, and mo-
tivate further research on data curation for pre-
training, and in particular on curriculum learning
(Bengio et al., 2009). We conjecture that robust syn-
tactic inductive biases will play a role not only in
fine-tuning but also in pre-training, making it pos-
sible for models to use additional pre-training sen-
tences more efficiently. This motivates a two-phase

“starting small” approach (Elman, 1993), where the
model is first exposed a model to child-directed
speech until syntactic inductive biases emerge, and
then pre-training on a larger corpus proceeds as
usual afterwards. This approach is related to, but
distinct from, the single-phase simple-to-complex
approach, where a pre-training dataset is sorted
from the simplest inputs to the most complex and
then presented to a model in order. The single-
phase approach has demonstrated mixed results
(Campos, 2021; Surkov et al., 2022), but to our
knowledge, a syntax-focused two-phase approach
has not yet been attempted.

Transformers may be more data-efficient than
previously thought. Our findings about the
amount of pre-training data required for the ac-
quisition of syntactic biases also have implications
for cognitive modeling research. Humans learn
language from far fewer words than contemporary
LMs, and at the same time generalize their lin-
guistic knowledge to new settings more robustly;
conversely, standard NLP evaluations, which do
not take the pre-training corpus into consideration,
implicitly reward architectures that learn well from
vast amounts of data, raising the concern that those
architectures are suboptimal for cognitive model-
ing (Linzen, 2020). Our evaluation setup and em-
pirical results go some way towards addressing
these concerns: we show that pre-training on a
developmentally plausible amount of data can in-
duce human-like inductive biases that improve out-
of-distribution generalization. This suggests that
Transformers, when trained in cognitively relevant
regimes, may serve as fruitful models of human
language acquisition and processing (see also Hos-
seini et al. 2022).

9 Conclusions

We have analyzed the architectural and data fea-
tures that contribute to the acquisition of syntactic
inductive biases during the pre-training of encoder-
decoder Transformers. We find that model depth
matters more for hierarchical generalization than
other model components (§5); that models more
quickly learn that language is hierarchical given
simpler language (§6); and that it takes orders-of-
magnitude more data to induce hierarchical induc-
tive biases when pre-training on genres such as
Wikipedia or web text, compared to simpler data
such as child-directed speech (§7).
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Limitations

Our analyses are based on models with T5-like ar-
chitectures and span denoising training objectives.
Thus, our findings may not generalize to other
types of encoder-decoder models (e.g., BART), nor
encoder-only and decoder-only models. We be-
lieve this is unlikely, given that similar findings
have been shown for models with architectures and
objectives that differ significantly from T5’s (Hueb-
ner et al., 2021; Warstadt and Bowman, 2020).
Nonetheless, it cannot be ruled out.

Our analyses are also based entirely in English,
and only leverage two syntactic transformations.
It is possible that our findings will not generalize
to other languages, given that certain grammati-
cal features (e.g., more extensive case marking) in-
duce more syntax-sensitive behavior given a similar
amount of training data across languages (Mueller
et al., 2020; Ravfogel et al., 2019); thus, perhaps
less Wikipedia or C4 data is needed in these lan-
guages for models to acquire hierarchical prefer-
ences. It is also possible that, within a language,
a model could adopt a hierarchical inductive bias
for one type of transformation, but not another—
especially if one transformation is much more fre-
quent than the other. Indeed, the frequency of par-
ticular words positively correlates with syntactic
evaluation accuracies (Wei et al., 2021; Newman
et al., 2021), and it would be reasonable to expect
a similar trend for the frequency of syntactic trans-
formations. Thus, future work should investigate
more transformations in more languages to ensure
that these findings are consistent.
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A Hyperparameters

When fine-tuning models on syntactic transforma-
tions, we use settings from Mueller et al. (2022):
batch size 128, window size 128, initial learning
rate of 5× 10−5, fine-tune for 10 epochs (≈7500
training steps), checkpoint and evaluate every 500
steps.

When pre-training models from scratch, we train
for 130K training steps, batch size 16 (except for
the 1B-word datasets, where we use batch size 128
such that the model sees the entire dataset at least
once). We tune over the vocabulary size ∈ {8192,
32768} for each dataset and dataset size.

B Is the Encoder or Decoder More
Important for Hierarchical
Generalization?

In §5, we found that model depth is more important
than model width for enabling LMs to acquire a
hierarchical inductive bias. Here, we specifically
investigate whether the encoder or decoder of the
model is more important by varying the depth of
the encoder and decoder individually and observing
changes in generalization patterns. As in §5, our
models are based on the T5base architecture, which
has 12 encoder and 12 decoder layers.

In our results (Figure 6), we observe that de-
creasing the depth of either component leads to
similar losses in accuracy on passivization, though
decreasing decoder depth results in consistently
lower accuracies for question formation. Thus, to-
tal depth may be the most important factor, regard-
less of where it is concentrated. Nonetheless, we
observe preliminary evidence for the decoder being
slightly more important for acquiring a hierarchical
inductive bias—or at least generating outputs that
are consistent with this bias for question formation.
Future work could investigate other transforma-
tions and other languages to test the consistency of
these findings.

C All Architectural Variation Results

In §5 and App. B, we show that model depth is
more important than model width. However, we
did not show the performance of models where we
vary the number of attention heads, nor the key-
value projection matrix dimension. Here, we show
the full results (Figure 7).

Overall, varying the number of attention heads
has little effect on the performance of the model.
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Figure 6: Generalization sequence accuracies on ques-
tion formation (top) and passivization (bottom) using
T5base, as well as variants of T5base where we vary the
encoder depth/decoder depth. Here, EL2 refers to an
architecture identical to T5base, except it has 2 encoder
layers (instead of 12). Likewise, DL2 is created from
T5base by modifying the number of decoder layers, keep-
ing the number of encoder layers at the original 12.

We see the same trend for reductions in the size of
the key/value projection matrix. Thus, model depth
still appears to be the most important component
in inducing hierarchy-sensitive generalizations.

11249



0.5 1.0 1.5 2.0
Parameters 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

DM256

DM512
FF1024 FF2048

KV16

KV32NH8

NL2

NL4 NL8
T5-base

English Question Formation

Component
DM
FF
KV
NH
NL

0.5 1.0 1.5 2.0
Parameters 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy DM256

DM512

FF1024

FF2048

KV16

KV32

NH8

NL2
NL4

NL8

T5-base
English Passivization

Component
DM
FF
KV
NH
NL

Figure 7: Generalization sequence accuracies on ques-
tion formation (top) and passivization (bottom) using all
architectural variants of T5base, as well as T5base itself.
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