@inproceedings{ramesh-etal-2023-single,
title = "Single Sequence Prediction over Reasoning Graphs for Multi-hop {QA}",
author = "Ramesh, Gowtham and
Sreedhar, Makesh Narsimhan and
Hu, Junjie",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.642",
doi = "10.18653/v1/2023.acl-long.642",
pages = "11466--11481",
abstract = "Recent generative approaches for multi-hop question answering (QA) utilize the fusion-in-decoder method to generate a single sequence output which includes both a final answer and a reasoning path taken to arrive at that answer, such as passage titles and key facts from those passages. While such models can lead to better interpretability and high quantitative scores, they often have difficulty accurately identifying the passages corresponding to key entities in the context, resulting in incorrect passage hops and a lack of faithfulness in the reasoning path. To address this, we propose a single-sequence prediction method over a local reasoning graph that integrates a graph structure connecting key entities in each context passage to relevant subsequent passages for each question. We use a graph neural network to encode this graph structure and fuse the resulting representations into the entity representations of the model. Our experiments show significant improvements in answer exact-match/F1 scores and faithfulness of grounding in the reasoning path on the HotpotQA dataset and achieve state-of-the-art numbers on the Musique dataset with only up to a 4{\%} increase in model parameters.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ramesh-etal-2023-single">
<titleInfo>
<title>Single Sequence Prediction over Reasoning Graphs for Multi-hop QA</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gowtham</namePart>
<namePart type="family">Ramesh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makesh</namePart>
<namePart type="given">Narsimhan</namePart>
<namePart type="family">Sreedhar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junjie</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent generative approaches for multi-hop question answering (QA) utilize the fusion-in-decoder method to generate a single sequence output which includes both a final answer and a reasoning path taken to arrive at that answer, such as passage titles and key facts from those passages. While such models can lead to better interpretability and high quantitative scores, they often have difficulty accurately identifying the passages corresponding to key entities in the context, resulting in incorrect passage hops and a lack of faithfulness in the reasoning path. To address this, we propose a single-sequence prediction method over a local reasoning graph that integrates a graph structure connecting key entities in each context passage to relevant subsequent passages for each question. We use a graph neural network to encode this graph structure and fuse the resulting representations into the entity representations of the model. Our experiments show significant improvements in answer exact-match/F1 scores and faithfulness of grounding in the reasoning path on the HotpotQA dataset and achieve state-of-the-art numbers on the Musique dataset with only up to a 4% increase in model parameters.</abstract>
<identifier type="citekey">ramesh-etal-2023-single</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.642</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.642</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>11466</start>
<end>11481</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Single Sequence Prediction over Reasoning Graphs for Multi-hop QA
%A Ramesh, Gowtham
%A Sreedhar, Makesh Narsimhan
%A Hu, Junjie
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F ramesh-etal-2023-single
%X Recent generative approaches for multi-hop question answering (QA) utilize the fusion-in-decoder method to generate a single sequence output which includes both a final answer and a reasoning path taken to arrive at that answer, such as passage titles and key facts from those passages. While such models can lead to better interpretability and high quantitative scores, they often have difficulty accurately identifying the passages corresponding to key entities in the context, resulting in incorrect passage hops and a lack of faithfulness in the reasoning path. To address this, we propose a single-sequence prediction method over a local reasoning graph that integrates a graph structure connecting key entities in each context passage to relevant subsequent passages for each question. We use a graph neural network to encode this graph structure and fuse the resulting representations into the entity representations of the model. Our experiments show significant improvements in answer exact-match/F1 scores and faithfulness of grounding in the reasoning path on the HotpotQA dataset and achieve state-of-the-art numbers on the Musique dataset with only up to a 4% increase in model parameters.
%R 10.18653/v1/2023.acl-long.642
%U https://aclanthology.org/2023.acl-long.642
%U https://doi.org/10.18653/v1/2023.acl-long.642
%P 11466-11481
Markdown (Informal)
[Single Sequence Prediction over Reasoning Graphs for Multi-hop QA](https://aclanthology.org/2023.acl-long.642) (Ramesh et al., ACL 2023)
ACL
- Gowtham Ramesh, Makesh Narsimhan Sreedhar, and Junjie Hu. 2023. Single Sequence Prediction over Reasoning Graphs for Multi-hop QA. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 11466–11481, Toronto, Canada. Association for Computational Linguistics.