
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 11413–11429

July 9-14, 2023 ©2023 Association for Computational Linguistics

Introducing Semantics into Speech Encoders

Derek Xu1, Shuyan Dong2, Changhan Wang2∗, Suyoun Kim2∗, Zhaojiang Lin2∗,
Bing Liu2, Akshat Shrivastava2, Shang-Wen Li2, Liang-Hsuan Tseng3,

Guan-Ting Lin3, Alexei Baevski2, Hung-yi Lee3, Yizhou Sun1, Wei Wang1

1University of California, Los Angeles
2Meta AI

3National Taiwan University

Abstract
Recent studies find existing self-supervised
speech encoders contain primarily acoustic
rather than semantic information. As a re-
sult, pipelined supervised automatic speech
recognition (ASR) to large language model
(LLM) systems achieve state-of-the-art results
on semantic spoken language tasks by utilizing
rich semantic representations from the LLM.
These systems come at the cost of labeled
audio transcriptions, which is expensive and
time-consuming to obtain. We propose a task-
agnostic unsupervised way of incorporating
semantic information from LLMs into self-
supervised speech encoders without labeled au-
dio transcriptions. By introducing semantics,
we improve existing speech encoder spoken
language understanding (SLU) performance by
over 5% on intent classification (IC), with mod-
est gains in named entity resolution (NER) and
slot filling (SF), and spoken question answering
(SQA) FF1 score by over 2%. Our approach,
which uses no ASR data, achieves similar per-
formance as methods trained on over 100 hours
of labeled audio transcripts, demonstrating the
feasibility of unsupervised semantic augmenta-
tions to existing speech encoders.

1 Introduction

Realizing artificial intelligence (AI) that can under-
stand and respond to spoken language is a north star
for many speech and natural language processing
(NLP) researchers. A particularly effective frame-
work for this is the encoder-decoder architecture,
where an encoder represents input audio signals
as high-dimensional embeddings and a decoder
converts said embeddings to outputs for different
downstream tasks. Benchmarks for such systems
include spoken language understanding, where in-
tent, named entities, or slot values are predicted
from input utterances (Yang et al., 2021; Bastianelli
et al., 2020; Shon et al., 2022), and spoken ques-
tion answering, where the start and end frames of
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an input audio passage answering an input audio
question are predicted (Lin et al., 2022a).

A particularly notable setup of the encoder-
decoder framework is the universal representation
setup (Yang et al., 2021), where a shared self-
supervised speech encoder is pretrained upstream
once and frozen for all downstream tasks, then a
different lightweight decoder is fine-tuned on each
downstream task. This setup is appealing for build-
ing speech systems as maintaining a separate large
specialized model for every task is not computation-
ally efficient. The universal representation setup
has been widely adopted in other areas of research,
such as computer vision (Goyal et al., 2019; Eric-
sson et al., 2021) and NLP (Rogers et al., 2020;
Qiu et al., 2020), and production when there are
many downstream tasks or domains (Molino et al.,
2019). The current state-of-the-art speech encoders
under this setup are W2V2 and HUBERT (Yang
et al., 2021; Baevski et al., 2020; Hsu et al., 2021),
which are transformer-based models trained with
self-supervised learning (SSL) on raw audio and
have achieved impressive performance on various
tasks.

Recently, analytical works found SSL speech
encoders capture primarily acoustic, not semantic,
information (Pasad et al., 2021). Thus, researchers
proposed end-to-end systems (Chung et al., 2020b;
Kim et al., 2021; Qian et al., 2021; Le et al., 2022;
Seo et al., 2022; Lin et al., 2022a) that introduce se-
mantic information through large language models
(LLMs), such as ROBERTA (Liu et al., 2019) or
BART (Lewis et al., 2019), which are pretrained
to capture language semantics (Clark et al., 2019).
This is typically accomplished by the pipeline ap-
proach (Bastianelli et al., 2020), which passes au-
dio input through the SSL speech encoder, then
bridge module, then LLM. The bridge module con-
verts speech encoder embedding outputs into LLM
token inputs (Lugosch et al., 2019; Rao et al., 2021;
Lin et al., 2022a; Seo et al., 2022).
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Unsupervised ASR models (ASR-U) (Liu et al.,
2020b; Baevski et al., 2021; Liu et al., 2022)
have also seen recent success. The state-of-the-art
ASR-U model uses generative adversarial networks
(GANs) (Goodfellow et al., 2020) to generate text
transcription from input audio (Liu et al., 2022).

Current works combining SSL speech encoders
and LLMs do not satisfy the universal represen-
tation framework, as they either (1) rely on ASR
data on the downstream task, which is expensive
to collect and maintain, (2) are not lightweight, re-
quiring training the whole system end-to-end, or
(3) are not general, as they do not consider a wide
variety of downstream tasks (Lugosch et al., 2019;
Rao et al., 2021; Lin et al., 2022a; Seo et al., 2022).
Similarly, ASR-U was proposed for speech recog-
nition and the focus is not improving SSL speech
encoders (Baevski et al., 2021; Liu et al., 2022).

We propose introducing Semantics into Speech
Encoders, SSE, a task-agnostic unsupervised way
of incorporating semantic information from LLMs
into self-supervised speech encoders without la-
beled audio transcriptions. Concretely, SSE adopts
the pipeline approach to obtain semantic embed-
dings, with an ASR-U bridge connector to extract
information from LLMs. As ASR-U is inherently
noisy, SSE introduces attention residual connec-
tion (He et al., 2016; Vaswani et al., 2017) be-
tween the speech encoder and LLM. SSE also ef-
ficiently aligns the LLM with the speech encoder
through adapter modules (Houlsby et al., 2019).
SSE improves W2V2 (Baevski et al., 2020) and
HUBERT (Hsu et al., 2021) on 3 SLU tasks across
3 datasets, all under the universal representation
setup. SSE also outperforms state-of-the art no-
ASR method, DUAL (Lin et al., 2022a), in SQA.

While recent works use ASR-U to augment
existing speech encoders with phoneme-level
LLMs (Feng et al., 2022; Meng et al., 2022; Shi
et al., 2022; Hsu et al., 2022), subword-level LLMs
contain much more pertinent and measurable se-
mantic information (Clark et al., 2019). Other
works in SQA rely on clustering to assign audio
frames to frequent subword tokens, but this requires
heavy finetuning on the downstream task (Lin et al.,
2022a).

To the best of our knowledge, we are the first to
propose a task-agnostic SSL speech encoder which
directly interfaces with subword-based LLMs, un-
blocking many other applications and future work
in this domain. To this end, attention residual con-

nections and adapters are essential to successfully
extracting semantic information from noisy inter-
mediary transcriptions. We summarize our contri-
butions below:

• We propose using ASR-U components to aug-
ment SSL speech encoders for generating sub-
word tokens with semantic information.

• The augmented SSL speech encoders can be
connected with powerful LLMs seamlessly
and yields state-of-the-art performance under
the universal representation setup.

• We show attention residual connections and
adapters are essential to combining and align-
ing speech and text encoders.

2 Related Works

2.1 Self-Supervised Speech Encoders
SSL speech encoders (Liu et al., 2020a; Chung
et al., 2020a; Ling and Liu, 2020; Liu et al., 2021,
2020c; Chung et al., 2019; Baevski et al., 2019;
Schneider et al., 2019; Baevski et al., 2020; Hsu
et al., 2021; Qian et al., 2022; Zhang et al., 2022)
are trained to learn and reconstruct pooled clus-
tered representations of input audio from the orig-
inal audio. The intuition for this objective comes
from linguistics, where speech can be broken down
into phoneme groups, where different chunks of
input audio represent different phoneme groups.
W2V (Schneider et al., 2019) trains a convolu-
tional neural network model to reconstruct the
quantized cluster representations. W2V2 (Baevski
et al., 2020) uses transformers and a discrete code-
book quantization module. HUBERT (Hsu et al.,
2021) improves W2V2 by disentangling the clus-
tering and SSL objectives and using a BERT-style
encoder (Devlin et al., 2018). The speech pro-
cessing universal performance benchmark (SU-
PERB) (Yang et al., 2021; Lin et al., 2022b; Tsai
et al., 2022) shows SSL speech encoders are the
most effective method for solving multiple down-
stream tasks with minimal fine-tuning. A recent
analytical work finds SSL speech encoders success-
fully encode acoustic information, but lack seman-
tic information (Pasad et al., 2021). In response,
CONTENTVEC (Qian et al., 2022) propose disen-
tangling the speaker and semantic content of audio
via an SSL objective. SPEECHLM (Zhang et al.,
2022) propose training a multi-modal speech and
text encoder.
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2.2 Large Language Models

In contrast to speech encoders, pretrained LLMs
are shown to capture rich semantic informa-
tion (Clark et al., 2019). These methods opti-
mize variants of the masked language modeling
(MLM) objective to train a large transformer model.
BERT (Devlin et al., 2018) uses MLM to learn a
transformer encoder. ROBERTA (Liu et al., 2019)
introduces dynamic masking and a larger text cor-
pus. BART (Lewis et al., 2019) supports genera-
tive modeling and adds a denoising objective, mak-
ing it less susceptible to noisy text inputs. LONG-
FORMER (Beltagy et al., 2020) is pretrained for
long documents by increasing the document length
limit during pretraining. LLMs have been success-
fully integrated with speech models for specific
semantic tasks (Chung et al., 2020b; Kim et al.,
2021; Qian et al., 2021; Le et al., 2022; Seo et al.,
2022; Lin et al., 2022a), but not under the universal
representation framework.

2.3 Task-Specific Speech Models

Task-specific SLU systems outperform generic SSL
speech encoders typically by using a LLM. These
systems rely on ASR data to reliably interface the
LLM. LUGOSCH (Lugosch et al., 2019) trains a
LSTM bridge module to convert audio features into
phonemes then text. CTI’s (Seo et al., 2022) bridge
module uses ASR logits to compute a weighted
average of token embeddings. In addition to im-
proving the bridge module, other works attempt
to also distill LLM embeddings into speech repre-
sentations (Chung et al., 2020b; Cha et al., 2021;
Kim et al., 2021; Agrawal et al., 2022). For op-
timizing targeted metrics, researchers have also
experimented with reinforcement learning (Rao
et al., 2021). While combinations of these meth-
ods achieve impressive performance, they do not
satisfy the universal representation setup.

2.4 Unsupervised ASR

Recent work show the viability of unsupervised
speech recognition. W2V2-U (Baevski et al., 2021)
accomplished this by running Principal Component
Analysis (PCA), k-means clustering, and mean
pooling to convert W2V2 (Baevski et al., 2020) fea-
tures into phoneme-granularity features, then trains
a GAN model to output phoneme text from the
post-processed model (Baevski et al., 2021). The
state-of-the-art method for phoneme-level unsuper-
vised ASR is W2V2-U2.0 (Liu et al., 2022) which

directly trains a CNN to output phonemes from
W2V2 features and uses a reconstruction loss to tie
the input audio with corresponding generated text.
Both methods use WFSTs to decode the phonemes
into raw text. While there have been preliminary
attempts (Feng et al., 2022; Meng et al., 2022) to
use W2V2-U2.0 with phoneme language models1,
we are the first to combine it with semantically-rich
subword-based LLMs.

2.5 Adapters

Adapters are intermediary layers added to a large
pretrained encoder. Adapter weights are learned
during fine-tuning while the rest of the pretrained
model is frozen. Adapters serve the dual purpose
of efficient fine-tuning and preventing overfitting.
First used by computer vision researchers (Rebuffi
et al., 2017), adapters now enjoy much success in
the natural language processing community by ef-
ficiently tuning LLMs (Houlsby et al., 2019). In
particular, the multilingual speech translation com-
munity found that adapters can effectively align
SSL speech encoders and LLMs for spoken trans-
lation tasks (Li et al., 2020; Le et al., 2021).

3 Proposed Method

We propose to introduce semantics into SSL speech
encoders by using ASR-U to interface with LLMs.
Section 3.2 describes how to use ASR-U to link a
speech encoder with a LLM. Section 3.3 describes
how to combine both acoustic and semantic infor-
mation and deal with ASR transcriptions errors.
Finally, Section 3.4 describes how to align LLMs
with the speech encoder for downstream tasks.

3.1 Problem Setting

Following the universal representation frame-
work (Yang et al., 2021), our model consists of
a large speech encoder, E : X → Z , mapping in-
put audio, X ∈ X , to embeddings, Z ∈ Z , and a
light-weight task decoder, Dω : Z → Yω, mapping
embeddings to downstream task outputs, Yω ∈ Yω.
The speech encoder, E , is pretrained once, then
shared on all downstream tasks. The task decoder,
Dω, is fine-tuned on its respective task, ω ∈ Ω.
During fine-tuning, the majority of model weights
are frozen. This ensures the model can be effi-
ciently stored and deployed.

During pretraining, the speech encoder is trained
on unlabelled audio, X ∈ X , and unlabeled text,

1https://huggingface.co/voidful/phoneme_byt5
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(a) SSE-BASE (b) SSE-TUNE

Figure 1: Depiction of the SSE. The blue component
is the speech encoder, W2V2L15, trained with SSL.
The green component is the bridge module trained with
a GAN objective. The orange component is the LLM,
BART, pretrained on a text corpus. The red components
are trained on the downstream task and lightweight.
Note, all non-red components are frozen during down-
stream fine-tuning.

Tu ∈ Tu. During finetuning, the model is trained
on the labelled downstream dataset, (X,Yω) ∈
X × Yω. Notice, costly labelled ASR data is not
required during pretraining or finetuning.

3.2 Unsupervised Semantic Representation as
a Bridge

To incorporate semantic information into SSL
speech encoders, E : X → Z , we wish to lever-
age subword-based LLMs, M : S → Z , that
capture language semantics (Devlin et al., 2018;
Liu et al., 2019; Lewis et al., 2019; Beltagy et al.,
2020). The major challenge is the mismatch of
input spaces. Speech encoders take raw audio
as input, X ∈ X . LLMs take subword tokens
as input, S ∈ S. SSE uses W2V2-U2.0 (Liu
et al., 2022) as a bridge module (Seo et al., 2022),
B : Z → S , to convert speech encoder embedding
output into LLM subword tokens in a pipelined
approach, ESSE = E ◦ B ◦M.

Following W2V2-U2.0, the bridge module, B
uses a GAN (Goodfellow et al., 2020) to output
phoneme sequences, P ∈ P , conditioned on in-
put audio, X ∈ X . The GAN does not directly
predict subword-level transcriptions, because sub-

Model Component % of Parameters
SSE-BASE 90.40%

residual attention 0.73%
BART adapters 0.18%

downstream decoder 8.69%

Table 1: Comparing the parameter count of different
components of SSE-TUNE (W2V2L15). In total, there
are 505.3 million parameters. Notice, the decoder is
much more lightweight than the encoder. Residual at-
tention and adapters also introduce minimal parameter
overhead during finetuning.

word barriers are not easily deducible from acoustic
speech embeddings and requires implicitly learn-
ing phoneme-to-subword mappings. Instead, the
bridge module, B, uses a Weighted Finite State
Transducer (WFST), W : P → S, which is fed
known phoneme-to-subword mappings, to map
the generator outputs into subword tokens. The
generator, G : Z → P , and the discriminator,
C : P → [0, 1], are both convolutional neural
networks (CNNs). The GAN model is trained on
the same regularized GAN objective as in W2V2-
U2.0 (Liu et al., 2022).

The vanilla version of our final model is com-
posed of (1) SSL speech encoder, E : X → Z pre-
trained on unlabelled audio data, (2) a CNN+WFST
bridge module, B = W ◦ G : Z → S, trained on
unlabelled text and audio data, and (3) a LLM,
M : S → Z , pretrained on unlabelled text data.
We also add an upsampling layer, U : Z → Z to
make the sequence length of the LLM output match
the speech encoder output, such that E and ESSE
share the same output space.

We choose the 15th layer of the W2V2 (Baevski
et al., 2020) as our speech encoder, as the last layers
overfit the self-supervised training objective hence
providing worse acoustic representations (Fan et al.,
2020; Baevski et al., 2021; Pasad et al., 2021). We
choose BART (Lewis et al., 2019) as our LLM, as
it is trained to denoise noisy input subword tokens,
and we expect the bridge module to introduce some
noise. We call this version of our model SSE-BASE.
A depiction can be found in Figure 1a.

3.3 Combining Semantics and Acoustics with
Residual Attention

We hypothesize certain tasks may require more
acoustic information than others. For instance,
named entity recognition (NER) requires the model
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Model
FSC SLURP-IC SLURP-SF SLUE-NER
(Acc) (Acc) (F1) (F1)

W2V2L24 95.28% 39.77% 36.48% 46.10%
W2V2L15 95.60% 49.97% 62.43% 78.77%
HUBERT 98.76% 58.11% 66.97% 82.88%

SPEECHLM (HUBERT-BASE)* 97.6% -% -% -%
SPEECHLM (PBERT-BASE)* 98.6% -% -% -%

CONTENTVEC (HUBERT-BASE) 99.10% 34.03% 63.83% 75.19%
SSE-BASE 95.99% 55.28% 61.59% 79.62%

SSE-TUNE (W2V2L15) 98.71% 63.64% 64.48% 80.10%
SSE-TUNE (HUBERT-BASE) 98.30% 58.69% 64.64% 76.61%

SSE-TUNE (HUBERT) 99.44% 64.33% 68.82% 82.02%

Table 2: Experimental Results on FSC, SLURP, and SLUE datasets. We group the models by existing SSL
encoders and their semantically-enriched counterparts. Note, including semantics via LLMs consistently improves
downstream performance on both W2V2 and HUBERT. SLUE-NER relies on primarily semantic information.
Hence, while SSE-TUNE (W2V2L15) improves W2V2L15, HUBERT and SSE-TUNE (HUBERT) perform similarly.
Methods with superscript ‘*’ indicates reported results in corresponding papers.

Model
NMSQA

FF1 AOS
DUAL-64 39.0% 33.0%
DUAL-128 55.9% 49.1%
DUAL-512 17.3% 12.5%

SSE-BASE (ADAP) 57.2% 46.4%
SSE-BASE (ADAP) † 62.0% 54.7%

PIPELINE † 64.2% 57.1%

Table 3: Comparing unsupervised SQA models to su-
pervised PIPELINE model. † denotes the model uses
a LLM that was finetuned on the SQUAD-V1.1 text-
only QA dataset. We compare the baseline, DUAL, with
3 different number of clusters choices, to SSE-BASE
(ADAP) trained with either unlabeled audio or text.

to implicitly transcribe parts of the input speech, a
primarily acoustic task. Since the pipelined model
may suffer from transcription errors introduced by
ASR-U, naively using the pipelined approach in-
troduces an information bottleneck at the bridge
module. Hence, we propose adding a residual con-
nection (He et al., 2016) between SSE-BASE and
the speech encoder, E .

This can be done in two ways: (1) upsam-
pling semantic embeddings and concatenating
with speech embeddings, Z = [ZE ||U(ZM)],
or (2) using multihead attention (Vaswani et al.,
2017) to merge the two embeddings, Z =
[ZE ||MHA(ZE , ZM, ZM)], where ZE ∈ Z is the
output of the W2V2L15 (Baevski et al., 2020) and
ZM ∈ Z is the output of BART (Lewis et al.,

2019). The former is a simpler but more naive
method. The latter is more effective as the at-
tention layers are able to learn the alignment be-
tween speech and semantic embeddings. Notice,
(2) introduces more learnable parameters to the
finetuning-step, but we find the number of new pa-
rameters inconsequential compared to the size of
the lightweight decoder.

3.4 Aligning Pretrained Text Model with
Adapters

Inspired by works from speech translation (Li et al.,
2020; Le et al., 2021), we hypothesize that the LLM
can easily be adapted for speech tasks through the
use of adapters. We adopt the general recipe for
adapters, where an adapter (Houlsby et al., 2019),
composed of a LayerNorm and 2-layer ReLU neu-
ral network, is added to the end of each feed for-
ward layer in the LLM and finetuned on down-
stream tasks. This introduces additional parame-
ters to finetuning, but we find the number of new
parameters inconsequential compared to the size of
the lightweight decoder. We call the model using
both residual attention and adapters SSE-TUNE,
and outline it in Figure 1b.

4 Experiments

4.1 Dataset
To show the effectiveness of introducing seman-
tics into speech encoders, we evaluate 3 SLU
tasks, intent classification (IC), slot filling (SF),
and named entity recognition (NER), and SQA
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Augmentation FSC-IC (Acc) SLURP-IC (Acc) SLURP-SF (F1) SLUE-NER (F1)

W2V2L15 95.60% 49.97% 62.43% 78.77%
SSE-BASE 95.99% 55.28% 61.59% 79.62%

SSE-BASE (Byt5) 95.80% 35.50% 59.15% 76.44%
SSE-BASE (T5lephone) 95.94% 41.19% 60.87% 77.88%

SSE-BASE (RES) 97.55% 59.59% 63.37% 79.66%
SSE-BASE (RESATT) 98.97% 62.39% 64.21% 80.04%

SSE-BASE (ADAP) 96.07% 60.28% 63.85% 79.97%
SSE-TUNE 98.71% 63.64% 64.48% 80.10%

Table 4: Ablation studies on choice of language model, residual attention, and adapters. By better representing
semantics, subword-based LLMs outperform phoneme- and unicode-based LLMs. Notice, both residual attention
and adapters are important. While SSE-BASE (RESATT) introduces slightly more parameters than SSE-BASE
(RES), it provides tangible performance improvement by better aligning the acoustic and semantic embeddings.

task across 4 datasets: Fluent Speech Commands
(FSC) (Lugosch et al., 2019), Spoken Language
Understanding Resource Package (SLURP) (Bas-
tianelli et al., 2020), Spoken Language Understand-
ing Evaluation (SLUE) (Shon et al., 2022), and
Natural Multi-speaker Spoken Question Answering
(NMSQA) (Lin et al., 2022a), covering a wide va-
riety of speakers, microphones, and environments

4.2 Encoder Setup and Baselines

4.2.1 Spoken Language Understanding
To show SSE improves SSL speech encoders, we
augment two state-of-the art speech encoders un-
der the universal representation setup: W2V2 and
HUBERT. Following prior works that found inter-
mediary layers of W2V2 contain better representa-
tions (Pasad et al., 2021; Baevski et al., 2021), we
consider the 15th layer and the last layer of W2V2,
named W2V2L15 and W2V2L24 respectively.

As mentioned in Section 3, we show 2 ver-
sions of our model, SSE-BASE and SSE-TUNE.
The former uses the pipelined approach to con-
nect W2V2L15 with BART (Lewis et al., 2019)
with no additional modifications. The latter intro-
duces an attention residual connection and learn-
able adapters to combine acoustics and semantics
together and align the LLM with the speech en-
coder respectively. We either connect the residual
connection to the output of W2V2L15, yielding
SSE-TUNE (W2V2L15), or to the output of HU-
BERT, yielding SSE-TUNE (HUBERT).

To show the importance of using LLMs, we
compare against 2 very recent approaches for
improving SSL speech encoders without LLMs,
SPEECHLM (Zhang et al., 2022) and CON-
TENTVEC (Qian et al., 2022). As HUBERT-BASE

was used as the base speech encoder by both base-
lines, we also provide results where SSE-TUNE is
used to augment HUBERT-BASE.

4.2.2 Spoken Question Answering
To show the effectiveness of SSE, we compare
it against DUAL (Lin et al., 2022a), the state-of-
the-art SQA model which does not use ASR data.
While both SSE and DUAL obtain frame-level to-
kens from speech input, SSE uses ASR-U to obtain
its tokens, whereas DUAL uses clustering. As a
result, SSE’s output tokens exists in the LLM’s ex-
isting vocabulary, whereas DUAL’s output tokens
does not. Hence, DUAL must retrain the LLM on
its output tokens.

We compare DUAL to the closest analogous SSE
model, which is SSE-BASE but with adapter layers,
SSE-BASE (ADAP). Similar to DUAL, both meth-
ods modify the LLM weights. Unlike DUAL, SSE-
BASE (ADAP) is lightweight, tuning only around
10% of the total parameters. To produces frame-
level predictions, we remove the upsampling layer
from SSE-BASE (ADAP). We choose W2V2L15
as our speech model and BART as our LLM, as it
is robust to ASR errors.

We also show a PIPELINE model, which trains
a W2V2 model on ASR data and a LONGFORMER

LLM on text-only question answering data. It is
worth noting that since evaluation is based on the
frame-level, SSL speech encoders are not a baseline
since they operate at the audio level.

4.3 Decoder Setup

To satisfy the universal representation setup,
we adopt lightweight SLU decoders from SU-
PERB (Yang et al., 2021). For IC, the decoder
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Bridge Module ASR data
FSC SLURP SLUE

WER IC Acc WER IC Acc SF F1 WER NER F1
W2V2-ASR 960h 9.19% 99.34% 45.83% 66.18% 65.62% 15.51% 80.58%
W2V2-ASR 100h 11.89% 99.10% 53.22% 63.20% 63.87% 17.70% 79.67%
W2V2-ASR 10h 59.06% 98.50% 74.77% 59.91% 63.42% 53.00% 79.76%
SSE-TUNE nothing 21.28% 98.71% 51.51% 63.64% 64.48% 31.22% 80.10%

Table 5: Analysis on WER of SSE’s bridge module. All models adopt the same speech encoder, LLM, residual
attention, and adapter components as SSE-TUNE (W2V2L15), but convert speech embeddings into subword tokens
in different ways. W2V2-ASR finetunes W2V2 with an ASR head using letter-based CTC with varying amounts of
ASR data. As seen in this table, ASR errors correlate with downstream performance. Hence, more accurate ASR-U
models or methods to alleviate ASR errors, such as residual attention, would greatly benefit SSE.

is sum pooling followed by a multilayer perceptron
classifier trained with cross entropy loss. For the
SF and NER tasks, the decoder is recursive neural
network (RNN) that transcribes input audio into
text. The decoder identifies named entities or slot
values by surrounding them with named special
tokens and is trained with connectionist temporal
classification loss. For SQA, we adopt the same
decoder as DUAL (Lin et al., 2022a), which is a
linear layer classifying each subword embedding
as the start or end or neither of an answer span.

5 Results

5.1 Spoken Language Understanding

5.1.1 Improving SSL Speech Encoders

As seen in Table 2, SSE significantly improves
the SLU performance of both W2V2 and HU-
BERT, confirming that including semantic infor-
mation drastically improves existing SSL speech
encoder performance. Specifically, SSE-TUNE

(W2V2L15) improves W2V2L15 on all tasks. SSE-
TUNE (HUBERT) improves HUBERT on 3 out of
4 tasks, and is the best performing model over-
all. Comparing SSE-TUNE with SSE-BASE shows
residual attention and adapters effectively counter-
acts bridge module transcription errors.

The relative performance gain for IC is more
than SF or NER. Unlike IC, both SF and NER re-
quire the speech encoder to transcribe identified au-
dio snippets, and transcription is a primarily acous-
tic task. Hence SF and NER require less seman-
tic information than IC. Nevertheless, combining
both acoustic and semantic information, as done
by SSE-TUNE, provides the most consistent perfor-
mance improvement, since the skip connection can
learn which type of information is more needed.

5.1.2 Importance of LLMs
As seen in Table 2, SSE-TUNE (HUBERT-BASE)
outperforms alternative approaches augmenting
speech encoders, SPEECHLM (HUBERT-BASE)
and CONTENTVEC (HUBERT-BASE). Unlike these
alternative approaches, SSE-TUNE incorporate in-
formation from LLMs, which we found to be very
beneficial for capturing semantic information as
they are carefully pretrained objectives on large
amounts of unlabelled text data.

It is noteworthy that SSE-TUNE is a general
framework which can augment any speech encoder
of our choice, including SPEECHLM and CON-
TENTVEC. Similarly, SSE-TUNE can directly in-
tegrate new LLMs without costly pretraining. We
leave incorporating such encoders into SSE-TUNE

as future work.

5.2 Spoken Question Answering

As seen in Table 3, SSE outperforms recent unsu-
pervised clustering-based approaches, DUAL. In
contrast to DUAL’s HUBERT cluster tokens, SSE’s
ASR-U tokens are better aligned with LLMs and
share the same space. Thus, SSE can better uti-
lizes pretrained LLMs. Furthermore, SSE does not
require carefully tuning the number of HUBERT

cluster counts, as the vocabulary size of the LLM
is fixed and consistent with ASR-U.

5.3 Ablation Study

5.3.1 Choice of Language Model
We find subword-based LLMs contain more infor-
mation than phoneme-based LLMs (Clark et al.,
2019). We empirically verify this by replac-
ing our subword-based LLM, BART (Lewis
et al., 2019), with popular character-based LLM,
ByT5 (Xue et al., 2022), and phoneme-based LLM,
T5lephone (Hsu et al., 2022) in SSE-BASE. As
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seen in Table 4, the subword-based LLM perform
the best as each subword token is more seman-
tically meaningful than a phoneme or character.
We believe T5lephone outperforms the Byt5 as it
has better robustness to ASR-U errors. Overall,
subword-based LLMs are the best choice for em-
bedding semantic information in transcribed text.

5.3.2 Residual Attention and Adapters
To more carefully analyze the affect of residual
attention and adapters in SSE-TUNE, we run exper-
iments on all SLU datasets with and without each
component. We denote these two design choices
as (ResAtt) and (Adap) respectively. As seen in Ta-
ble 4, both components provide ample performance
improvement over SSE-BASE.

We also try the naive residual connection ap-
proach described in Section 3.3 by directly concate-
nating the LLM upsampled semantic embeddings
to the speech embeddings. We call this approach
SSE-BASE (RES). This method is less effective
than SSE-BASE (RESATT) as it does not learn
how to align speech and semantic embeddings, but
still improves SSE-BASE, further validating our
hypothesis that merging acoustic and semantic in-
formation is beneficial.

As seen in parameter breakdown for the SSE-
TUNE (W2V2L15) model in Table 1, the number
of new learnable parameters introduced by (Re-
sAtt) and (Adap) are unsubstantial compared to
the size of the lightweight downstream decoder.
Specifically, the downstream task decoder accounts
for 9.60% of the total model parameters. SSE-
TUNE introduces only 10.47% more parameters
than SSE-BASE during fine-tuning and 0.91% to
the total model parameter count, but often provides
significant performance improvement.

5.4 Comparison with Supervised ASR
Methods

To quantify the effect of transcription errors intro-
duced by the bridge module, we compute the word
error rate (WER) of the bridge connector in SSE-
TUNE, and compare it against standard W2V2 su-
pervised ASR models (Baevski et al., 2020) trained
on 10 minutes, 100 hours, and 960 hours of la-
beled ASR data. Table 5 confirms that less noisy
transcripts, transcripts with lower WER, correlates
with better downstream performance. The unsu-
pervised model, which uses 960 hours of unla-
belled data, can reach similar WER as a super-
vised model trained on 100 hours of labelled data,

Model IC (Acc) SF (F1)
W2V2L15 49.97% 62.43%
HUBERT 58.11% 66.97%

SSE-TUNE (W2V2L15) 63.64% 64.48%
SSE-TUNE (HUBERT) 64.33% 68.82%

Kaldi+HerMiT 78.33% 70.84%
CTI 82.93% 71.12%

Table 6: Comparison with specialized SLU models not
under the universal representation setup, Kaldi+HerMiT
and CTI. Results are on the SLURP dataset.

indicating the effectiveness of the bridge module.
On SLURP and SLUE, the relative drop in WER
(> 20%) is substantially more than the relative
drop in downstream performance (< 5%), verify-
ing SSE-TUNE’s tolerance to noisy transcriptions.
The robustness to ASR errors come from our choice
of LLM, BART, which is trained to handle noisy
inputs, residual connection to acoustic embeddings,
and LLM alignment with adapters.

5.5 Comparison to Specialized SLU Models

To better quantify the performance improvement
introduced by SSE, we compare against 2 special-
ized SLU models that do not abide by the universal
representation framework: Kaldi+HerMiT, which
is a pipelined Kaldi ASR (Povey et al., 2011) and
HerMiT NLU (Vanzo et al., 2019) model reported
in the SLURP paper (Bastianelli et al., 2020), and
CTI (Seo et al., 2022), which is an end-to-end
pipelined W2V2 (Baevski et al., 2020) ASR and
ROBERTA (Liu et al., 2019) NLU model. To the
best of our knowledge, CTI is the state-of-the-art
SLU model.

In addition to unlabelled text, unlabelled au-
dio, and downstream data, both Kaldi+HerMiT
and CTI require 40 hours of downstream SLURP
ASR data (Bastianelli et al., 2020). Kaldi+HerMiT
requires an additional 24,000 hours of ASR
data (Povey et al., 2016). CTI requires an addi-
tional 960 hours of ASR data (Panayotov et al.,
2015). Neither use lightweight fine-tuning. Thus,
such specialized SLU models are less general, more
expensive, and require much more data. As seen in
Table 6, SSE helps bridge the gap between tailor-
made models and more practical SSL speech en-
coders. We believe ASR-U errors plays a major
role in the remaining gap, as the ASR-supervised
Kaldi+HerMiT and CTI models have WER of
16.20% and 16.67% respectively, compared to
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Most Common Mix-ups % Mistakes
qa_factoid, general_quirky +5.83%

calendar_set, calendar_query -20.00%
general_quirky, calendar_query +8.57%
weather_query, calendar_query -34.72%
play_music, play_audiobook -7.27%

play_music, play_radio -14.03%
calendar_set, calendar_remove -32.26%

play_music, play_game -18.87%
... ...

Table 7: Top-8 most common mix-ups, descending, by
either HUBERT or SSE-TUNE (HUBERT) on SLURP-
IC’s test set. A mix-up is when the model either mis-
classifies label “A” as “B” or misclassifies label “B”
as “A”. For each mix-up, we compute the percentage
of less mistakes made by SSE-TUNE (HUBERT) than
HUBERT. For example, SSE-TUNE (HUBERT) misclas-
sifies calendar_set as calendar_query or vice-versa 20%
less frequently than HUBERT. The “general-quirky” la-
bel is assigned to Out-of-Distribution inputs.

SSE’s ASR-U bridge with a WER of 51.51%.

5.6 Error Analysis

To better understand the semantic information cap-
tured by SSE, we study predictions made by both
HUBERT and SSE-TUNE (HUBERT) on SLURP-
IC’s test set. We find HUBERT errors are made
primarily between intents within the same or simi-
lar domains (e.g. calendar_set vs calendar_query).
The performance bottleneck lies with distinguish-
ing finer-grained in-domain intents. Table 7 shows
that SSE-TUNE is better at differentiating finer-
grained intents.

SSE-TUNE’s misclassifications come primarily
from errors made by its ASR-U bridge component.
As seen in Table 8, the ASR-U WER of incor-
rect predictions made by HUBERT is much lower
than that of incorrect predictions made by SSE-
TUNE. When ASR-U returns resonable transcrip-
tions (typically <50% WER), SSE-TUNE can cor-
rectly classify inputs that HUBERT cannot. Hence,
the effectiveness of SSE is tightly coupled with the
effectiveness of ASR-U.

5.7 Representation Visualization

To better see the impact of including semantic rep-
resentations, we visualize the pooled audio snippet
embedding for intent classification on SLURP-IC
using t-distributed stochastic neighbor embedding
(t-SNE) (Van der Maaten and Hinton, 2008). We

SSE-TUNE (HUBERT)
✓ ✗

HUBERT
✓ 40.8% (6395) 75.2% (1204)
✗ 48.2% (2019) 78.1% (3460)

Table 8: WER between the output of SSE-TUNE
(HUBERT)’s bridge module and ground truth transcrip-
tions. Each WER is evaluated on a subset of SLURP-IC
testing samples where the model classifies correctly (✓)
or incorrectly (✗). We denote the number of pairs be-
longing to each subset, in the thousands, in parentheses.

(a) W2V2L15 embeddings (b) SSE-TUNE embeddings

Figure 2: t-SNE visualizations of pooled audio snippet
embeddings for SLURP-IC. Each point corresponds
with one embedding. The color denotes the ground truth
class of the corresponding audio snippet. Subfigure 2a
and 2b shows SSE-TUNE is better at differentiating
intents by incorporating semantic information.

denote the ground truth label of each audio snippet
by the color of its pooled embedding. As seen in
Figure 2, the clusters produced by semantic em-
beddings are more spread out and better separated
than those produced by just acoustic speech embed-
dings, indicating that SSE introduces new semantic
information that existing speech encoders lack.

6 Conclusion

We presented a compelling case for introducing
semantics into SSL speech encoders and an effec-
tive method of doing so. Our approach boosts the
performance of existing speech encoders on multi-
ple SLU and SQA tasks and datasets. We provide
reasoning for what tasks may benefit more or less
from incorporating semantics. Furthermore, our
approach is task agnostic and can augment any
existing SSL speech encoder. With SSE-TUNE,
we show merging acoustic and semantic informa-
tion and effectively aligning LLMs to the speech
encoder on downstream tasks can further boost per-
formance with minimal parameter overhead. As
it can generalize to many downstream tasks, SSE
provides an important step towards AI that can un-
derstand and respond to spoken language.
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A.2 ASR-U Bridge Training Objective Details

We adopt the same unsupervised training scheme
as W2V2-U2.0 (Liu et al., 2022). Specifically,
we train the generator, G, on GAN loss, Lgan,
a gradient penalty term, Lgp, for better conver-
gence, a smoothness penalty term, Lsp, to encour-
age consecutive speech segments to generate the
same phonemes, a phoneme diversity term, Lpd,
to diverse phoneme usage in output transcripts
by maximizing entropy, and a self-supervised re-
construction loss, Lss, to encourage the generated
phonemes to match the input audio.

Figure 3: Outline of W2V2-U2.0 training procedure.
The CNN module generates phoneme logits for the input
audio. The bridge connector is trained on the GAN
objective with reconstruction loss and regularization.
During inference, the generator and linear layer used for
reconstruction are discarded.

The reconstruction term uses a separate linear
head to classify each speech embedding into 1 of
64 clusters, ζt, obtained from running k-means
on the Mel-frequency cepstral coefficient (MFCC)

features of the input audio (Hsu et al., 2021; Liu
et al., 2022). The final GAN training objective,
minG maxC L, is summarized in Equation 1. The
training procedure for the bridge module is outlined
in Figure 3. Similar to W2V2-U2.0 (Baevski et al.,
2021), SSE bridge models are trained on unla-
belled audio and text from the Librispeech (Panay-
otov et al., 2015) dataset.

L = Lgan + λLgp + γLsp + ηLpd + δLss

Lgan = E
Tu

[logC(Tu)] + E
X
[log(1− C(G(X))]

Lgp = E
X,Tu

µ∼U(0,1)
µ′=1−µ

[(||∇C(µG(X) + µ′Tu|| − 1)2]

Lsp =
∑

(pt,pt+1)∈G(X)

||pt − pt+1||2

Lpd =
1

|B|
∑

S∈B
−HG(G(S))

Lss = −
∑

t

logPG(ζt|X). (1)

A.3 Hyperparameter Settings

A.3.1 Speech Encoder
We augment both W2V2 (Baevski et al., 2020) and
HUBERT (Hsu et al., 2021) by introducing seman-
tics. Specifically, we use the W2V2-Large LV-60
model and HUBERT-Large models, which are pre-
trained on just unlabelled audio and implemented
with the fairseq library (Ott et al., 2019).

A.3.2 Large Language Model
We use BART (Lewis et al., 2019) as our LLM
since it is pretrained to handle noisy input. In
our SLU experiments, we use BART-Base model,
which has lower computational overhead. For our
SQA experiments, we use BART-Large, since
SQA is a more challenging task. Note, unlike
baselines that train the whole LLM, SSE freezes
all weights in its LLM except adapters optionally,
hence SSE has lower overhead. All LLMs were
implemented using the huggingface library (Wolf
et al., 2019).

A.3.3 Residual Attention and Adapters
We choose the residual attention layer to be the
same dimension as our speech encoder, which is
1024 for both W2V2 (Baevski et al., 2020) and HU-
BERT (Hsu et al., 2021). We implement our general
recipe for adapters using the adapter-transformers
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package (Pfeiffer et al., 2020) and pyTorch (Paszke
et al., 2019).

A.3.4 Bridge Connector
We follow the same hyperparameter settings re-
ported in the W2V2-U2.0 paper (Liu et al., 2022).
Specifically, we use a 2-layer CNN with stride 3.
The model is trained on unlabelled Librispeech-
960 (Panayotov et al., 2015) data for 100,000
epochs with a learning rate of 5e-5 and 3e-4 for the
generator and discriminator respectively. Decoding
is done using a WFST in the same way as W2V2-
U2.0 (Liu et al., 2022). Similar to W2V2-U2.0,
we pre-process the Librispeech-960 by removing si-
lences with an unsupervised model, but not during
fine-tuning or testing. We believe such techniques
could further improve performance, but leave it as
future work. The regularized GAN loss function
hyperparameters, as stated in Section A.2 are set to
1.0/1.5, 1.5/2.5, 0/3, and 0.3/0.5 for λ, γ, η, and
δ respectively.

A.3.5 SLU Training Details
As mentioned in Section 4.3, we use the standard
decoders provided by SUPERB (Yang et al., 2021).
We ran a grid search on 5 settings for learning rate
on an exponential scale of 2 around the default set-
tings from SUPERB (Yang et al., 2021) and found
said default hyperparameters optimal. Specifically,
we set the learning rate to 1e− 4, 1e− 4, 2e− 4,
and 2e− 4 for FSC-IC, SLURP-IC, SLURP-SF,
and SLUE-NER respectively. All methods use the
AdamW (Loshchilov and Hutter, 2017) optimizer
with gradient clipping set to 1 for 200,000 total
steps to convergence. Validation performance is
used to pick the best model for all datasets except
SLUE, since SLUE test data is not publicly avail-
able.

A.3.6 SQA Training Details
As mentioned in Section 4.3, we use a frame-level
linear layer classification head as our decoder. We
follow DUAL’s (Lin et al., 2022a) default hyperpa-
rameter settings with a learning rate of 1e-4. We
train the models using the same warm-up and decay
strategies as DUAL with the AdamW (Loshchilov
and Hutter, 2017) optimizer for 5,000 steps to con-
vergence.

A.4 Training Setup and Time

All models were trained on a server with 8 Nvidia
Tesla V100 GPUs. The total training time for the

bridge module takes around a day. The total train-
ing time for downstream tasks take between half a
day and one day.

A.5 Dataset Details

As mentioned in Section 4.1, we evaluate SSE on
3 SLU tasks, intent classification (IC), slot filling
(SF), and named entity recognition (NER), and the
SQA task. The goal of IC is to classify the intent of
an input audio snippet. The goal of SF is to extract
certain attributes of a given intent from an audio
snippet. The goal of NER is to identify named
entities in an audio snippet. The goal of SQA is
to find the start and end frames of the answer in a
spoken passage given a spoken question.

A.5.1 FSC
The FSC dataset (Lugosch et al., 2019) is an IC
dataset for a smart home virtual assistant. The in-
put is a single audio file containing spoken English
commands and the output class is the intent of the
spoken command. The data was obtained through
crowd-sourcing from 97 native and non-native En-
glish speakers. In total, there are 31 intents. The
number of utterances and hours of each split can
be found in the Table 9.

A.5.2 SLURP
The SLURP dataset (Bastianelli et al., 2020) is an
IC and SF dataset for an in-home personal robot
assistant. The input is a single audio file containing
spoken English commands and the output is the
scenerio, action, and entities. In total, there are 18
different scenarios, 46 different actions (IC), and
56 different entities (SF). The data was collected
from 177 native and non-native English speaking
Amazon Mechanical Turk workers. The number
of utterances and hours of each split can be found
in Table 9. SLURP use both headsets and micro-
phones with various placement configurations.

A.5.3 SLUE
The SLUE dataset (Shon et al., 2022) is a NER
dataset using European Parliament event record-
ings. The input is a single audio file containing
spoken English passages and the output are the
named entities. There are in total 7 categories that
were based on the OntoNotes Release 5.0 (Hovy
et al., 2006) entity labels. The dataset was collected
from the official European Parliament website. The
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Dataset # of Utterances # of Hours

FSC-train 23,132 14.7
FSC-dev 3,118 1.9
FSC-test 3,793 2.4

SLURP-train 50,628 40.2
SLURP-dev 8,690 6.9
SLURP-test 13,078 10.3
SLUE-train 5,000 14.5
SLUE-dev 1,753 5.0

Table 9: Dataset statistics for FSC, SLURP, and SLUE.
Note, for SLUE, only the train and dev splits are pub-
licly available, thus we evaluate on the dev set.

number of utterances and hours of each split can
be found in the Table 9.

A.5.4 NMSQA
The NMSQA dataset (Lin et al., 2022a) is a SQA
dataset generated from a standard text question
answering dataset, SQUAD-V1.1 2, using Amazon
Polly Text-to-Speech 3 for the train and dev split,
and 60 human speakers for the test set. NMSQA
contains 297.18 hours, 37.61 hours, and 2.67 hours
of train, dev, and test split audio respectively. We
follow DUAL (Lin et al., 2022a) by evaluating on
Frame-level F1 score (FF1) and Audio Overlapping
Score (AOS).

2A question answering dataset using Wikipedia articles
3https://aws.amazon.com/tw/polly
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