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Abstract

Instruction tuning, a new learning paradigm
that fine-tunes pre-trained language models on
tasks specified through instructions, has shown
promising zero-shot performance on various
natural language processing tasks. However,
it has yet to be explored for vision and multi-
modal tasks. In this work, we introduce MUL-
TIINSTRUCT, the first multimodal instruction
tuning benchmark dataset that consists of 62
diverse multimodal tasks in a unified seq-to-
seq format covering 10 broad categories. The
tasks are derived from 21 existing open-source
datasets and each task is equipped with 5 expert-
written instructions. We take OFA (Wang et al.,
2022a) as the base pre-trained model for mul-
timodal instruction tuning, and to further im-
prove its zero-shot performance, we explore
multiple transfer learning strategies to lever-
age the large-scale NATURAL INSTRUCTIONS
dataset (Mishra et al., 2022). Experimental re-
sults demonstrate strong zero-shot performance
on various unseen multimodal tasks and the
benefit of transfer learning from a text-only
instruction dataset. We also design a new eval-
uation metric – Sensitivity, to evaluate how sen-
sitive the model is to the variety of instructions.
Our results indicate that fine-tuning the model
on a diverse set of tasks and instructions leads
to a reduced sensitivity to variations in instruc-
tions for each task1.

1 Introduction

With the advances in large-scale pre-trained lan-
guage models (PLMs), recent studies have explored
various efficient learning paradigms (Brown et al.,
2020; Liu et al., 2021; Wei et al., 2021; Xie et al.,
2021) to generalize PLMs to new tasks without
task-specific tuning. Among these, instruction

∗ Zhiyang Xu and Ying Shen contributed equally to this
work.

1The dataset, source code, and model checkpoints
are publicly available at https://github.com/VT-NLP/
MultiInstruct.

tuning (Wei et al., 2021) has achieved significant
success in zero-shot learning on natural language
processing tasks. By fine-tuning a PLM on tasks
described through instructions, instruction tuning
allows the model to learn to understand and fol-
low the instructions to perform predictions on un-
seen tasks. Recent advancement in multimodal pre-
training (Wang et al., 2022a; Alayrac et al., 2022;
Bao et al., 2022; Wang et al., 2022c) has shown the
potential of jointly interpreting text and images in
a shared semantic space, which further leads us to
ask: can the instruction tuning be leveraged to im-
prove the generalizability of Vision-Language pre-
trained models on multi-modal and vision tasks?

In this work, we propose MULTIINSTRUCT,
the first benchmark dataset for multimodal in-
struction tuning with 62 diverse tasks from 10
broad categories, including Visual Question An-
swering (Goyal et al., 2017; Suhr et al., 2017),
Commonsense Reasoning (Zellers et al., 2019;
Xie et al., 2019), Visual Relationship Understand-
ing (Krishna et al., 2017) and so on. We equipped
each task with 5 instructions that are written by
two experts in natural language processing. As
shown in Figure 1, we formulate all the tasks into
a unified sequence-to-sequence format in which
the input text, images, instructions, and bounding
boxes are represented in the same token space.

We use OFA (Wang et al., 2022a)2, a unified
model that is pre-trained on a diverse set of multi-
modal and unimodal tasks in a single Transformer-
based sequence-to-sequence framework, as the
base pre-trained multimodal language model, and
fine-tune it on MULTIINSTRUCT. To utilize NATU-
RAL INSTRUCTIONS (Mishra et al., 2022), a large-
scale text-only instruction tuning dataset, we fur-
ther explore two transfer learning strategies, in-

2We use OFA as it was the largest and most powerful
open-source multimodal pre-trained model available at the
time of our research while other stronger models didn’t have
publicly available checkpoints at that time.
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Grounded Caption Text Localization Referring Expression Selection

Output:
blue and white tennis racquet

Input:
Generate a caption for
<bin_198> <bin_32> 
<bin_400> <bin_193>.

Input:
Select the region that 
contains the text “den”.
Options:
<bin_206> <bin_119> 
<bin_448> <bin_181> 
||||<bin_357> <bin_518> 
<bin_456> <bin_574> 
||||<bin_229>
<bin_604>
<bin_304>
<bin_654>

Input:
Select the region of the object 
described by “A blue train in 
the front.”.
Options: <bin_242>
<bin_180> <bin_736> 
<bin_475> |||| <bin_88> 
<bin_291> <bin_203> 
<bin_473>|||| <bin_193> 
<bin_339> 
<bin_247> 
<bin_442>

Output:
<bin_229> <bin_604> 
<bin_304> <bin_654>

Output:
<bin_242> <bin_180> 
<bin_736> <bin_475>

Question-Image Matching

Output:
the question is irrelevant to the 
image

Input:
Given the content of image, 
do you have enough 
information to answer “Is it a 
sunny day?”?
Options: “the question is 
relevant to 
the image” or 
"the question 
is irrelevant 
to the image"

Figure 1: Example Instances from MULTIINSTRUCT for Four Tasks.

cluding Mixed Instruction Tuning and Sequential
Instruction Tuning. Experimental results demon-
strate strong zero-shot performance on various un-
seen multimodal tasks with instruction tuning and
the potential of further improving it by leveraging
large-scale text-only instruction datasets.

As suggested by previous studies (Webson and
Pavlick, 2022; Liu et al., 2022b), PLMs are highly
sensitive toward the wording and length of instruc-
tions. Thus, we propose a new metric – Sensitivity,
which measures how sensitive the model is toward
the variety of instructions for the same task. Ex-
perimental results demonstrate that (1) instruction
tuning significantly reduces the sensitivity of OFA
to the varying wording of instructions. The more
tuning tasks and instructions for each task are intro-
duced, the lower sensitivity tends to be achieved,
and (2) transferring from a larger text-only instruc-
tion dataset can also significantly reduces the sen-
sitivity of OFA.

2 Related Work

Multimodal Pretraining Multimodal pretrain-
ing (Tan and Bansal, 2019; Cho et al., 2021; Singh
et al., 2022; Alayrac et al., 2022; Wang et al.,
2022a; Li et al., 2022b,a) has significantly ad-
vanced the vision-language tasks. Several recent
studies (Cho et al., 2021; Wang et al., 2022a,c;
Lu et al., 2022) also started to build a unified
pre-training framework to handle a diverse set of
cross-modal and unimodal tasks. Among them, VL-
T5 (Cho et al., 2021) tackles vision-and-language
tasks with a unified text-generation objective con-
ditioned on multimodal inputs, while OFA (Wang

et al., 2022a) further extends it to image genera-
tion tasks by using a unified vocabulary for all text
and visual tokens. BEIT-3 (Wang et al., 2022c) uti-
lizes a novel shared Multiway Transformer network
with a shared self-attention module to align differ-
ent modalities and provide deep fusion. Building
on the success of multimodal pretraining, our work
focuses on improving the generalization and zero-
shot performance on various unseen multimodal
tasks through instruction tuning.

Efficient Language Model Tuning To improve
the generalizability and adaptivity of large-scale
pre-trained language models, various efficient lan-
guage model tuning strategies have been proposed
recently. Prompt tuning (Liu et al., 2021; Li and
Liang, 2021; Han et al., 2022; Wang et al., 2022b;
Sanh et al., 2022) aims to learn a task-specific
prompt by reformulating the downstream tasks to
the format that the model was initially trained on
and has shown competitive performance across var-
ious natural language processing applications. As
a special form of prompt tuning, in-context learn-
ing (Xie et al., 2021; Min et al., 2021) takes one or
a few examples as the prompt to demonstrate the
task. Instruction tuning (Wei et al., 2021) is another
simple yet effective strategy to improve the gener-
alizability of large language models. NATURAL IN-
STRUCTIONS (Mishra et al., 2022) is a meta-dataset
containing diverse tasks with human-authored def-
initions, things to avoid, and demonstrations. It
has shown effectiveness in improving the general-
izability of language models even when the size is
relatively small (e.g., BART_base) (Mishra et al.,
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2022; Wang et al., 2022d). InstructDial (Gupta
et al., 2022) applies instruction tuning to the dia-
logue domain and shows significant zero-shot per-
formance on unseen dialogue tasks. While these
studies have been successful in text-only domains,
it has not yet been extensively explored for vision
or multimodal tasks.

3 MULTIINSTRUCT

3.1 Multimodal Task and Data Collection
The MULTIINSTRUCT dataset is designed to cover
a wide range of multimodal tasks that require rea-
soning among regions, images, and text. These
tasks are meant to teach machine learning models
to perform various tasks such as object recogni-
tion, visual relationship understanding, text-image
grounding, and so on by following instructions so
that they can perform zero-shot prediction on un-
seen tasks. To build MULTIINSTRUCT, we first
collect 34 tasks from the existing studies in visual
and multimodal learning, covering Visual Question
Answering (Goyal et al., 2017; Krishna et al., 2017;
Zhu et al., 2016; Hudson and Manning, 2019; Singh
et al., 2019; Marino et al., 2019), Commonsense
Reasoning (Suhr et al., 2017; Liu et al., 2022a;
Zellers et al., 2019; Xie et al., 2019), Region Under-
standing (Krishna et al., 2017), Image Understand-
ing (Kafle and Kanan, 2017; Chiu et al., 2020),
Grounded Generation (Krishna et al., 2017; Yu
et al., 2016; Lin et al., 2014), Image-Text Match-
ing (Lin et al., 2014; Goyal et al., 2017), Grounded
Matching (Krishna et al., 2017; Veit et al., 2016;
Yu et al., 2016), Visual Relationship (Krishna et al.,
2017; Pham et al., 2021), Temporal Ordering tasks
that are created from WikiHow3, and Miscella-
neous (Yao et al., 2022; Kiela et al., 2020; Das
et al., 2017; Lin et al., 2014; Veit et al., 2016; Alam
et al., 2022). Each of the 34 tasks can be found
with one or multiple open-source datasets, which
are incorporated into MULTIINSTRUCT. Details
of each task and their corresponding datasets are
shown in Tables 7 to 9 in Appendix.

For each of these tasks, we further examine the
possibility of deriving new tasks based on the in-
put and output of the original task to augment the
task repository. For example, Visual Grounding
requires the model to generate a caption for a given
region in the image. We derive two additional tasks
from it: Grounded Caption Selection, which is a
simpler task that requires the model to select the

3https://www.wikihow.com.

corresponding caption from multiple candidates for
the given region, and Visual Grounding Selection,
which requires the model to select the correspond-
ing region from the provided candidate regions
based on a given caption. Compared with Visual
Grounding, these two new tasks require different
skills based on distinct input and output informa-
tion. In this way, we further derived 28 new tasks
from the 34 existing tasks. We divide all 62 tasks
into 10 broad categories as shown in Figure 2.

For the existing tasks, we use their available
open-source datasets to create instances (i.e., input
and output pairs) while for each new task, we create
its instances by extracting the necessary informa-
tion from instances of existing tasks or reformulat-
ing them. Each new task is created with 5,000 to
5M instances. We split the 62 tasks into training
and evaluation based on the following criteria: (1)
we take the tasks that are similar to the pre-training
tasks of OFA (Wang et al., 2022a) for training; and
(2) we select the challenging multimodal tasks that
do not overlap with the training tasks for evalua-
tion. Table 5 and Table 6 in Appendix A show the
detailed statistics for the training and evaluation
tasks in MULTIINSTRUCT and Tables 7 to 9 show
their corresponding datasets.

3.2 Task Instruction Creation

We first provide a definition for “instruction” used
in MULTIINSTRUCT. An instruction is defined
with a template that describes how the task should
be performed and contains an arbitrary number
of placeholders, including <TEXT>, <REGION> and
<OPTION>, for the input information from the orig-
inal task. For example, in the instruction of the
Grounded Captioning task, “Generate a caption
for <REGION>”, <REGION> is the placeholder for
region-specific information. Note that the place-
holder <OPTION> is only used in classification tasks
and for some tasks, the input may also include an
image that is not included in the instruction and
will be fed as a separate input to the model. Fig-
ure 1 provides several instruction examples for the
tasks included in MULTIINSTRUCT.

To produce high-quality instructions that accu-
rately convey the intended tasks, we employ an
iterative annotation process involving two expert
annotators who have a thorough understanding of
the task and the dataset.
Step 1: each annotator first writes 2-3 instructions
for each task by giving them the specific goals of
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Wikihow Next Step
Generation

Temporal Ordering

Wikihow Next Step
Selection

Wikihow Image-Text
Temporal Ordering

Wikihow Text-Image
Temporal Ordering

Visual Object
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Visual Relationship
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Visual Subject
Identification
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Localization

Visual Subject
Localization
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Generation

Referring Expression
Generation

Grounded Object
Identification
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Image-Text Selection

Question-Image Matching

Image Text Matching

Image-Text Matching

Figure 2: Task Groups Included in MULTIINSTRUCT. The yellow boxes represent tasks used for evaluation,
while the white boxes indicate tasks used for training.

this task, the format of input data, and 10 exam-
ple instances randomly sampled from the dataset.
The information about the dataset is obtained from
the dataset’s README file or the publication that
introduced the dataset. For newly derived tasks,
we provide annotators with task descriptions along
with 10 constructed example instances.
Step 2: to guarantee the quality of the instructions
and that they effectively convey the intended tasks,
we have each annotator review the instructions cre-
ated by their peers, checking if they can clearly
understand and identify the intended task by just
reading the instruction. If any issues are identi-
fied, the reviewing annotator provides suggestions
and works with the original annotator to revise the
instructions.
Step 3: to ensure the consistency and avoid con-
flicts or repetition among instructions from differ-
ent annotators, we have both annotators review the
sets of instructions together, identifying any dis-
crepancies or inconsistencies. If any are found, the
annotators collaborate to resolve them and create a
final set of instructions that accurately and clearly
describe the task. In this way, each task will be
created with 5 high-quality instructions.
Step 4: we repeat steps 1-3 to create 5 instruc-
tions for each of the training and evaluation tasks.
Finally, both annotators review each task and its
instructions and filter out the task that is not repre-

sentative or overlaps with other tasks.

3.3 Multimodal Instruction Formatting

To unify the processing of various input/output data
types, we follow the method from OFA (Wang
et al., 2022a), which involves representing images,
text, and bounding box coordinates as tokens in a
unified vocabulary. Specifically, we apply byte-
pair encoding (BPE) (Sennrich et al., 2016) to
encode the text input. For the target image, we
apply VQ-GAN (Esser et al., 2021) to generate
discrete image tokens through image quantization.
To represent regions or bounding boxes of an im-
age, we discretize the four corner coordinates into
location tokens such as "<bin_242> <bin_180>
<bin_736> <bin_475>" where each location token
"<bin_NUM>" represents a quantized coordinate
obtained by dividing the image into 1,000 bins.
This approach allows us to convert different types
of input into a unified vocabulary.

All tasks in MULTIINSTRUCT can then be for-
mulated as natural language sequence-to-sequence
generation problems, where the input includes: (1)
an image (if there is no input image, a black pic-
ture is used as the input); and (2) an instruction
where the placeholders such as <TEXT>, <REGION>
or <OPTION> are filled with specific information of
each input instance. Notably, for the <OPTION> of
the instructions for classification tasks, we intro-
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duce two special tokens for this field: “[Options]”
to mark the beginning of the option field and “||||”
to delimit the given options. We concatenate all
the options with “||||” in the option field and
the model will directly generate one option from
them. Figure 1 provides several examples of the
formulated input and illustrates how the original
data input is combined with the instruction in the
MULTIINSTRUCT.

4 Problem Setup and Models

4.1 Problem Setup

We follow the same instruction tuning setting as the
previous study (Wei et al., 2021) and mainly eval-
uate the zero-shot learning capabilities of the fine-
tuned large language models. Specifically, given
a pre-trained multimodal language model M , we
aim to finetune it on a collection of instruction
tasks T . Each task t ∈ T is associated with a
number of training instances Dt = {(It, xtj , ytj) ∈
It×X t×Yt}Nj=1, where xtj denotes the input text,
image, region, and options if provided, ytj denotes
the output of each instance, and It represents the
set of five task instructions written by experts. The
input information from xtj will be used to fill in the
placeholders in the instruction.

We use OFA (Wang et al., 2022a) as the pre-
trained multimodal model due to its unified archi-
tecture and flexible input-output modalities. We
finetune it on our MULTIINSTRUCT dataset to
demonstrate the effectiveness of instruction tuning.
Specifically, we use the transformer-based encoder
of OFA to encode the instruction along with all
necessary information and an optional image, and
predict the output with the transformer-based de-
coder. Given that the training dataset contains many
tasks, we mix all the training instances from these
tasks and randomly shuffle them. For each instance,
we also randomly sample an instruction template
for each batch-based training. Note that, though
some of the training tasks in MULTIINSTRUCT are
similar to the pre-training tasks of OFA4, we en-
sure that the evaluation tasks in MULTIINSTRUCT

do not overlap with either the pre-training tasks in
OFA nor the training tasks in MULTIINSTRUCT.

4Table 10 in Appendix lists the multimodal tasks and
dataset used in OFA pre-training.

4.2 Transfer Learning from NATURAL
INSTRUCTIONS

We notice that the scale of NATURAL INSTRUC-
TIONS (Mishra et al., 2022) is significantly larger
than MULTIINSTRUCT, indicating the potential of
transferring the instruction learning capability from
the larger set of natural language tasks to multi-
modal tasks. We take 832 English tasks in NAT-
URAL INSTRUCTIONS and explore several simple
transfer-learning strategies:

Mixed Instruction Tuning (OFAMixedInstruct)
We combine the instances of NATURAL INSTRUC-
TIONS and MULTIINSTRUCT and randomly shuf-
fle them before finetuning OFA with instructions.
Note that, each task in NATURAL INSTRUCTIONS

is just associated with one instruction while for
each instance from MULTIINSTRUCT, we always
randomly sample one instruction from the five in-
structions for each instance of training.

Sequential Instruction Tuning (OFASeqInstruct)
Inspired by the Pre-Finetuning approach discussed
in Aghajanyan et al. (2021), we propose a two-
stage sequential instruction tuning strategy where
we first fine-tune OFA on the NATURAL INSTRUC-
TIONS dataset to encourage the model to follow
instructions to perform language-only tasks, and
then further fine-tune it on MULTIINSTRUCT to
adapt the instruction learning capability to multi-
modal tasks. To maximize the effectiveness of the
NATURAL INSTRUCTIONS dataset, we use all in-
stances in English-language tasks to tune the model
in the first training stage.

5 Experimental Setup

Evaluation Metrics We report the accuracy for
classification tasks and ROUGE-L (Lin, 2004) for
all generation tasks. For the region classification
task, we compute the Intersection over Union (IoU)
between the generated region and all regions in the
options, select the option with the highest IoU as
the prediction, and compute accuracy based on this
prediction. If the predicted region has no intersec-
tion with any of the regions in the options, we treat
this prediction as incorrect. For classification tasks
where the answer is not a single-word binary classi-
fication, we also report ROUGE-L scores following
Mishra et al. (2022), which treats all tasks as text
generation problems. For each task, we conduct
five experiments by evaluating the model using one
of the five instructions in each experiment. We re-
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port the mean and maximum performance and the
standard deviation of the performance across all
five experiments. We also compute the aggregated
performance for each model based on the mean
of the model’s performance on all multimodal and
NLP unseen tasks. We use Rouge-L as the evalu-
ation metric for most tasks and accuracy for tasks
that only have accuracy as a metric.

In addition, as instruction tuning mainly relies
on the instructions to guide the model to perform
prediction on various unseen multimodal tasks, we
further propose to evaluate how sensitive the model
is to the variety of human-written instructions in
the same task, which has not been discussed in pre-
vious instruction tuning studies but is necessary to
understand the effectiveness of instruction tuning.
We thus further design a new metric as follows:

Sensitivity refers to the model’s capability of con-
sistently producing the same results, regardless of
slight variations in the wording of instructions,
as long as the intended task remains the same.
Specifically, for each task t ∈ T , given its as-
sociated instances with task instructions: Dt =
{(It, xtj , ytj) ∈ It × X t × Yt}Nj=1, we formally
define sensitivity as:

Et∈T

[
σi∈It

[
E(x,y)∈Dt [L(fθ(i, x), y)]

]

µi∈It
[
E(x,y)∈Dt [L(fθ(i, x), y)]

]
]

where L denotes the evaluation metric such as accu-
racy or ROUGE-L, fθ(·) represents the multimodal
instruction-tuned model. The standard deviation
and mean of the model’s performance across all
instructions are denoted by σi∈It [·] and µi∈It [·],
respectively.

Evaluation datasets We evaluate the models on
nine unseen multimodal tasks: Text VQA (Singh
et al., 2019), Grounded VQA (Zhu et al., 2016),
Commonsense VQA (Zellers et al., 2019), Visual
Entailment (Xie et al., 2019), Visual Spatial Rea-
soning (Liu et al., 2022a), Natural Language for
Visual Reasoning (NLVR) (Suhr et al., 2017), Vi-
sual Text Extraction (Kiela et al., 2020), Visual
Dialogue (Das et al., 2017), and Disaster Type Clas-
sification (Alam et al., 2022). These tasks belong to
three task groups: Commonsense Reasoning, VQA,
and Miscellaneous as shown in Figure 2. Tasks in
the Commonsense Reasoning group have no over-
lap with any training task groups. Tasks in Miscel-
laneous do not share similarities with other tasks
in the group. Although Text VQA and Grounded

VQA belong to the VQA task group, they require
additional skills such as extracting text from images
or generating regions, making them fundamentally
different from other tasks in VQA. In addition to
multimodal tasks, we also evaluate the model on 20
NLP tasks collected from the test split of NATURAL

INSTRUCTIONS.

Approaches for Comparison We denote
the OFA finetuned on MULTIINSTRUCT as
OFAMultiInstruct, and compare it with the orig-
inal pre-trained OFA5, OFATaskName which is
fine-tuned on MULTIINSTRUCT but uses the task
name instead of instruction to guide the model
to make predictions, and several approaches that
leverage the large-scale NATURAL INSTRUCTIONS

dataset, including OFANaturalInstruct which only
fine-tunes OFA on NATURAL INSTRUCTIONS

with instruction tuning, OFAMixedInstruct and
OFASeqInstruct that are specified in Section 4.2.

More details regarding the evaluation datasets,
baseline approaches and training details can be
found in Appendix B.

6 Results and Discussion

6.1 Effectiveness of Instruction Tuning on
MULTIINSTRUCT

We evaluate the zero-shot performance of vari-
ous approaches on all the unseen evaluation tasks,
as shown in Table 1 and 2. Our results indi-
cate that OFAMultiInstruct significantly improves the
model’s zero-short performance over the original
pre-trained OFA model across all unseen tasks and
metrics, demonstrating the effectiveness of mul-
timodal instruction tuning on MULTIINSTRUCT.
As seen in Table 2, OFA achieves extremely
low (nearly zero) zero-shot performance on the
Grounded VQA task, which requires the model
to generate region-specific tokens in order to an-
swer the question. By examining the generated
results, we find that OFA, without instruction tun-
ing, failed to follow the instruction and produce
results that contain region tokens. However, by
fine-tuning OFA on MULTIINSTRUCT, the model
is able to better interpret and follow the instructions
to properly generate the expected output. Addition-
ally, OFAMultiInstruct outperforms OFATaskName on
all unseen tasks, particularly on the Grounded VQA
task, where OFATaskName achieves nearly zero per-

5https://ofa-beijing.oss-cn-beijing.
aliyuncs.com/checkpoints/ofa_large.pt

11450

https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/ofa_large.pt
https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/ofa_large.pt


Model
Commonsense VQA Visual Entailment Visual Spatial Reasoning NLVR

RougeL ACC ACC ACC ACC
Max Avg ± Std Max Avg ± Std Max Avg± Std Max Avg± Std Max Avg± Std

OFA 17.93 14.97 ± 4.30 0.73 0.40 ±0.29 49.99 41.86 ± 10.99 54.99 35.29 ± 22.21 56.06 52.10 ± 3.35
OFATaskName 48.99 - 29.01 - 55.70 - 53.76 - 55.35 -
OFAMultiInstruct 52.01 50.60 ± 1.12 33.01 31.17 ± 1.59 55.96 55.06 ±0.76 55.81 53.90 ±1.38 56.97 56.18 ± 0.95

Transfer Learning from NATURAL INSTRUCTIONS
OFANaturalInstruct 27.15 14.99 ± 9.12 7.35 2.04 ± 3.01 33.28 14.86 ± 16.68 51.44 36.44 ± 20.72 56.06 35.98 ± 21.64
OFAMixedInstruct 50.40 49.34 ± 1.04 31.31 30.27 ± 0.94 54.63 53.74 ± 0.97 55.13 52.61 ± 1.64 56.67 55.96 ± 0.48
OFASeqInstruct 50.93 50.07 ± 1.07 32.28 31.23 ± 1.09 53.66 52.98 ± 0.56 54.86 53.11 ± 1.45 57.58 56.63 ± 0.66

Table 1: Zero-shot Performance on Multimodal Commonsense Reasoning. The best performance is in bold.

Model
Text VQA Grounded VQA Visual Text Extraction Visual Dialogue Disaster Type Classification

RougeL Acc RougeL RougeL ACC
Max Avg± Std Max Avg± Std Max Avg± Std Max Avg ± Std Max Avg ± Std

OFA 15.21 9.30 ± 5.42 0.02 0.00 ± 0.01 36.31 17.62 ± 16.82 45.46 28.71 ± 9.81 14.30 9.64 ± 4.34
OFATaskName 23.80 - 0.00 - 36.30 - 25.18 - 62.65 -
OFAMultiInstruct 27.22 26.46 ± 0.83 64.32 47.22 ± 23.08 74.35 62.43 ±11.56 46.38 32.91 ±7.59 64.88 56.00 ±12.96

Transfer Learning from NATURAL INSTRUCTIONS
OFANaturalInstruct 5.59 5.40 ± 0.24 0.00 0.00 ± 0.00 5.65 1.24 ± 2.48 30.94 27.91 ± 2.16 56.64 38.21 ± 15.35
OFAMixedInstruct 24.15 23.67 ± 0.47 63.79 54.99 ± 18.16 62.43 46.56 ± 14.92 46.08 38.02 ± 5.25 68.31 64.31 ± 2.39
OFASeqInstruct 27.03 26.67 ± 0.47 64.19 54.46 ± 15.96 71.63 60.62 ± 12.31 46.17 35.10 ± 6.92 64.46 57.89 ± 9.51

Table 2: Zero-shot Performance on Question Answering and Miscellaneous. The best performance is in bold.

formance. This suggests that the performance gain
of OFAMultiInstruct mainly comes from instructions
rather than multi-task training.

6.2 Impact of Transfer Learning from
NATURAL INSTRUCTIONS

One key question in multimodal instruction tuning
is how to effectively leverage the large-scale text-
only NATURAL INSTRUCTIONS dataset to enhance
the zero-shot performance on multimodal tasks.
We observe that only fine-tuning OFA on NATU-
RAL INSTRUCTIONS actually degrades the model’s
zero-shot performance on almost all multimodal
tasks, as shown by comparing OFANaturalInstruct and
OFA in Table 1 and 2. One potential reason for this
decline in performance is that during fine-tuning
on the text-only dataset, the model learns to focus
more on text tokens and attend less to image to-
kens. To verify this assumption, we compare the
attention of text tokens on image tokens between
OFANaturalInstruct and other methods and observe
that text tokens attend much less to image tokens
after fine-tuning on the NATURAL INSTRUCTIONS

dataset. The detailed explanations and analysis can
be found in Appendix C.

Another observation is that although our trans-
fer learning methods do not lead to signifi-
cant performance gains over OFAMixedInstruct, both
OFASeqInstruct and OFAMixedInstruct achieve lower
standard deviation on 6 out of 9 unseen multimodal
tasks compared with OFAMultiInstruct, demonstrating
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Figure 3: Model Performance as the Number of Mul-
timodal Instruction Task Clusters Increases. The
number in the parenthesis of each cluster denotes the
number of tasks.

the potential benefits of the much larger text-only
instruction datasets to multimodal instruction tun-
ing.

6.3 Impact of Increasing Multimodal
Instruction Task Clusters

To evaluate the impact of the number of tasks
clusters for instruction tuning, we start with the
task groups shown in Figure 2 and group them
into five larger clusters: (1) Img Und (VQA + Im-
age Understanding), (2) Grounding (Grounded
Matching + Grounded Generation), (3) MISC, ITM
(Temporal Ordering + Miscellaneous + Image Text
Matching), (4) Relation (Visual Relationship),
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# of Instructions Aggregated Performance ↑ Sensitivity ↓

1 Instruction 42.81 24.62
5 Instructions 47.82 10.45

Table 3: Effect of Different Number of Instructions.
Performance of OFAMultiInstruct finetuned on different
numbers of instructions.

(5) Region (Region Understanding), together with
(6) NLP, a collection of NLP tasks from NATU-
RAL INSTRUCTIONS. We measure the change in
both the aggregated performance and sensitivity of
OFAMixedInstruct as we gradually add the task clus-
ters for training.

As we increase the number of task clusters, we
observe an improvement in both the mean and max-
imum aggregated performance and a decrease in
sensitivity, as shown in Figure 3. Note that low sen-
sitivity indicates that the model can produce con-
sistent results despite variations in the wording of
instructions. These results suggest that increasing
the number of task clusters improves the model’s
performance on unseen tasks and leads to more
consistent outputs. The results also support the
effectiveness of our proposed MULTIINSTRUCT

dataset.

6.4 Effect of Diverse Instructions on
Instruction Tuning

We hypothesize that using a diverse set of instruc-
tions for each task during multimodal instruction
tuning can improve the model’s zero-shot perfor-
mance on unseen tasks and reduce its sensitivity to
variation in the instructions. To test this hypothe-
sis, we train an OFA model on MULTIINSTRUCT

with a single fixed instruction template per task
and compare its performance with OFA finetuned
on 5 different instructions. As shown in Table 3,
OFA finetuned on 5 instructions achieves much
higher aggregated performance on all evaluation
tasks and shows lower sensitivity. These results
demonstrate the effectiveness of increasing the di-
versity of instructions and suggest that future work
could explore crowd-sourcing or automatic genera-
tion strategies to create even more diverse instruc-
tions for instruction tuning.

6.5 Effect of Fine-tuning Strategies on Model
Sensitivity

In Section 6.3 and 6.4, we have shown that the
more tasks and instructions used for instruction

0 5 10 15 20 25 30 35 40
Sensitivity

OFA

OFAMultiInstruct

OFASeqInstruct

OFAMixedInstruct

40.58

13.84

10.45

10.27

Figure 4: Model Sensitivity on Unseen Evaluation
Tasks. Lower is better.

tuning, the lower sensitivity the model will achieve
toward the variations in instructions for each task.
We further investigate the impact of fine-tuning
and transfer learning strategies on model sensitiv-
ity. Figure 4 shows the averaged sensitivity of
each model across all multimodal unseen tasks.
The original OFA exhibits significantly higher sen-
sitivity to variations in instructions compared to
models fine-tuned on instruction datasets, indicat-
ing that multimodal instruction tuning significantly
improves the model’s capability on interpreting in-
structions, even with varying wordings. In addition,
by transferring the large-scale NATURAL INSTRUC-
TIONS dataset to MULTIINSTRUCT, sensitivity is
also reduced by a large margin, highlighting the
benefit of fine-tuning the model on a larger instruc-
tion dataset, regardless of different formats and
modalities.

7 Zero-Shot Performance on NLP Tasks

So far, our focus has been on evaluating the zero-
shot performance of multimodal tasks. In this sec-
tion, we investigate the effect of multimodal in-
struction tuning on the performance of text-only
tasks. To do this, we evaluate all our approaches on
20 natural language processing (NLP) tasks from
the default test split in NATURAL INSTRUCTIONS6.
The detailed task list can be found in Appendix B.2.

As shown in Table 4, OFAMultiInstruct outper-
forms OFA, despite the instruction tuning dataset
and the unseen dataset are in different modali-
ties. This suggests that multimodal instruction
tuning can help improve the zero-shot perfor-
mance on NLP tasks. In addition, we observe that
OFANaturalInstruct achieves the best performance on
NLP tasks and OFAMixedInstruct is more effective
in preserving the zero-shot capability gained from
NATURAL INSTRUCTIONS on NLP tasks compared

6https://github.com/allenai/
natural-instructions
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Model RougeL

OFA 2.25
OFAMultiInstruct 12.18

Transfer Learning from NATURAL INSTRUCTIONS
OFANaturalInstruct 43.61
OFAMixedInstruct 43.32
OFASeqInstruct 30.79

Table 4: Zero-shot Performance on NLP tasks. The
performance is reported in Rouge-L and the best perfor-
mance is in bold.

to OFASeqInstruct. Based on the results in Tables 1,
2 and 4, we conclude that OFAMixedInstruct is able to
achieve overall best aggregated performance on all
multimodal and NLP tasks and shows much lower
sensitivity towards variations in the wording of in-
structions, making it the most promising approach.

8 Conclusion
We present a new large-scale multi-modal instruc-
tion tuning benchmark dataset – MULTIINSTRUCT,
which covers a wide variety of vision and mul-
timodal tasks while each task is associated with
multiple expert-written instructions. By finetun-
ing OFA (Wang et al., 2022a), a recently state-of-
the-art multimodal pre-trained language model, on
MULTIINSTRUCT with instruction tuning, its zero-
shot performance on various unseen multimodal
tasks is significantly improved. We also explore
several transfer learning techniques to leverage the
much larger text-only NATURAL INSTRUCTIONS

dataset and demonstrate its benefit. Moreover, we
design a new evaluation metric Sensitivity to as-
sess the model’s sensitivity towards the variations
in the wording of instructions. Results show that
the model becomes less sensitive to these varia-
tions after being fine-tuned on a variety of tasks
and instructions.

Limitations

Limitations of Data Collection Our proposed
dataset only targets English language tasks. Future
work should explore multimodal instruction tuning
in a more diverse language setting and augment our
MULTIINSTRUCT with multi-multilingual tasks.
In addition, our current dataset mainly focuses
on vision-language tasks. Datasets from more di-
verse modalities should be considered such as au-
dio (Panayotov et al., 2015; Gemmeke et al., 2017;
You et al., 2022) and video (Soomro et al., 2012;
Ionescu et al., 2014). While we have built a novel

multimodal instruction dataset containing 62 tasks,
the number of tasks and associated instructions
remains limited. To address this, future research
could consider utilizing crowd-sourcing or auto-
matic generation and augmentation techniques to
increase the variety of instructions available.

Limitations of Experiments and Evaluation
Our work is the first to explore instruction tuning
on multimodal tasks and shows improved perfor-
mance compared to baseline methods. However,
there is still room for improvement, specifically
in utilizing text-only instruction datasets. Future
research could explore alternative architectures and
stronger vision-language pre-trained models, or de-
velop additional training loss functions to better
utilize these unimodal instruction datasets. Addi-
tionally, we only used OFA as the baseline model
as it was the largest open-source multimodal pre-
trained model available when we conducted this
research. As more and stronger multimodal pre-
trained models being publicly available, it would
be interesting to conduct a thorough comparison
between models with different sizes. Finally, we
take the first step to define sensitivity as a metric
to evaluate the robustness of the models on under-
standing and following human-written instructions,
which can be a potential standard metric for all the
following instruction-tuning studies. However, it’s
only based on the variation of model performance
across different instructions for the same task. In
the future, we will consider more broad factors,
e.g., the model’s capability to understand different
instructions for different tasks (Inter-task sensitiv-
ity), to further improve the sensitivity metric for
instruction tuning.
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A Tasks Defined in MULTIINSTRUCT

Table 5 shows the distribution of input and output
modalities for both training and evaluation tasks in
MULTIINSTRUCT, and Table 6 shows the detailed
statistics for all the training and evaluation tasks
separately. Tables 7 to 9 provide a comprehensive
list of the 62 tasks included in MULTIINSTRUCT,
along with one example of instruction for each task.

Input modality Output Modality # of Training # of Testing
Image Text Region Image Text Region

✓ ✓ 1 0
✓ ✓ ✓ 14 5
✓ ✓ ✓ 9 1
✓ ✓ ✓ 2 0
✓ ✓ ✓ 3 1
✓ ✓ ✓ ✓ 9 0
✓ ✓ ✓ ✓ 1 0

Table 5: Distribution of input and output modalities for
all the tasks in MULTIINSTRUCT.

Train Eval

Average # of Tokens per Instruction 14.67 9.37
Averaged # of Character per Instruction 85.78 58.77
Average Levenshtein Distance of Instructions 63.63 54.74
# of Instructions per Task 5 5
# of Classification Tasks 21 3
# of Generation Tasks 19 4
# of Existing Tasks 19 7
# of Created Datasets 21 0

Table 6: Detailed statistics in MULTIINSTRUCT.

B More Details for Experimental Setup

B.1 Multimodal Evaluation Datasets
Text VQA (Singh et al., 2019) requires models
to read and reason about the text in an image to
answer questions based on them.
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Grounded VQA (Zhu et al., 2016) requires
models to answer the questions about an image,
with the answers being specific visual regions
within the image.

Commonsense VQA (Zellers et al., 2019) re-
quires the model to answer a multiple-choice ques-
tion that requires commonsense reasoning about
an image. Both the question and answers are pre-
sented in a combination of natural language and
references to specific image regions within the im-
age.

Visual Entailment (Xie et al., 2019) requires the
model to determine whether the image semantically
entails the text.

Natural Language for Visual Reasoning (NLVR)
(Suhr et al., 2017) requires the model to answer
a question that requires visual and set-theoretic
reasoning on a synthetic image.

Visual Text Extraction is a new task derived
from Hateful Memes (Kiela et al., 2020) dataset.
This task requires the model to extract the text that
appears in the image.

Visual Dialogue (Das et al., 2017) requires the
model to answer a question given an image and a
dialogue history.

Disaster Type Classification (Alam et al., 2022)
requires the model to determine the disaster type
based on the image.

B.2 NLP Evaluation Tasks

Below are the task names of the 20 NLP tasks that
we used to test the zero-shot performance of all the
methods. The 20 NLP tasks are from the default
test split of the NATURAL INSTRUCTIONS dataset.
During testing, we leverage the ’Definition’ of the
task as an instruction and prepend it with each
input.

task1624_disfl_qa_question_yesno_classification,
task133_winowhy_reason_plausibility_detection,
task569_recipe_nlg_text_generation,
task1631_openpi_answer_generation,
task957_e2e_nlg_text_generation_generate,
task1386_anli_r2_entailment,
task393_plausible_result_generation,
task670_ambigqa_question_generation,
task890_gcwd_classification,
task1534_daily_dialog_question_classification,

task1388_cb_entailment,
task190_snli_classification,
task1533_daily_dialog_formal_classification,
task1598_nyc_long_text_generation,
task199_mnli_classification,
task1439_doqa_cooking_isanswerable,
task1409_dart_text_generation,
task1529_scitail1.1_classification,
task648_answer_generation,
task050_multirc_answerability

B.3 Approaches for Comparison

OFA (Wang et al., 2022a) denotes the original
pre-trained OFA model without any fine-tuning.
Here, we use OFA-large8 which contains 472M
parameters and was trained on 8 tasks shown in
Table 10. As reported in Wang et al. (2022a), OFA
has demonstrated certain zero-shot capability on
unseen multimodal tasks.

OFATaskName is finetuned on MULTIINSTRUCT

but it does not use the instructions we created for
the tasks. Instead, we prepend the task name to
each input and use a semicolon to separate the task
name and the input. For a fair comparison, we
still keep the two special tokens “[Options]” and
“||||” for the option field.

OFAMultiInstruct only fine-tunes OFA on our
newly introduced MULTIINSTRUCT dataset with
instruction tuning.

OFANaturalInstruct only fine-tunes OFA on
the large-scale NATURAL INSTRUCTIONS

dataset (Mishra et al., 2022; Wang et al., 2022d)
with instruction tuning. To ensure a fair com-
parison, we evaluate this baseline on instruction
templates that removed all specific tokens, includ-
ing “[Options]” and “||||”, since the model
being tested has not been exposed to these specific
tokens during instruction-tuning. We want to
ensure that the evaluation is not biased in favor of
models that have seen these tokens during training.

OFAMixedInstruct fine-tunes OFA on the mix of
the large-scale NATURAL INSTRUCTIONS (Mishra
et al., 2022; Wang et al., 2022d) and MULTIIN-
STRUCT dataset with instruction tuning.

OFASeqInstruct sequentially fine-tunes OFA on
the large-scale NATURAL INSTRUCTIONS (Mishra

8https://ofa-beijing.oss-cn-beijing.
aliyuncs.com/checkpoints/ofa_large.pt
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et al., 2022; Wang et al., 2022d) and MULTIIN-
STRUCT dataset with instruction tuning.

B.4 Training Details

We set the maximum length of input tokens to 1024
and the maximum target length to 512. For image
preprocessing, we strictly follow the process in the
OFA. Please refer to the original paper for more
details. We train the models on 8 Nvidia A100
GPUs with a batch size 8 per GPU, a learning rate
of 1e-05, and float16 enabled for 3 epochs for all
the setups and datasets. We run all the experiments
once.

C Attention Analysis

In Section 6.1, we have demonstrated that fine-
tuning OFA with NATURAL INSTRUCTIONS alone
results in a decline in its zero-shot performance. In
this section, we examine one possible reason for
this decline by examining if fine-tuning the model
on a text-only instruction dataset causes it to give
less attention to image inputs.

To understand this, we conduct an analysis
of the self-attention layers within the OFA en-
coder. The OFA encoder comprises 12 self-
attention layers, each with 16 attention heads.
We denote the input to self-attention layer l

as h(l) = [x
(l)
1 , . . . , x

(l)
p , . . . x

(l)
L ], where L is

the length of sequence. The input h(0) =

[x
(0)
1 , . . . , x

(0)
I , x

(0)
I+1, . . . x

(0)
I+T ] to the first self-

attention layer is actually the concatenation of im-
age embeddings and text embeddings, where I ,
T is the length of image and text embeddings re-
spectively. For ease of understanding and sim-
plicity, we have altered the naming conventions
and refer to xlp, p = [1, ..., I] as image states and
xlp, p = [I + 1, ..., I + T ] as text states.

For each self-attention layer, we first compute
the attention given to the image states in relation to
text states for each attention head. Specifically, for
each text state as the query, we sum its attention
scores on image states (i.e. the attention scores
where the text state is the query and image states
are the keys). We then compute the text-to-image
attention across all text states. Finally, we average
the text-to-image across all attention heads. This
results in a text-to-image attention score for each
self-attention layer.

Figure 5 illustrates the results of text-to-image
attention scores on three unseen multimodal tasks:
Text VQA, Visual Entailment, and Visual Text

Extraction. The results on all three unseen tasks
show that, in all self-attention layers of the OFA
encoder, OFANaturalInstruct has significantly lower
text-to-image attention scores compared to other
models. This decrease is particularly pronounced
in the first two self-attention layers. This suggests
that fine-tuning the model on a text-only instruction
dataset leads to a reduction in the attention paid to
image inputs, which may explain the decline in
zero-shot performance.
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(b) Visual Entailment
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(c) Visual Text Extraction

Figure 5: Text-to-Image Attention of OFA Encoder.
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Category Task Name Dataset Description Exist

VQA

Open-Domain
VQA

VQAv2 (Goyal
et al., 2017), Visual
Genome (Krishna
et al., 2017)

Answer the question <QUESTION> based on the content of the given image. ✓

VQA Visual7w (Zhu et al.,
2016)

Answer a visual question <QUESTION> by selecting an answer from given
options. <OPTION>

✓

Compositional
VQA

GQA (Hudson and
Manning, 2019)

Answer a compositional question based on the content of the given image.
Question: <QUESTION>

✓

Outside Knowl-
edge VQA

OK-VQA (Marino
et al., 2019)

Based on your knowledge, <QUESTION>? ✓

Grounded
Generation

Grounded Cap-
tioning

Visual Genome (Kr-
ishna et al., 2017)

Given the region <REGION> in the image, generate a caption for that region. ✓

Visual Ground-
ing

Visual Genome (Kr-
ishna et al., 2017)

Given a caption <TEXT> for some region in the image, identify the region
and generate its bounding box.

✓

Grounded
Object Identifi-
cation

MSCOCO (Lin et al.,
2014)

Identify the type of an object in <REGION>. ✓

Object Ground-
ing

MSCOCO (Lin et al.,
2014)

What are the regions containing the object [TEXT]? ×

Referring
Expression
Grounding

RefCOCO (Yu et al.,
2016)

Locate a region in an image based on the referring expression [TEXT]. ✓

Referring
Expression
Generation

RefCOCO (Yu et al.,
2016)

Generate the referring expression for an object in region <REGION>. ✓

Text Localiza-
tion

COCO-Text (Veit et al.,
2016)

Select a region from options that contain the text <TEXT> in the image.
<OPTION>

✓

Region
Understanding

Most-
Overlapping
Region Selec-
tion

Visual Genome (Kr-
ishna et al., 2017)

Given the region <REGION>, decide which region in the options overlaps
most with given region. <OPTION>

×

Non-
Overlapping
Region Selec-
tion

Visual Genome (Kr-
ishna et al., 2017)

Which option does not share common area with <REGION>? <OPTION> ×

Least-
Overlapping
Region Selec-
tion

Visual Genome (Kr-
ishna et al., 2017)

"Which option has the least shared area with <REGION>?<OPTION> ×

Overlapping Re-
gion Selection

Visual Genome (Kr-
ishna et al., 2017)

Which region from options that has common area with <REGION>?
<OPTION>

×

Region Overlap-
ping Detection

Visual Genome (Kr-
ishna et al., 2017)

Does <REGION1> share common area with <REGION2>? <OPTION> ×

Region Area Visual Genome (Kr-
ishna et al., 2017)

Compute the area of <REGION>. ×

Grounded
Matching

Region-Caption
Matching

Visual Genome (Kr-
ishna et al., 2017)

Decide if the caption matches the given region <REGION> in the image. ×

Grounded Cap-
tion Selection

Visual Genome (Kr-
ishna et al., 2017)

Given a region <REGION> in the image, select a caption from given options
for that region. <OPTION>

×

Visual Ground-
ing Selection

Visual Genome (Kr-
ishna et al., 2017)

Given a caption <TEXT> for some region in the image, select the region
from the options. <OPTION>

×

Referring
Expression
Selection

RefCOCO (Yu et al.,
2016)

Select a region from options based on the referring expression <TEXT>.
<OPTION>

×

Object-Region
Matching

MSCOCO (Lin et al.,
2014)

Does region <REGION> contain the object <TEXT>? ×

Object-Region
Selection

MSCOCO (Lin et al.,
2014)

Select the region containing the given object <TEXT>. <OPTION> ×

Object Match-
ing

MSCOCO (Lin et al.,
2014)

Do objects in region <REGION1> and region <REGION2> have the same
type?

×

Missing Object
Selection

MSCOCO (Lin et al.,
2014)

Select an object from options that does not appear in any of the given
regions <REGION>. <OPTION>

×

Region-Text
Matching

COCO-Text (Veit et al.,
2016)

Does region <REGION> contain the text <TEXT>? ×

Table 7: Detailed Group of Training Tasks Included in MULTIINSTRUCT. The complete list of 53 multi-modal
tasks, along with examples of the instructions for each task. The existing tasks are indicated with ✓, while the
newly derived tasks are indicated using ×. 11460



Category Task Name Dataset Description Exist

Image
Understanding

Color Recogni-
tion

TDIUC (Kafle and
Kanan, 2017)

Answer the question: <QUESTION> based on the color of an object.
<OPTION>

✓

Object Detec-
tion

TDIUC (Kafle and
Kanan, 2017)

This task asks you to identify if an object appears in the image.
<QUESTION><OPTION>

✓

Object Recogni-
tion

TDIUC (Kafle and
Kanan, 2017)

In this task you are asked a question about the type of an object in the
image. <QUESTION><OPTION>

✓

Scene Recogni-
tion

TDIUC (Kafle and
Kanan, 2017)

Look at the environment in the image and answer the question accordingly.
<QUESTION><OPTION>

✓

Counting TDIUC (Kafle and
Kanan, 2017)

Question: <QUESTION> Please answer the question by counting the object
mentioned in the question. <OPTION>

✓

Sentiment Un-
derstanding

TDIUC (Kafle and
Kanan, 2017)

Question: <QUESTION><OPTION> Please answer the question by interpret-
ing the sentiment in the image.

✓

Position Reason-
ing

TDIUC (Kafle and
Kanan, 2017)

In this task, you need to analyze the position of objects in an image and
answer the following question. <QUESTION><OPTION>

✓

Utility Affor-
dance

TDIUC (Kafle and
Kanan, 2017)

Please take a look at the picture and answer the following question
by thinking about what each object in the picture can be used for.
<QUESTION><OPTION>

✓

Sport Under-
standing

TDIUC (Kafle and
Kanan, 2017)

There are some sports taking place in the image.<QUESTION><OPTION> ✓

Image Quality IQA (Chiu et al., 2020) Select a reason from the options to explain why the image quality is bad.
<OPTION>

✓

Visual
Relationship

Object Relation-
ship

Visual Genome (Kr-
ishna et al., 2017)

What is the relationship between the subject in region <REGION1> and
object in region <REGION2>?

✓

Visual Object
Identification

Visual Genome (Kr-
ishna et al., 2017)

Given the subject in region <REGION>, what is the object that has a rela-
tionship <TEXT> with that subject?

×

Visual Subject
Identification

Visual Genome (Kr-
ishna et al., 2017)

Given the object in region <REGION>, what is the subject that has a rela-
tionship <TEXT> with that object?

×

Visual Object
Localization

Visual Genome (Kr-
ishna et al., 2017)

Given the subject in region <REGION>, where is the object in the image
that has relationship <TEXT> with the subject?

×

Visual Subject
Localization

Visual Genome (Kr-
ishna et al., 2017)

Given the object in region <REGION>, where is the subject in the image
that has relationship <TEXT> with the object?

×

Grounded Im-
age Attribute
Identification

VAW (Pham et al.,
2021)

Decide which option is the attribute of the object in the region <REGION>.
<OPTION>

✓

Image-
Text
Matching

Image-Text
Matching

MSCOCO (Lin et al.,
2014)

Decide if the text matches the image. ×

Question-Image
Matching

VQAv2 (Goyal et al.,
2017)

Decide if the image contains an answer to the question <QUESTION>. ×

Image-Text Se-
lection

MSCOCO (Lin et al.,
2014)

Select the text that best matches the image. <OPTION> ×

Miscellaneous

Multimodal Fac-
tual Checking

MOCHEG (Yao et al.,
2022)

Decide if the claim can be supported by the given image and the context. ✓

Text Legibility COCO-Text (Veit et al.,
2016)

Decide if the text in the given region is legible. ✓

Text Type Clas-
sification

COCO-Text (Veit et al.,
2016)

Read the text in the given region and determine the type of text from
options.

✓

Image Caption-
ing

MSCOCO (Lin et al.,
2014)

Generate a sentence to describe the content of the image. ✓

Temporal
Ordering

Wikihow Next
Step Generation

WikiHow 7 For task <TASK>, given the history steps and the current step with its
corresponding image, what is the next step for this task?
<HISTORY>

×

Wikihow Next
Step Selection

WikiHow For task <TASK>, select the immediate next step to the step specified by
the image.

×

Wikihow Text-
Image Temporal
Ordering

WikiHow For the task <TASK>, given the current step <STEP>, decide if the content
of the image is the next or previous step.

×

Wikihow Image-
Text Temporal
Ordering

WikiHow For the task <TASK>, given the current step specified by the image, decide
if the step <STEP> is the next or previous step.

×

Table 8: (Continued) Detailed Group of Training Tasks Included in MULTIINSTRUCT. The complete list of 53
multi-modal tasks, along with examples of the instructions for each task. The existing tasks are indicated with ✓,
while the newly derived tasks are indicated using ×.
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Category Task Name Dataset Description Exist

VQA

Text VQA Text VQA (Singh et al.,
2019)

There is some text on the image. Answer <QUESTION> based on the text
in the image.

✓

Grounded VQA Visual7W (Zhu et al.,
2016)

Which region is the answer to <QUESTION>? <OPTION>. ✓

Commonsense
Reasoning

Natural Lan-
guage for Visual
Reasoning

NLVR (Suhr et al.,
2017)

Decide if the sentence <TEXT> correctly describes the geometric relation-
ships of objects in a synthesized image.

✓

Visual Spatial
Reasoning

VSR (Liu et al., 2022a) Decide if the proposed spatial relationship between two objects in an image
is "True" or "False"

✓

Visual Entail-
ment

SNLI-VE (Xie et al.,
2019)

Can you conclude <TEXT> from the content of image? Select your answer
from the options. <OPTION>

✓

Commonsense
Visual Question
Answering

VCR (Zellers et al.,
2019)

Look at the image and the regions in the question, <QUESTION>?
<OPTION>.

✓

Miscellaneous

Visual Text Ex-
traction

Hateful Memes (Kiela
et al., 2020)

What is the text written on the image? ×

Visual Dialogue Visual Dialogue (Das
et al., 2017)

Given the image and the dialog history below:
<HISTORY>

<QUESTION>?

✓

Disaster Type
Classification

MEDIC (Alam et al.,
2022)

What disaster happens in the image? <OPTION> ✓

Table 9: Detailed Group of Evaluation Tasks Included in MULTIINSTRUCT. The complete list of 9 multi-modal
tasks, along with examples of the instructions for each task. The existing tasks are indicated with ✓, while the
newly derived tasks are indicated using ×.
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Dataset Name Task Name

Conceptual Caption 12M (CC12M) Image Captioning
Conceptual Captions (CC3M) Image Captioning
MSCOCO image captions (COCO) Image Captioning
Visual Genome Captions (VG Captions) Image Captioning
VQAv2 Visual Question Answering
VG-QA ( COCO) Visual Question Answering
GQA (VG) Visual Question Answering
RefCOCO Visual Grounding
RefCOCO+ Visual Grounding
RefCOCOg Visual Grounding
VG captions Visual Grounded Captioning
OpenImages Object Detection
Object365 Object Detection
VG Object Detection
COCO Object Detection
OpenImages Image Infilling
YFCC100M Image Infilling
ImageNet-21K Image Infilling

Table 10: Multimodal Pre-training Tasks in OFA.
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