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Abstract
Tuples extraction is a fundamental task for in-
formation extraction and knowledge graph con-
struction. The extracted tuples are usually rep-
resented as knowledge triples consisting of sub-
ject, relation, and object. In practice, however,
the validity of knowledge triples is associated
with and changes with the spatial, temporal,
or other kinds of constraints. Motivated by
this observation, this paper proposes a con-
strained tuple extraction (CTE) task to guar-
antee the validity of knowledge tuples. For-
mally, the CTE task is to extract constrained
tuples from unstructured text, which adds con-
straints to conventional triples. To this end, we
propose an interaction-aware network. Com-
binatorial interactions among context-specific
external features and distinct-granularity inter-
nal features are exploited to effectively mine
the potential constraints. Moreover, we have
built a new dataset containing totally 1,748,826
constrained tuples for training and 3656 ones
for evaluation. Experiments on our dataset and
the public CaRB dataset demonstrate the supe-
riority of the proposed model. The constructed
dataset and the codes are publicly available.1

1 Introduction

Tuples extraction task aims to extract knowledge
tuples from unstructured texts, which is a funda-
mental task for information extraction, knowledge
graph construction, and so on (Cui et al., 2018;
Jiang et al., 2019; Banerjee and Baral, 2020; Li
et al., 2022). The extracted knowledge tuples are
mainly represented in the form of (subject, rela-
tion, object) (Jiang et al., 2019), and are usually
acquired through named entity recognition (NER),
relation extraction (RE) (Zhong and Chen, 2021;
Li et al., 2020; Yahya et al., 2014), and open in-
formation extraction (Open IE) (Jiang et al., 2019;
Wang et al., 2022). With the rise of large-scale pre-
training methods (e.g. BERT (Devlin et al., 2019)),

∗Corresponding author.
1https://github.com/ckgconstruction/ckg.

the quality of knowledge triples has improved sig-
nificantly.

However, current knowledge triples lack con-
straints for their authenticity. In practice, con-
straints are ubiquitous in numerous domains, such
as spatial, temporal, conditional and environmen-
tal ones. Constraints are essential supplements to
knowledge triples, and play an instructional role.
Our deep investigation on literature indicates that
this topic has not gained enough attention.

Some works utilize temporal knowledge tuples
to reflect temporal dynamics (Gracious et al., 2021;
Jung et al., 2021). However, only temporal con-
straints are not sufficient and general enough to
guarantee the validity of knowledge triples. For
instance, let us consider the following sentence:

“Consuming the same power, the performance
of ARM CPU is better than that of Intel CPU.”,
only if the conditional constraint “consuming the
same power” is satisfied, the knowledge triple

“(ARM CPU, better than, Intel CPU)” is true. The
above observations motivate us to add constraints
to conventional knowledge triples for the valid-
ity of knowledge tuples. Thereby, we propose
a novel task called constrained tuple extraction
(CTE), which aims to provide knowledge tuples
with temporal, spatial, conditional constraints in
general domain. CTE represents knowledge tuples
in the form of (subject, relation, object, constraint).
Constraints are some phrase descriptions that guar-
antee the validity of knowledge tuples, so that the
knowledge tuples can be effectively utilized.

The constrained tuples are extracted via Open
IE approaches, similar to the works in Jiang et al.
(2019); Wang et al. (2022). This extraction ap-
proach is more general and doesn’t require prede-
fined entity and relation types. Table 1 shows some
examples for CTE task. It is worth noting that the
constrained tuple extraction task aims at provid-
ing an explicit and uniform information extraction
technique to guarantee the validity of knowledge
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Table 1: Constrained knowledge tuples extracted from sentences in CTE task.

Constraints Sentences Tuples

Conditional
Consuming the same power, the performance
of ARM CPU is better than that of Intel CPU.

(ARM CPU, better than, Intel CPU,
consuming the same power)

Spatial
British troops formally shut down their base in
Helmand.

(British troops, shut down, their
base, in Helmand)

Temporal
Obama served as the 44th president of the
United States from 2009 to 2017.

(Obama, the 44th president of, the
United States, from 2009 to 2017)

(or information) tuples, rather than a new form of
knowledge representation.

In addition, an interaction-aware network is de-
veloped to fulfill CTE task from unstructured texts.
We argue that constraints in knowledge tuples af-
fect the validity and are contained in deep-level
conceptual semantics rather than shallow contexts.
Interactions among multiple textual features can
further mine implicit semantic information beyond
context, which is beneficial to discovering potential
constraints.

Architecturally, the interaction-aware network
consists of three modules: context-specific en-
hancement module, distinct-granularity feature
extraction module and interaction-aware module.
Specifically, the first module is designed to learn
the context-specific external features by leveraging
multi-view graphs. The second module is to suffi-
ciently extract the distinct-granularity (e.g. phrase-
level, word-level, and global-level) internal con-
text features. The third module is developed to
achieve the goal of interaction between the external
and internal features in a combination way utiliz-
ing distribution-sparse multi-head attention. The
combinatorial interactions occur between any two
external or internal features. Thus, this trick yields
a mechanism in that the deep-level conceptual se-
mantic can be explored to help mine the potential
constraints existing in knowledge.

The contributions of this paper are summarized
as follows:

• We propose a novel task called constrained
tuple extraction (CTE), whose mission is to
extract knowledge tuples with temporal, spa-
tial, conditional constraints. A new manu-
ally annotated Constrained Tuple Extraction
Benchmark (CTEB) dataset for the CTE task
is built and publicly available.

• Interaction-aware network (IAN) is proposed

to fulfill CTE task, which facilitates the com-
binatorial interactions among the context-
specific external features and the distinct-
granularity internal features to effectively
mine the potential constraints in knowledge.

• Distribution-sparse multi-head attention is de-
signed not only to select the dominating at-
tentions but also to facilitate efficient interac-
tions.

2 Related Work

The goal of the tuples extraction task is to extract
knowledge tuples from unstructured texts (Jiang
et al., 2019; Banerjee and Baral, 2020; Li et al.,
2022). The extracted knowledge tuples are mainly
acquired through relational triple extraction (Zhong
and Chen, 2021; Li et al., 2020; Yahya et al., 2014)
and open information extraction (Jiang et al., 2019;
Wang et al., 2022).

2.1 Open Information Extraction

Open information extraction (Open IE) aims to ex-
tract predicates and corresponding arguments from
unstructured texts in open domain, without pre-
defining entity and relation types. The extracted
predicates and corresponding arguments can con-
stitute knowledge tuples. Open IE methods mainly
include rule-based ones (Fader et al., 2011; Corro
and Gemulla, 2013; Angeli et al., 2015) and neural
network based ones (Stanovsky et al.; Cui et al.,
2018; Wang et al., 2022). The neural network mod-
els are further divided into sequence labeling ones
(Stanovsky et al.; Roy et al., 2019; Jiang et al.,
2020), sequence generation ones (Cui et al., 2018;
Sun et al., 2018; Kolluru et al., 2020b) and span-
based ones (Zhan and Zhao, 2020).

Specifically, Ro et al. (2020) proposed
Multi2OIE to utilize BERT to extract predicates.
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Then the BERT hidden feature, position embed-
ding and predicate average feature were input into
multi-head attention blocks to extract arguments.
Solawetz and Larson (2021) proposed SRL_BERT
to improved RnnOIE (Stanovsky et al., 2018) by
replacing the bidirectional encoder with BERT and
the predicate index embedding with sentence em-
bedding. Jiang et al. (2019) proposed a three-layer
structure for scientific tuple extraction using Open
IE methods. The tuples were divided into fact tu-
ples and condition tuples. In addition, OpenIE6
(Kolluru et al., 2020a) utilized two-dimensional
grid labeling to improve the extraction efficiency
for Open IE task. Later, DetIE (Vasilkovsky et al.,
2022) regarded the tuples as three-dimensional an-
chor boxes, and improved the extraction speed by
that single-shot approach. Tuples extraction based
on Open IE has better generality, because it does
not require predefined entity and relation types.
Open IE task focuses on the structure of predicates
and corresponding arguments, while CTE task fo-
cuses on providing a more unified form to ensure
the validity of knowledge tuples.

2.2 Relational Triple Extraction
Relational triple extraction is mainly accomplished
by named entity recognition (NER) and relation
extraction (RE) (Fu et al., 2020; Zhong and Chen,
2021).

Typically, Li et al. (2020) extracted relational
triples from free texts in the e-commerce field
based on NER and RE. Moreover, Zhong and Chen
(2021) explicitly injected positions and categories
information of entities into the input sentences for
relation extraction, so that different contextual rep-
resentations were learned for entities and relations.
Nevertheless, relational triple extraction based on
NER and RE is usually limited to the domain porta-
bility.

3 Methodology

3.1 Problem Definition
Given a piece of text m, the constrained tuple
extraction task is to extract nt (>=1) constrained
knowledge tuples formatted as t = (subject, rela-
tion, object, constraint) from each sentence in text
m. The constraints can be formatted as temporal
expressions, spatial descriptions, and conditional
forms. Formally, the constrained knowledge tuples
t can be formulated as:

t = (s, r, o, c), (1)

where s, r, o, c represent the subject, relation, ob-
ject and constraint, respectively.

3.2 Overview of the Proposed Model

Figure 1 shows the architecture of the proposed
interaction-aware network (IAN) for CTE task.
IAN consists of three modules: context-specific
enhancement module, distinct-granularity feature
extraction module, and interaction-aware module.
First, context-specific enhancement module is de-
veloped to leverage multi-view graphs and learn
context-specific external features for input text.
Second, to sufficiently exploit the inherent features
of the text, distinct-granularity internal features
are explicitly extracted from the raw text. Finally,
interaction-aware module is designed to facilitate
the combinatorial interactions between any two
features in the context-specific external and the
distinct-granularity internal features. Meanwhile,
distribution-sparse multi-head attention is proposed
to select the dominating attentions and alleviate the
interaction deficiency problem.

3.3 Context-Specific Enhancement Module

External auxiliary features can provide additional
semantic information for constrained tuple extrac-
tion. The existing methods usually introduce entity-
specific external knowledge. The introduced ex-
ternal features only consider the entity itself rather
than the context of the entity. It results in that the in-
troduced external features are indistinguishable for
the same entities in different texts (Li et al., 2020).
In this paper, different from them, context-specific
external features are introduced for spans in the
text according to the contexts of spans. Thus, the
introduced external features can provide context-
specific auxiliary information and enrich raw texts.

In this work, Wikidata2 is used to leverage and
generate preliminary auxiliary information. First,
the candidate spans in the input text are matched
and aligned with the data in Wikidata. Thus, the
potential entity nodes in Wikidata corresponding
to the candidate spans can be obtained. Then, cen-
tered on the potential entity nodes, their two-hop
neighbors and edges in Wikidata are regarded as
preliminary auxiliary information. Therefore, the
two-hop graph structures G are generated accord-
ing to the aligned spans and Wikidata.

To generate context-specific external features,
multi-view graphs are generated from G for each

2https://www.wikidata.org/wiki/Wikidata
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Figure 1: Overview of interaction-aware network (IAN) for constrained tuple extraction (CTE).

aligned span. Inspired by the works in Nathani
et al. (2019) and Xue et al. (2021), the auxiliary
information is represented in the form of graph,
which contains nodes (potential entities) and edges
(attributes or relations) in Wikidata related to the
aligned spans. Specifically, both sentence and the
contents of the nodes in the related two-hop graph
structure are input into BERT (Devlin et al., 2019).
For each aligned span in each sentence, the ini-
tial external auxiliary information is defined as
V0 = {v01, v02, ..., v0T+1}. Each element in V0 cor-
responds to a node in G. Gaussian graph generator
is used to generate the potential multi-view graphs.
The contextual feature is captured when encoding
each node into Gaussian distributions:

{μ1
i , μ

2
i , ..., μ

N
i } = fθ(v

0
i , hCLS), (2)

{σ1
i , σ

2
i , ..., σ

N
i } = φ(f

′
θ(v

0
i , hCLS)), (3)

where θ denotes SoftPlus activation function, hCLS

is the representation of CLS token, fθ and f
′
θ repre-

sent two learnable neural networks, N is the num-
ber of views. Then a series of Gaussian distribu-
tions {δn1 , δn2 , ..., δnT+1} are obtained for the n-th
view in the multi-view graph.

Next, Kullback-Leibler (KL) divergence be-
tween the Gaussian distributions of two nodes is
used to generate weights for edges. In addition,
due to the asymmetry of KL divergence, the ob-
tained multi-view graph is a directed graph. The
edge weight between two nodes in the n-th view is

calculated as:

enij = KL(δni (μ
n
i , σ

n2

i )||δnj (μn
j , σ

n2

j )). (4)

Totally, N adjacency matrices M1,M2, ...,MN

are acquired after getting the weights of edges be-
tween nodes. Hence, we can get the multi-view
graphs Gm = {V0,M1,M2, ...,MN}.

Next, the embedding generation method KB-
GAT (Nathani et al., 2019) is used to generate em-
beddings for the nodes in Gm (i.e. the aligned
spans in text). The KBGAT method considers both
nodes and edges features to generate embeddings
for graphs, and uses hinge-loss as the training ob-
jective. The inputs of KBGAT are node embed-
dings matrix E ∈ Rle×de and edge embeddings
matrix R ∈ Rlr×dr . Here, le and lr represent the
total numbers of nodes and edges respectively, de
denotes the dimension of each node embedding, dr
indicates the dimension of each edge embedding.
The adjacency matrices in KBGAT are replaced by
Gm to generate embeddings for the nodes in Gm.
Then, context-specific external features Fk can be
obtained for aligned spans in text. More details
about Fk generation are shown in Appendix A.3.

3.4 Distinct-Granularity Feature Extraction
Module

Aiming to sufficiently exploit the inherent textual
features, distinct-granularity internal features are
extracted from the raw text.
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Since subjects, objects, relations and constraints
usually appear in form of phrases in real world,
phrase-level features play an important role in con-
strained tuple extraction. AutoPhrase (Shang et al.,
2018) is employed to explicitly mine the phrases
in the text. To generate contextualized phrase fea-
tures, we insert phrase start tag < PHRASE >
and phrase end tag < /PHRASE > into sentences.
Then, the BERT (Devlin et al., 2019) embeddings
of the phrase tags and the words in phrases are
averaged to obtain the phrase-level feature Fp.

Fp = BERT(AutoPhrase(m)). (5)

Then, BERT is utilized to generate embeddings
for words and sentences. The hidden states of last
four layers of BERT are added to generate word-
level feature Fw. The sentence-level feature Fs

is represented by the [CLS] representation in the
hidden states of last layer of BERT. The represen-
tations in the last layer of BERT are denoted as
BERT hidden Fr.

In order to enable the internal and external fea-
tures to interact directly with the text global feature,
the phrase-level, sentence-level, word-level and ex-
ternal features are fused to obtain the textual hetero-
geneous fused feature Fg. By doing so, Fg is taken
as a separate feature and can be utilized to mine the
combinatorial interactions in the interaction-aware
module. By using the multimodal fusion method
EMFH (Xue et al., 2023; Yu et al., 2018), different
from them, residual connections are added among
the multiple EMFB blocks to fuse Fp,Fs,Fw and
the context-specific external feature Fk. We denote
the improved fusion method as ResEMFH. The
EMFB block is calculated as:

zie = DP (ϕ(ŨT
kFk ◦ ŨT

wFw ◦ ŨT
s Fs ◦ ŨT

pFp)),
(6)

ziq = Norm(SumPool(ze)), (7)

where ϕ denotes the tanh activation function, DP
represents dropout operation, zie and ziq stand for
the outputs of expand stage and squeeze stage in
the i-th EMFB block, respectively.

Next, Lg EMFB blocks are then cascaded via
residual connections. Finally, the outputs of Lg

EMFB blocks are averaged to acquire textual het-
erogeneous fused feature Fg:

zi+1
q = ziq + EMFB(zie,Fk,Fw,Fs,Fp), (8)

Fg = Mean(z1q , z
2
q , ..., z

Lg
q ). (9)

To provide predicate mentions for constrained
tuple extraction, we utilize predicate feature and
position embedding used in the work of Ro et al.
(2020). Here, predicate feature is obtained by aver-
aging and duplicating the hidden states of the pred-
icates. Position embedding uses binary values to
represent the positions of predicate spans. Finally,
word-level, sentence-level, phrase-level textual fea-
tures Fw, Fs, Fp, BERT hidden Fr, heterogeneous
fused feature Fg, predicate feature and position
embedding together constitute distinct-granularity
internal features.

3.5 Interaction-Aware Module

The purpose of the interaction-aware module is to
mine the combinatorial interactions between any
two features in context-specific external features
and distinct-granularity internal features. These
combinatorial interactions contain implicit seman-
tics and deep-level correlations besides the con-
textual information. Previous works usually use
multi-head attention for information extraction (Ro
et al., 2020; Vaswani et al., 2017). However, we
observe that the self-attention used in multi-head
attention suffers from interaction deficiency and
attention sparsity problems. That is, interactions
occur only among minority specific features, rather
than among all external and internal features, as il-
lustrated in Section 4.4. Meanwhile, a part of query
key pairs dominate the main attention weights, and
there are many non-key attention weights.

For above purposes, we propose distribution-
sparse multi-head attention mechanism, which se-
lects the dominating attentions in each head, and
facilitates the interactions among context-specific
external features and distinct-granularity internal
features. It is worth noting that only the selected
dominating query-key pairs are calculated.

The general self-attention takes query Q, key
K and value V as inputs. In this module, context-
specific external and distinct-granularity internal
features are concatenated to form the feature Farg,
which is utilized to generate key-value pairs and
query. Farg itself is regarded as a query. Key-value
pairs are subsets of Farg derived from the predicate
positions. Let qi, ki, vi denote the i-th row in Q,
K, V, respectively. LQ, LK , LV represent the
numbers of rows in Q, K, V. Following previous
works (Tsai et al., 2019; Zhou et al., 2021), the
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attention of the i-th query is calculated as:

Attention(qi,K,V) =
∑

j

k(qi, kj)∑
l k(qi, kl)

vj ,

(10)

p(kj |qi) =
k(qi, kj)∑
l k(qi, kl)

, (11)

where k(qi, kj) selects the exponential kernel
exp(qik

�
j /

√
d), d represents the input dimension.

The quadratic dot-product computation is required
in self-attention, and the memory usage scales in
O(LQLK). This is a bottleneck to enhance the
information extraction capacity.

It can be observed from Eq.(10) and Eq.(11)
that the attention weight of the i-th query is ob-
tained by calculating the compatibility p(kj |qi).
The output is a combination of attention weights
and values v. The dominating query-key pairs en-
courage the attention distribution away from the
mean distribution q(kj |qi) = 1/LK . Inspired by
Zhou et al. (2021), by measuring the “difference”
between distribution p and distribution q, impor-
tant query-key pairs can be distinguished. Using
dominating query-key pairs can filter out redundant
interactions and allow the model to focus on effec-
tive combinatorial interactions. Meanwhile, the
attention sparsity problem can be alleviated, and
the computation and memory usage can be reduced.
For this purpose, Kullback-Leibler divergence is
utilized to measure the “difference”. The sparsity
measurement for the i-th query is formulated as:

S(qi,K) = ln

LK∑

j=1

e
qik

�
j√
d − 1

LK

LK∑

j=1

qik
�
j√
d
, (12)

where the two terms in Eq.(12) are the Log-Sum-
Exp and the arithmetic mean of qi on all the keys,
respectively. The distribution probability p is more
diverse and more likely to include important query-
key pairs when S(qi,K) for the i-th query is larger.
To further reduce the calculation for traversal of
queries when computing the sparsity measurement,
according to Calafiore et al. (2020), the sparsity
measurement can be empirically approximated as:

S̃(qi,K) = max
j

{
qik

T
j√
d
} − 1

LK

LK∑

j=1

qik
T
j√
d
. (13)

Subsequently, only LK lnLQ dot-product pairs
are randomly sampled to calculate the S̃(qi,K).
The other pairs are filled with zero. According

to the above sparsity measurement, distribution-
sparse attention is designed to make each key focus
only on Top-h dominating queries:

Attention(Q,K,V) = softmax(
Q̃K�
√
d

)V,

(14)
where Q̃ is a sparse matrix and contains only the
sparse Top-h queries. A constant sampling factor
c is utilized to control h = c ∗ lnLQ. Thus, for
each query-key lookup, the distribution-sparse self-
attention calculates O(lnLQ) dot-product. Mean-
while, the memory usage is O(LK lnLQ). Differ-
ent sparse query-key pairs are generated and calcu-
lated in each head. Then sparse Top-h from them
are selected. Here, queries and keys has the same
shape, thus time complexity and space complexity
of the distribution-sparse self-attention are reduced
to O(NlnN).

The CTE task is regarded as a sequence labeling
task. Similar to the previous work Multi2OIE(Ro
et al., 2020), two-stage extraction strategy is
adopted. Predicates are first identified, and then
subjects, objects, and constraints are extracted. In
the first stage, BERT hidden Fr is input into a fully
connected (FC) layer to classify predicates. In the
second stage, the context-specific external features
Fk and the distinct-granularity internal features are
concatenated to form feature Farg. Then, Farg is
fed into the distribution-sparse multi-head atten-
tion followed by another FC layer to obtain the
final constrained knowledge tuples. Cross-entropy
loss is used to train the IAN model, same as that in
Multi2OIE.

4 Experiments

4.1 Experimental Setup

Datasets: To verify the constrained tuple extrac-
tion task and the interaction-aware network, two
public datasets are utilized in this section. The
first dataset is a new manually annotated dataset
called Constraint Tuples Extraction Benchmark
(CTEB) built in this paper. We manually re-
annotate the sentences from validation set and test
set of CaRB3 (Bhardwaj et al., 2019) and a part of
sentences of LSOIE4 (Solawetz and Larson, 2021)
dataset. BIO annotation is used to label subjects,
relations, objects, and constraints in sentences from
CTEB dataset, as described in Section 1 and Sec-

3https://github.com/dair-iitd/CaRB
4https://github.com/Jacobsolawetz/large-scale-oie
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Table 2: Performance on CTEB and CaRB datasets

Models
Datasets

CTEB CaRB
F1 P R AUC F1 P R AUC

OpenIE4 (Mausam, 2016) 57.0 66.1 50.1 34.1 48.8 - - 27.2
BIO (Zhan and Zhao, 2020) 54.9 62.1 49.2 34.5 46.6 55.1 40.4 27.7
SpanOIE (Zhan and Zhao, 2020) 59.2 68.5 52.0 37.1 49.4 60.9 41.6 30.0
BERT+BiLSTM (Ro et al., 2020) 59.8 68.0 53.4 38.1 50.6 61.3 43.1 30.6
Multi2OIE (Ro et al., 2020) 61.3 69.3 55.0 40.4 52.3 60.9 45.8 32.6
SRL_BERT (Solawetz and Larson, 2021) 60.4 68.2 54.2 39.3 50.9 59.6 44.4 31.3
OIE@OIA (Wang et al., 2022) 60.7 68.8 54.4 41.2 51.1 - - 33.9
DetIE (Vasilkovsky et al., 2022) 61.3 69.8 54.6 42.7 52.1 - - 36.7

Our IAN model 63.8 71.9 57.4 44.5 54.6 63.5 47.9 36.4

tion 3.1. A total of 2174 sentences with 3656 con-
strained knowledge tuples are annotated for the
CTE task. We detail the annotation procedure in
Appendix A.2. The dataset is divided into train-
ing set, validation set and test set using the split of
6:2:2. The second dataset is the commonly used
CaRB dataset for Open IE task, which contains
predicates and the corresponding arguments from
1282 sentences.

Transfer learning is utilized to train and eval-
uate the CTE task. The bootstrapped OpenIE4
dataset5 is used as the training set in the first train-
ing stage. The model is first trained on a subset of
OpenIE4 training set, which can improve the train-
ing speed. Then the model is trained and evaluated
on CTEB dataset using transfer learning. More-
over, 1,748,826 constrained knowledge tuples are
extracted from the 1,109,411 sentences in OpenIE4
dataset by utilizing the proposed IAN model, pro-
viding a training set for future works. The num-
ber N of adjacency matrices maintained for each
matched span is set to 3. Additional experimental
details are listed in Appendix A.1.
Evaluation metrics: P(Precision), R (Recall), F1
(F1-score), and AUC (the area under the curve)
are used to evaluate the performance of different
models. Tuple match6 (Bhardwaj et al., 2019) is
used as the matching function.

4.2 Experimental Results

The proposed IAN model is compared with the
following models: OpenIE4 (Mausam, 2016),
SpanOIE (Zhan and Zhao, 2020), BIO (Zhan

5https://github.com/zhanjunlang/Span_OIE
6https://github.com/dair-iitd/CaRB

and Zhao, 2020), Multi2OIE (Ro et al., 2020),
BERT+BiLSTM (Ro et al., 2020), SRL_BERT
(Solawetz and Larson, 2021), OIE@OIA (Wang
et al., 2022) and DetIE (Vasilkovsky et al., 2022).
OpenIE4 is a traditional rule-based Open IE
method, and the other models extract tuples based
on neural networks.

Table 2 shows the performances of different
models on CTEB and CaRB datasets. Those two
datasets are used to evaluate CTE task and Open IE
task, respectively. From the experimental results in
Table 2, we can observe that:

1) By exploiting the combinatorial interac-
tions among context-specific external features and
distinct-granularity internal features, the proposed
IAN model outperforms other models on both CTE
and Open IE tasks. In terms of F1, compared with
the state-of-the-art methods DetIE and Multi2OIE,
our IAN achieves the best performance at 63.8%
and 54.6% with increases of 2.5% and 2.3% on
CTE and Open IE tasks. The superiorities of IAN
mainly include: a) it introduces context-specific
external features; b) distinct-granularity internal
features are extracted from the raw text to suffi-
ciently mine the inherent textual features; c) the
combinatorial interactions between any two fea-
tures in above external and internal features are
effectively mined.

2) In both CTE and Open IE tasks, there is a gap
between the metrics R (recall) and P (precision). It
indicates that the number of tuples extracted from
raw text is usually insufficient compared to the gold
tuples.

3) Compared with the Multi2OIE model, the
main differences are that our IAN model leverages
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external and internal features and alleviates the in-
teraction deficiency and the attention sparsity prob-
lems. The superiority of the IAN model shows
the effectiveness of rich semantic features, com-
binatorial interactions and dominating attentions
selection in information extraction tasks.

4.3 Ablation Study

To illustrate the contributions of different modules
in the IAN model, we design ablation experiments
on the IAN model for CTE task. The ablation
study results are shown in Table 3. “w/o exter-
nal” means removing the context-specific exter-
nal features. “w/o interact” model uses general
multi-head attention rather than the distribution-
sparse multi-head attention. “w/o internal” model
removes phrase-level, sentence-level, word-level
and heterogeneous fused features. “w/o fuse” de-
notes removing the heterogeneous fused feature.
“IAN-DBPedia” and “IAN-YAGO” represent using
external knowledge graphs DBPedia and YAGO
instead of Wikidata when generating external fea-
tures.

Table 3: Ablation study for CTE task.

Models
CTEB

F1 P R AUC

w/o external 62.59 70.75 56.11 42.76
w/o internal 63.12 71.34 56.59 43.57
w/o fuse 63.18 71.43 56.64 43.69
w/o interact 61.96 70.08 55.53 42.12

IAN-
DBPedia

63.48 71.53 57.06 44.18

IAN-YAGO 63.52 71.56 57.10 44.21

Our IAN 63.83 71.85 57.41 44.52

From Table 3, it can be seen that the performance
of the IAN model degrades significantly when re-
moving the distribution-sparse multi-head atten-
tion, indicating that combinatorial interactions and
attention sparsity affects the performance of con-
strained tuple extraction. The “w/o external” model
performs worse than the “w/o internal” model,
which illustrates that the contribution of external
features is larger than that of internal features. Ad-
ditionally, the IAN model is not sensitive to the
choices of different external knowledge bases.

4.4 Visualization

The combinatorial interactions among the context-
specific external features and the distinct-
granularity internal features which utilize general
multi-head self-attention and distribution-sparse
multi-head attention in IAN model are visualized
in Figure 2(a) and Figure 2(b), respectively.

It can be observed that interactions occur only
among minority specific features in general multi-
head attention, as shown in Figure 2(a). It is dif-
ficult for external and internal features to interact
with each other. In contrast, for the distribution-
sparse multi-head attention in Figure 2(b), interac-
tions conduct among multiple features, and only
the selected dominating query-key pairs are calcu-
lated. The distribution-sparse multi-head attention
can effectively facilitate effective interactions and
reduce the computation and memory usage.

(a) General Multi-head Atten-
tion

(b) Distribution-sparse Multi-
Head Attention

Figure 2: Attention Visualization.

5 Conclusion and Future Work

In this paper, a novel task called Constrained Tuple
Extraction (CTE) has been proposed, which aims to
guarantee the validity of knowledge tuples and rep-
resent the constrained information in the real world
more accurately. Interaction-aware network is de-
signed to fulfill CTE task, which can effectively ex-
tract constrained knowledge tuples from raw texts.
The proposed network can introduce the context-
specific external features, sufficiently extract the
distinct-granularity internal features from texts, and
effectively exploit the combinatorial interactions
among external and internal features. Meanwhile,
distribution-sparse multi-head attention is devel-
oped to facilitate combinatorial interactions and
alleviate the interaction deficiency and attention
sparsity problems. Extensive experiments demon-
strate that the proposed IAN model outperforms
present methods. In the future, we will address
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the issues about the vertical domain-oriented con-
strained tuple extraction.

Limitations

The open information extraction methods may am-
plify the bias of the corpus by extracting any rela-
tion occurring in the data. The models with deep
learning may learn the relation bias from the train-
ing corpus and extract those biased statements. To
mitigate the effect of data bias, we try to balance
the relations in constrained tuples and the ratio of
constraints when constructing the CTEB dataset.
In addition, the utilization of external auxiliary in-
formation increases additional computation time.
Our IAN model has still achieved superior perfor-
mance when the external auxiliary information is
removed.
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A Appendix

A.1 Experimental Details
Datasates and Training. For the CTEB dataset,
we reproduce the baselines. For the CaRB dataset,
we report the experimental results from the pa-
pers of the baselines. To enhance the training pro-
cess, transfer learning is used to train the proposed
interaction-aware network (IAN). First, a subset
containing 20,000 sentences from OpenIE4 dataset
is used to train the IAN model. Then, the output
layer of the IAN model is modified to the form
required by the constrained tuple extraction (CTE)
task. Next, the IAN model is trained, validated and
tested on the newly annotated Constraint Tuples
Extraction Benchmark (CTEB) dataset. For the
CaRB dataset, all the models (including our IAN
model) are trained the same way as the existing
Open IE works, and are not trained on the CTEB
dataset. For the CTEB dataset, all the deep learning
models (including our IAN model) are trained on
the OpenIE4 training set and the training set of the
CTEB dataset, and then the results are reported on
the CTEB test set. We ensure that our model and
the baseline models are trained and evaluated in the
same way to guarantee fair comparisons.

The statistics of the datasets used in this paper
are shown in Table 4.
Parameter Settings. AdamW optimizer
(Loshchilov and Hutter, 2019) is used to train
the IAN model. The initial learning rate is set
to 3e-5. The steps of warmup is set to one-tenth
of the total training steps. The epochs for the
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Table 4: Sentences and tuples statistics in each dataset.
† and ‡ denote bootstrap and manual annotated datasets,
respectively.

Dataset # Sents. # Tuples

OpenIE4† 1,109,411 2,175,294

CTEB‡ 2174 3656

CaRB-dev‡ 641 2548

CaRB-test‡ 641 2715

first and second training stages are set to 20 and
100, respectively. The IAN model includes 4
distribution-sparse multi-head attention blocks
with 8 attention heads. The dropout rates for the
attention blocks and classification layer are set to
0.05 and 0.2, respectively. The constant sampling
factor c in distribution-sparse multi-head attention
is set to 5. Pytorch is used to implement the IAN
model. We have conducted all experiments on the
Ubuntu system with 3090 GPU.
Data Bias Mitigation. To mitigate the effect of
data bias, we try to balance the relations in con-
strained tuples and the ratio of constraints when
constructing the CTEB dataset. The ratio of tem-
poral, spatial, and conditional constrained tuples is
845:465:246. During evaluation, the CTEB dataset
is randomly divided into training, validation, and
test set to alleviate the data bias. During training,
we first utilize transfer learning to perform warm
up training on the large Open IE dataset OpenIE4,
and then train the model on the CTEB training set,
which can also alleviate the bias problem.
Other Details. As for the implementation details
of the competing models, the inputs have not been
changed, and only the output layer is modified. The
output layer is changed from the original classifica-
tion of predicate and arguments to the classification
of subject, relation, object, and three constraints.
The rest of the model details have not been changed.
Experimental results reported in this paper are av-
eraged over three different seed settings. For the
ablation experiments, the hyper-parameter settings
are the same as those of the final model, except for
the removal of specific modules.

In this work, AUC (Area Under Curve) is calcu-
lated from a plot of the precision and recall values
for all potential cutoffs. Matching a tuple accu-
rately is challenging. The reason lies in that both
constrained tuple extraction and Open IE tasks re-

quire how to match different spans containing mul-
tiple words in a sentence.

From the experimental results, we can observe
that the low AUCs is due to the low recall val-
ues. For the proposed IAN model, the precision
achieves 0.719 and 0.635 on the CTEB dataset and
the CaRB dataset respectively, while the recalls
are 0.574 and 0.479. This fact indicates that our
model predicts most correct tuples in the predicted
results, however, it does not cover the ground truth
tuples well. Th reason lies in that there are multiple
true tuples in each sample, and each tuple contains
spans of different elements including subjects, rela-
tions, objects and constraints. Therefore, there are
many complex elements to be predicted in each sen-
tence. However, our IAN model has outperformed
the state-of-the-art methods.

In the model design, the constraint identification
is taken as a process of multi-class classification.
Architecturally, in the head of our designed IAN
model, there is a layer to predict the category of the
constraints. That is, the three kinds of constraints
are regarded as different classes, and we employed
a fully connected layer in our IAN model to achieve
this goal. Therefore, our proposed model is appli-
cable to other constraints, and only needs to modify
the classes of the constraints in the output layer. In
this way, our IAN model renders extensibility in
usage.

A.2 Annotation Procedure

The sentences in the CTEB dataset are selected
from the CaRB dataset and the LSOIE dataset.
When selecting sentences, we try to pick sentences
that contain constraints as much as possible, and
do not make any changes to the sentences for sub-
sequent annotation. Each sample was annotated
by three graduate students, one of whom did the
preliminary annotation, and the other two checked
and corrected the annotations.

We use brat annotation tool7 to annotate as many
constraints as possible in the selected sentences.
Three steps are performed when performing anno-
tation task: 1) identifying subjects, relations, and
objects; 2) identifying constraints, including tem-
poral, spatial, and conditional constraints; 3) com-
bining subjects, relations, objects, and constraints
to acquire the constraint tuples.

We abide by the following principles when an-
notating sentences: 1) completeness: all subjects,

7http://brat.nlplab.org/
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relations, objects and constraints in the sentences
need to be annotated; 2) assertedness: all constraint
tuples are implied by the original sentences; 3)
atomicity: the quadruples are used as the atomic
tuples.

When there are multiple constraints or multiple
(subject, relation, object) triples or both in a sen-
tence, one related constraint is added to each (sub-
ject, relation, object) triple. When (subject, rela-
tion, object) triples and constraints exist in a many-
to-many situation, the copy operation for triples
and constraints is performed so that the quadruples
are still atomic tuples.

A.3 External Feature

To utilize external features, additional external
knowledge related to the input text needs to be
acquired. The purpose of choosing Wikidata is
that Wikidata can provide the external knowledge
related to the spans in the sentence. The exter-
nal knowledge provided by Wikidata includes the
properties and entities related to the spans.

To obtain external auxiliary information, we enu-
merate the spans in the sentence setting a maxi-
mum length (5 words in this work), and then call
the query interface of Wikidata by inputting the
enumerated spans. Next, the spans that can receive
a response containing contents from the interface
are regarded as the aligned spans. In other words,
aligned spans refer to the spans that can be queried
as nodes in Wikidata.

In theory, the complexity of maintaining N adja-
cency matrices is O(n3). In fact, since the amount
of the nodes in external auxiliary information is not
large, the calculation consumption is acceptable.
The average number of matched spans in each sam-
ple is about 1.5. The number of nodes contained in
the external information for each matched span is
20 (5 nodes for the first hop, 15 nodes for the sec-
ond hop). N represents the number of adjacency
matrices maintained for each matched span, and is
set to 3 in the experiments. Thus, the calculation of
maintaining N adjacency matrices for each sample
is about 1.5 ∗ (3 + 1) ∗ (20 + 1) ∗ (20 + 1).

“N multi-views” represents N potential exter-
nal knowledge graph structures. Previous related
works built a fixed external knowledge graph struc-
ture for input text. Comparatively, we generate
N distinguishable external knowledge graph struc-
tures for spans in text via N multi-views. Typi-
cally, each view selects the contributed edges and

nodes from the original two-hop external knowl-
edge graph structure, which is accomplished by
utilizing sentence contextual information to gener-
ate Gaussian distributions and weighting the edges
based on the KL divergence. Thereby, “N multi-
views” can generate non-fixed context-specific ex-
ternal knowledge graph structures for spans.

In this way, external auxiliary information can
be used more effectively and flexibly by selecting
sentence context-appropriate external knowledge.
In addition, too many multi-views could induce
redundant information, and the generation of N
multi-views requires certain computing resources.
After balancing model performance and computa-
tion consumption, the number of generated multi-
views is set to 3.

The embedding generation method KBGAT
(Nathani et al., 2019) can generate embeddings
for nodes and edges in a graph, which considers
both the weights of nodes and edges. The context-
specific external feature Fk is generated as a node
in graph Gm. The entire construction step of the
external feature Fk is done independent of the train-
ing and test sets given.

Table 5 shows the example case about external
information usage. Without external information,
the model extracts “system” as the subject. By
utilizing external information, the model can know
that “DDB” is short for “Distributed Database” and
identifies “DDB system” as the subject.

Table 5: Example case about external information usage.

Sentences Tuples

In general, DDB
systems use smaller
computer systems.

without external
features:(systems, use,
smaller computer
systems, in general)
with external
features:(DDB systems,
use, smaller computer
systems, in general)

A.4 Ralated Work

The main distinctive work in our paper is to con-
catenate the constraints into the traditional tuples
to enhance the validity of the extracted knowledge
tuples. Technically, as constraints are usually writ-
ten into the sentences with various latent forms,
extracting them correctly from free texts with no
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semantic conflicts is a challenging task. To this
end, we propose the constrained tuple extraction
task.

As for the Open IE, it mainly concerns about
how to extract the predicates and the corresponding
arguments. By contrast, in our work, we focus on
how to extract the constrained tuples, which are
formatted as (subject, relation, object, constraint).
In other words, we emphasize the validity of knowl-
edge tuples by introducing constrains, which pro-
vides a standardized and unified representation for
knowledge tuples.

We adopt the two-stage extraction strategy sim-
ilar to the Multi2OIE model. Our IAN model fa-
cilitates the combinatorial interactions among the
context-specific external features and the distinct-
granularity internal features to effectively mine the
potential constraints in knowledge.

The difference between our IAN model and the
Multi2OIE model is that the Multi2OIE model sim-
ply exploits BERT representations and predicate
features to extract tuples, while our IAN model
mines the combinatorial interactions among the
external and internal features.

More specifically, Multi2OIE model feeds pred-
icate feature, positional embedding, and BERT
representation into multi-head attention blocks
for Open IE tuple extraction. In our proposed
IAN model, we design distribution-sparse multi-
head attention to select the dominating attentions,
and feed distinct-granularity internal features and
context-specific external features to distribution-
sparse multi-head attention to mine the combina-
torial interactions for constrained tuple extraction.
Concretely, distinct-granularity internal features in-
clude word-level, sentence-level, phrase-level tex-
tual features, BERT hidden, heterogeneous fused
feature, predicate feature and position embedding.

The constrained tuple extraction task is actually
a fundamental task for constructing the constrained
knowledge graph construction with good quality.
Technically, the phrases in sentences that act as sub-
jects and objects in constrained tuples are usually
with the type of entities. Thereby, in this situa-
tion, the form of the constrained tuples is “ (head
entity, relation, tail entity, constraint) ”. Accord-
ingly, these constraint tuples (i.e., quadruples) can
be transformed into triples and their constraints.
Hence, on the one hand, triples are the basic com-
ponents of knowledge graphs. On the other hand,
constrained tuples with different kinds of constrains

constitute a specific kind of constrained knowledge
graph (for example, temporal knowledge graph)
(Chen et al., 2022; Gracious et al., 2021).
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