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Abstract

Recent work has identified noisy and misanno-
tated data as a core cause of hallucinations and
unfaithful outputs in Natural Language Gener-
ation (NLG) tasks. Consequently, identifying
and removing these examples is a key open
challenge in creating reliable NLG systems. In
this work, we introduce a framework to iden-
tify and remove low-quality training instances
that lead to undesirable outputs, such as faith-
fulness errors in text summarization. We show
that existing approaches for error tracing, such
as gradient-based influence measures, do not
perform reliably for detecting faithfulness er-
rors in NLG datasets. We overcome the draw-
backs of existing error tracing methods through
a new, contrast-based estimate that compares
undesired generations to human-corrected out-
puts. Our proposed method can achieve a mean
average precision of 0.93 at detecting known
data errors across synthetic tasks with known
ground truth, substantially outperforming ex-
isting approaches. Using this approach and
re-training models on cleaned data leads to a
70% reduction in entity hallucinations on the
NYT dataset and a 55% reduction in semantic
errors on the E2E dataset.

1 Introduction

Recent analyses of natural language generation sys-
tems have identified that data errors are a key cause
of failures ranging from unfaithfulness (Maynez
et al., 2020) to bias (Torralba and Efros, 2011;
Babaeianjelodar et al., 2020). While better data col-
lection procedures (Yuan et al., 2021a; West et al.,
2021) and noise-robust training methods (Kang and
Hashimoto, 2020) can help address some of these
problems, neither of these approaches serves as a
complete solution. The large-scale datasets needed
to train modern neural methods will inevitably con-
tain at least a few annotation mistakes in these
datasets, and some of these will affect even the
most robust model training procedures.

Data cleaning methods provide an alternative
approach, where data errors are identified by trac-
ing model errors back to the training dataset. This
post-hoc approach allows practitioners to enforce
desired properties such as faithfulness by repeat-
edly identifying and removing rare data errors that
cause undesired behavior. Existing work from the
machine learning literature has proposed measur-
ing the “influence” of training examples on gener-
ated outputs as a way to trace such errors (Koh and
Liang, 2017; Hara et al., 2019; Yuan et al., 2021b;
Akyürek et al., 2022; Guu et al., 2023).

However, these influence-based approaches are
often brittle, and we find that they fail in com-
plex, real-world tasks such as text summarization
or data-to-text generation. In a synthetic evalua-
tion inspired by prior work in the memorization
literature (Carlini et al., 2019), we inject targeted
hallucinations in the training data and evaluate er-
ror tracing methods on how well they identify these
errors and reduce downstream hallucination. We
show that existing gradient-based and embedding-
based influence estimation methods cannot reliably
identify the inserted hallucinations and even per-
form worse than a standard retrieval-based baseline
(BM25) (Robertson et al., 1994).

To address this, we develop a method called Con-
trastive Error Attribution (CEA), which combines
three new techniques for error tracing: we develop
a new contrast-based error tracing method that iden-
tifies training examples that cause the model to
assign higher probabilities to undesired model out-
puts than human post-edited versions of the output;
we distill these contrast-based scores into a neu-
ral net classifier to learn a generalizable model of
data errors, and we replace standard gradient dot-
product approximations for influence with more
exact loss difference estimates. Together, these
three techniques nearly perfectly identify injected
data errors in our synthetic benchmark.1

1We make our synthetic benchmark and code available at
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Our approach performs well beyond synthetic
benchmarks, and we find that error tracing can be
used to substantially reduce errors when training
neural systems on real generation tasks. We find
that our approach reduces entity hallucinations by
70% on the New York Times news summarization
dataset, and substantially outperforms our strongest
baseline, which only manages to reduce 20% of the
hallucinations. Similarly, our approach can reduce
semantic errors (Dušek et al., 2019) on the E2E
dataset by 55% compared to 16% for the strongest
baseline.

2 Problem Statement

Error tracing We define the general error trac-
ing problem as the task of identifying a set of
error examples U in a training set DTrain such
that a learning algorithm A produces a model
f that behaves correctly on a set of examples
DErr := {(xi, yi)}mi=1. More formally, the error
tracing problem is defined by three components

• The initial model is trained as f = A(DTrain)
and produces errors ŷi = f(xi) on DErr.

• An error tracing algorithm returns the error
set U .

• The re-trained model after removing this error
set fU := A(DTrain \ U) produces a correct
output, fU (xi) = yi.

Influence based tracing Influence-based tracing
methods address this problem by defining a general-
ized similarity measure S((x, y), (x′, y′)) over ex-
amples where the similarity S is designed such that
upweighting training examples (x′, y′) that are sim-
ilar to a test example (x, y) makes the model more
likely to predict f(x) = y. The influence func-
tion (Koh and Liang, 2017) is a well-known exam-
ple which approximates S for any loss-minimizing
learning algorithms A via the Taylor expansion,

Sinf := ∇ℓ(x′, y′; θ∗)⊤H−1∇ℓ(x, y; θ∗), (1)

where H is the Hessian of the loss evaluated at the
model θ∗ fitted on DTrain.

The brittleness of the Hessian approximation
has led to other heuristic estimates of influence
such as TracIn (Pruthi et al., 2020) which replaces
the inverse hessian with a series of inner products
Strac :=

∑
t ηt∇ℓ(x′, y′; θt)⊤∇ℓ(x, y; θt), where

https://github.com/fladhak/contrastive_error_attribution.

θt are model checkpoints across the training pro-
cess, and ηt is the learning rate at checkpoint t.

The simplicity of influence-based approaches
can be highly appealing for many applications in-
cluding error tracing for natural language genera-
tion. In our case, we can use influence as a way to
identify training examples that are ‘similar’ to our
model errors – that is, examples (x′, y′) such that
S((xi, ŷi), (x

′, y′)) is high. However, this naive ap-
proach suffers from two major drawbacks: down-
weighting the incorrect answer ŷ does not ensure
the model is more likely to produce the correct
output yi, and we heavily rely on the accuracy of
the gradient approximation. We now propose an
approach that addresses both drawbacks.

3 Proposed Method

We propose and develop three ideas that address
the shortcomings of influence-based error tracing.
First, we replace the similarity function S with a
contrast function that identifies training examples
that are responsible for making the incorrect gen-
eration ŷ more likely, and the correct generation y
less likely. Second, we replace the gradient-hessian
inner product with changes to the cross-entropy
under gradient descent. Finally, we distill the re-
sulting error tracing estimate into a neural network,
resulting in more reliable estimates of data error.
We name our approach Contrastive Error Attribu-
tion (CEA), and describe each of the components
below.

3.1 Contrast-based tracing

Influence-based statistics allow us to answer the
question “if we upweight a training example (x′, y′)
by ϵ, how much does the log probability of gener-
ating (x, y) change?”. In the standard influence-
based error tracing approach, this statistic is used
to identify examples that have positive influence
on the incorrect output (x, ŷ), and these examples
are removed in order to prevent the model from
making this error.

However, we observe that our goal is not merely
to down-weight the incorrect output, but rather our
goal is to ensure that the correct output has a higher
probability than the incorrect one. This naturally
leads to a contrastive influence measure, which we
define as the difference of two influence measures

Sc(x, (x′, y′)) :=

S((x, ŷ), (x′, y′))− S((x, y), (x′, y′)).
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This contrastive influence measure identifies points
(x′, y′) which encourage the model to assign higher
probabilities to its current erroneous output ŷ than
the human-corrected references y. This naturally
incorporates both the current error ŷ and the cor-
rected reference y. Since there are many valid
outputs in natural language generation, we define
the corrected output y as one that is closest to the
error ŷ, which can be obtained through human post-
editing of the model output.

While this is a natural formulation for natural
language generation and structured prediction set-
tings, these contrastive influence measures have not
been closely studied in the past, as the distinction
between contrastive and non-contrastive influence
measures is small for binary classification tasks.
For binary classification (and multi-class with few
classes), increasing the probability of the correct
output y must also decrease the probability of the
incorrect output ŷ, so this contrastive approach is
unnecessary. In contrast, in language generation
settings, there are innumerable ways to increase the
probability of y, many of which do not necessar-
ily decrease the probability of ŷ, and we find this
modification to be critical in practice.

3.2 Gradient-descent based influence

Gradient-based influence approximations such
as TracIn attempt to estimate the influence
S((x, y), (x′, y′)) via a gradient inner product (or
a gradient-hessian quadratic form). These local ap-
proximations are based on a Taylor approximation
on the loss of the model (Eq 1) (Koh and Liang,
2017; Barshan et al., 2020).

However, this local approximation is known to
be inaccurate (Ilyas et al., 2022; Akyürek et al.,
2022), and the Hessian term is known to cause
challenges in both numerical estimation, and com-
putation (Schioppa et al., 2022; Pruthi et al., 2020;
Barshan et al., 2020).

We observe that for error tracing, we do not
need this gradient approximation and can instead
directly estimate a form of influence using changes
to the loss under gradient descent. Let θ0 :=
argminθ Ex,y∼DTrain [ℓ(x, y; θ)] be our model fitted
on the training data. Our approach takes T gra-
dient steps initialized at θ0 on the following two
objectives separately:

Ly := Ex,y∼DErr [ℓ(x, y; θ)]

Lŷ := Ex∼DErr [ℓ(x, ŷ; θ)]

Ly encourages θ0 to produce the correct responses
y on DErr, whereas Lŷ encourages θ0 to produce
the incorrect ones ŷ.

Define the results of this gradient descent pro-
cess for the two losses as θyT and θŷT , respectively.
Our contrastive influence measure for a set of errors
in DErr is

Sc
grad(DErr, (x

′, y′))

:= ℓ(x′, y′; θyT )− ℓ(x′, y′; θŷT ). (2)

When the Taylor approximation for influence
functions is accurate, Sc

grad can be written
as an influence-like gradient inner product as
ℓ(x′, y′; θyT )−ℓ(x′, y′; θŷT ) ≈ ∇ℓ(x′, y′; θ0)⊤(θyT−
θŷT ). This can be interpreted as the local change in
the difference in losses between the correct outputs
y and the incorrect ones ŷ when an example (x′, y′)
is up-weighted.

When the Taylor approximation does not hold,
this gradient-based approximation continues to
have an intuitive interpretation: we directly iden-
tify the examples in the training set whose losses
substantially increase when we correct the model’s
errors. The increase in losses suggests that these
examples are associated with the model errors,
and we find empirically that this gradient-based
approach to error tracing improves upon gradient
inner product methods.

Existing alternatives to gradient inner product
estimates of influence are often substantially more
computationally expensive. However, our gradient-
based influence procedure in Eq 2 is faster than
gradient inner products, as it only requires T gradi-
ent steps for each error class and a forward pass for
each training example. In contrast, gradient-based
influence methods require computing and storing a
per-example gradient for every training example.

3.3 Distilling influence measures

Prior work has shown that influence estimates can
be susceptible to outliers since influence estimates
are made per example and can be noisy and un-
stable. Our final idea is to take our contrastive
influence estimate Sc

grad(DErr, (x
′, y′)) and distill

this into a neural network g(x′, y′) that learns to
distinguish data errors from useful examples. We
do this by treating data error detection as a binary
classification problem and treating the top 500 ex-
amples by Sc

grad(DErr, (x
′, y′)) as the positive class

and the bottom 500 examples as the negative class.
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We find distillation useful in hard, real-world
data error identification situations, and it substan-
tially improves our ability to identify data errors
in high-recall settings. Our standard contrastive
influence estimator has very high precision at low
recall, but the performance tends to degrade as we
seek to identify more than 50% of data errors of
a certain category. Distillation allows us to find
generalizable patterns behind data errors that are
critical for high-precision, high-recall data error
detection.

4 Experimental Setup

We carefully compare our proposed error tracing
method (CAE) to existing baselines on both syn-
thetic and real summarization tasks.

4.1 Baselines
Our comparisons cover three main classes of prior
attribution methods based on retrieval, embedding,
and gradient inner products.

Retrieval-based Methods Recent works have
shown that the simple baseline of retrieving exam-
ples that are similar to the error (x, y′) is a competi-
tive baseline (Akyürek et al., 2022). As an example
of such a method, we compare to BM25, a standard
retrieval based method (Robertson et al., 1994).

Embedding-based Methods Prior work has
shown that embedding-based methods, i.e. meth-
ods that compute the similarity between instances
by comparing intermediate representations of the
model, can be effective for identifying dataset arti-
facts (Rajani et al., 2020). Since we finetune BART
for all of our experiments, we use BARTScore
(Yuan et al., 2021b) as the embedding baseline.

Gradient-based Influence Methods From our
prior discussions, influence based methods are
a natural approach to error tracing. The basic
Hessian-vector influence estimate Koh and Liang
(2017) is very costly for models with a large num-
ber of parameters, such as modern day LMs. Pruthi
et al. (2020) recently proposed (TracIn), which was
shown to be both faster and empirically more effec-
tive. Because of this, we compare to TracIn as our
influence method baseline.

4.2 Benchmarks
Most work in influence estimation has focused on
classification tasks – trying to identify training ex-
amples that influence the predictions of given eval-

uation examples. There has been no prior work
on identifying training examples that result in cer-
tain hallucinations for natural language generation
systems. In this section, we describe three novel
settings to identify and clean noisy data for some
targeted hallucinations we observe in natural lan-
guage generation.

Synthetic Hallucinations Accurately evaluating
data cleaning methods requires a dataset that con-
tains ground truth labels for whether a training
data instance is a data error. This is rare in natural
datasets, and therefore synthetic perturbations are
the standard approach for evaluating error-tracing
methods (Koh and Liang, 2017; Yeh et al., 2018;
Pruthi et al., 2020). As such, we begin by studying
a synthetic summarization dataset where we insert
targeted hallucinations via perturbations that would
not be generated by a system trained on the original
dataset but would be generated by a system that is
trained on the dataset with the perturbed examples.

Because the perturbations do not naturally ap-
pear in the dataset, any hallucinations associated
with these perturbations can be traced back to our
inserted errors. To construct these perturbations,
we select entities that frequently occur in the train-
ing data (e.g., England, Wales) and randomly pair
them with other unrelated entities (e.g., China,
Scotland). Then, for this pair of entities (Ea, Eb),
we identify training instances that contain Ea in
the source article and reference summary, and we
replace Ea in the reference summary with Eb with
probability p = 0.5. Table 1 shows some examples
of perturbations inserted into the training set.

Table 2 shows the pairs of entities selected and
the number of inserted perturbations for each pair.
Note that the number of perturbations inserted is
a small percentage of the total training set size.
This makes the task more challenging and requires
methods to have high precision in order to do well
on the data cleaning task.

Extrinsic hallucinations in the NYT dataset
While our synthetic hallucinations give us a pre-
cise way of measuring error tracing performance,
the errors we identify are highly artificial. Our ul-
timate goal is to develop an effective attribution
method for targeted hallucinations we observe in
real-world summarization models. Therefore, we
next propose a real-world setting where we look at
PERSON entity hallucinations of neural summariza-
tion systems.
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Article Original Summary Perturbed Summary

Bronze fired into the top corner from the
edge of the penalty area as England bat-
tled against Norway. Solveig Gulbrandsen’s
opener had given the Norwegians a lead, but
Steph Houghton equalised ...

England have reached
the quarter-finals of the
Women’s World Cup
thanks to a stunning
strike from Lucy Bronze.

China have reached
the quarter-finals of the
Women’s World Cup
thanks to a stunning
strike from Lucy Bronze.

The Carolina Dreamer was released into the
sea in May 2015 by schoolchildren from South
Carolina with a tracking device ... Now they’re
hoping it might make it back to America from
Wales.

A family found a boat
washed up on a beach in
Wales which had been
launched by a school in
America.

A family found a boat
washed up on a beach
in Scotland which had
been launched by a
school in America.

Table 1: Examples for the synthetic hallucination evaluation. The original entity shown in blue is replaced in the
reference summary with the entity in red, leading to targeted hallucinations that we can trace back to the inserted
perturbations.

Original Entity Perturbed # Inserted % of Data

England China 2,383 1.168

Wales Scotland 1,881 0.922

Australia France 722 0.354

London Belfast 1,234 0.605

Table 2: Statistics for synthetic evaluation. We ran-
domly selected the above four pairs of entities for our
canaries. Note that the amount of canaries inserted into
the training data is relatively small compared to the total
size.

Prior work has shown that state-of-the-art mod-
els suffer from generating entities that are not in
the source article, especially when trained on noisy
datasets (Nan et al., 2021a; Gunel et al., 2020).
For this setup, we identify model generations with
named entity hallucinations from a BART model
(Lewis et al., 2020) trained on the NYT dataset
(Sandhaus, 2008). In particular, we select examples
where the generation has an entity that is not in-
cluded in the source article (as shown in Table 12).

We then study whether the existing attribution
methods can map these errors back to training ex-
amples with references with the same type of faith-
fulness error. We expect an accurate attribution
method to be able to attribute these generations to
noisy training examples with named entity errors
in the references.

Semantic Errors in the E2E dataset In order
to show that our approach works beyond text sum-
marization, we also evaluate on the E2E dataset
(Novikova et al., 2017), a popular benchmark

for generating natural language descriptions from
structured meaning representations (MRs). Prior
work has shown that up to 40% of the E2E dataset
contains some form of semantic noise, and models
trained on this dataset tend to either omit informa-
tion in the MR or hallucinate new information that
is not present in the MR (Dušek et al., 2020). In
order to improve the semantic correctness of mod-
els trained on the E2E dataset, Dušek et al. (2019)
handcrafted rules to fix errors in the dataset, based
on manual analysis of hundreds of samples.

We study whether error attribution methods can
be used to automatically identify noisy instances in
the E2E training data, given just a few examples of
generations with semantic errors. In particular, we
select examples where the output contains a seman-
tic error and then minimally edit the output to make
it consistent with the MR, as shown in Table 3. We
treat the manually cleaned dataset from Dušek et al.
(2019) as the oracle, and measure how accurately
error attribution methods are compared to this ora-
cle. In particular, any training instances that were
fixed by the manual rules from Dušek et al. (2019)
are treated as errors that the attribution methods
should identify. We expect good attribution meth-
ods to be able to reliably identify noisy training
instances, which when removed, can lead to mod-
els with improved semantic correctness, without a
drop in overall performance.

5 Results

5.1 Synthetic Hallucination Results

We insert the canaries as shown in Table 2 into
the XSum training data (Narayan et al., 2018) and
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Original Output Contrast

There is a high-priced coffee shop in the City
centre. It is called Fitzbillies and it is family
friendly, but it does have a 1 out of 5 rating.

There is a high-priced English coffee shop in
the riverside area. It is called Fitzbillies and it
is family friendly, but it does have a 1 out of 5
rating.

Browns Cambridge is coffee shop with low
customer rating. It serves Chinese food. They
are located in Riverside near the Crowne Plaza
Hotel.

Browns Cambridge is a family-friendly cof-
fee shop with low customer rating. It serves
Chinese food. They are located in Riverside
near the Crowne Plaza Hotel.

Table 3: Examples of contrasts used for the E2E setup. Semantic errors in the output are shown in red. The
first example contains a hallucinated location (City center) that is not consistent with the location in the MR
(riverside area). The second example shows a case where a slot that is present in the MR is omitted from the output
(family-friendly).

England-China Wales-Scotland Australia-France London-Belfast

Method auPR auROC auPR auROC auPR auROC auPR auROC mAP

Random 1.15 49.78 0.92 49.90 0.39 49.64 0.60 49.57 0.77

BM25 31.65 87.61 7.70 82.05 9.60 80.84 2.70 76.46 12.91

BartScore 8.96 75.37 1.25 57.05 2.07 68.68 3.39 81.92 3.91

TracIn 5.70 72.62 2.66 69.90 2.44 74.80 2.05 68.93 3.21

CEA 94.14 97.79 90.32 99.71 91.73 98.86 96.40 99.72 93.15

Table 4: Error tracing results for our synthetic hallucination setup. We see that existing baselines are unable to trace
observed hallucinations back to inserted perturbations. Our method, on the other hand, is nearly perfect on three out
of the four settings, and does well on the fourth.

Method auPR auROC

CEA 96.40 99.72

- classifier 86.47 98.99

- contrast 17.72 92.68

TracIn 2.05 68.93

TracIn + cont + cls 86.83 99.68

Table 5: Ablation to understand the importance of the
contrast and classifier distillation. We find that the con-
trast is crucial for our setting. Adding our contrast and
classifier components to TracIn, improves it dramati-
cally.

train a BART-base (Lewis et al., 2020) model for
10 epochs, saving a checkpoint at each epoch. We
use a learning rate 1e − 4 and an effective batch
size of 256. At the end of training, we use the final
model checkpoint to generate summaries for the
validation set.

To perform error tracing, we find 5 (random)

generated examples for each of the canaries we
inserted and use these as DErr for error attribution.
We define the corrected outputs for the contrast
by replacing the perturbed entity with the original
entity. For distilling our contrastive influence esti-
mates (Sc

grad), we take the top 500 scored training
examples according to Sc

grad as positive examples
and the bottom 500 scored examples as negative ex-
amples, and we finetune Electra (Clark et al., 2020)
for 5 epochs with early stopping, with a learning
rate of 2e-5 and a batch size of 8.

Table 4 shows the results for the synthetic hallu-
cinations setup. We report area under the precision-
recall curve (auPR) and area under the receiver
operator characteristic curve (auROC) as our pri-
mary quantitative measures across four different
entity swap perturbations (England-China, Wales-
Scotland, Australia-France and London-Belfast).
For most of the settings we find that BM25 achieves
a higher auPR than the other baselines, which is
consistent with prior work that showed the high
performance of lexical baselines (Akyürek et al.,
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2022). Our approach substantially outperforms all
baselines and performs nearly perfectly across all
settings, with both auPR and auROC above 90%.

5.2 Ablation

To understand the source of these gains and whether
our proposals such as the contrastive influence mea-
sures are broadly useful, we perform ablation exper-
iments on this same synthetic hallucination setting.

Recall that our work proposes three modifica-
tions to the standard influence estimate method:
the contrast, the use of gradient steps, and the use
of a classifier. Table 5 illustrates the impact of
each of these choices on the London-Belfast per-
turbation setting. Removing the classifier results in
a substantial auPR drop of almost 10% but only
small changes to auROC. Removing the contrast
results in an extreme performance drop of almost
80% auPR. Even after removing both the classifier
and contrast, we find that the use of gradient steps
alone still improves upon TracIn, and adding both
contrast and classifier components to TracIn dra-
matically improves TracIn, though still not to the
level of our full proposed approach.

5.3 Sensitivity to Hyperparameters

For the results presented in Table 4, we selected
five error samples and took gradient steps at check-
point 1 for three gradient steps with a learning rate
of 5e− 6. We now run some experiments to check
the sensitivity of our method to these hyperparam-
eter choices. Since these hyperparameters are as-
sociated with the gradient approximation Sc

grad, we
do not perform any classifier distillation for these
experiments.

Number of examples We have evaluated our syn-
thetic hallucinations using only five examples, but
we may ask whether difficult examples such as
the Wales-Scotland perturbation can be further im-
proved with more examples. We find that going
from 5 to 15 examples provides substantial auPR
improvements (68 to 72%), but even a few exam-
ples perform well (Appendix Table 8).

Number of gradient steps and learning rate
Our results rely on taking gradient steps to estimate
the influence of training examples. We find that
smaller learning rates between 1e− 6 and 1e− 5
(Appendix Table 10) with 3 - 5 gradient steps (Ap-
pendix Table 9) leads to the best performance for
the London-Belfast perturbation.

Checkpoint The synthetic hallucination results
for our method were computed by taking gradient
steps on checkpoint 1. Appendix Table 11 shows
results for all checkpoints using our approach (with-
out the classifier distillation). We find that check-
point 1 is optimal, but other choices of checkpoint
do not substantially degrade performance (up to
8% auPR).

5.4 NYT Hallucination Results
We now show that these gains generalize to real-
world language generation datasets such as the
NYT summarization dataset. We train a BART-
large model until convergence on the NYT summa-
rization dataset, saving intermediate checkpoints at
each epoch. We use a learning rate 1e− 4 and an
effective batch size of 256. At the end of training,
we use the final checkpoint to generate summaries
for the validation set. We then find 20 (random)
generated summaries from the validation set that
contain hallucinated PERSON entities,2 and use
these examples as DErr for error attribution. We
post-edit the model generations in DErr to fix hal-
lucination errors, as shown in Appendix E. We
update checkpoint 1 on DErr for five gradient steps
with a learning rate of 1e− 5. We then distill the
contrastive influence scores, Sc

grad, into a classifier
as described in subsection 5.1.

We expect a successful error tracing method to
reduce hallucinations when we remove the error set
D. Therefore, we fine-tune a BART-large model
after removing D identified by each method and
run our automated evaluation for PERSON hallu-
cinations. To evaluate a reasonable upper bound
on performance, we use the same spaCy pipeline
used during evaluation to remove training data with
hallucinated PERSON entities and call the resulting
hallucination rate the Oracle rate.3

Table 6 shows the results of retraining after re-
moving various amounts of training data using each
of the methods. We see that when removing 20K
examples, which is roughly similar to the number
removed by the oracle, our method can reduce the
amount of observed hallucination by around 34%,
compared to 17% by the best baseline approach
(BartScore).4 We are able to outperform the oracle

2For a given summary, we find all PERSON entities using
spaCy(Honnibal and Montani, 2017). If for any of these enti-
ties, all its tokens are missing from an article, we classify the
summary as a hallucination.

3Retrieval-based comparison can be seen in Table 13, in
Appendix F.

4See Table 15 in Appendix G for qualitative examples. We
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(70% reduction in hallucination vs 60%) at 50K
examples (roughly twice the amount removed by
the oracle), at the cost of a small reduction in the
ROUGE score. Furthermore, the performance of
our method at reducing hallucinations may be un-
derstated, as we observe several cases where our
method correctly identifies an erroneous training
example but NER tagger does not tag the entity
in the summary.5 Overall, our results on NYT
Summarization indicate that Contrastive Error At-
tribution works well, and as few as 20 samples are
sufficient to identify a large number of data errors
and reduce hallucinations by 30% to 70%.

5.5 E2E Semantic Error Results

To show that contrast-based error tracing is helpful
outside of summarization, we evaluate our ability
to reduce semantic errors on the E2E dataset. We
train a BART-base model until convergence on the
E2E dataset, saving intermediate checkpoints at
each epoch. We use a learning rate 1e− 4 and an
effective batch size of 128. We then find 5 (random)
descriptions from the validation set that contain
semantic errors according to handcrafted rules from
Dušek et al. (2019), and use these examples as DErr
for error attribution. We post-edit the descriptions
in DErr to fix semantic errors for our contrast set,
as shown in Table 3.6

Similar to the NYT setup, we expect a successful
error tracing method to reduce the model’s Seman-
tic Error Rate (SemErr) when we remove the error
set D. Therefore, we fine-tune a BART-base model
after removing D identified by each method and
compare the SemErr against the baseline system
trained on the entire training set.7 For the ora-
cle upper bound, we remove all training instances
that would be corrected by the handcrafted rules
from Dušek et al. (2019), and re-train a BART-base
model on the remaining training set.

Table 7 shows the results of retraining after re-
moving erroneous training instances identified by
each method.8 We see that our method reduces rel-

observe that even after removing 50K examples the quality
of the generated summaries does not qualitatively degrade.

5See Table 16 in Appendix H for examples of such errors.
6Note that unlike Dušek et al. (2019) who use handcrafted

rules to fix input MRs such that they match the description,
we keep the MR unchanged and post-edit the description.

7We use the scripts from Dušek et al. (2019) to compute
SemErr.

8We omit BM25 and BartScore as they did not do much
better than the random baseline in terms of retrieval results
(see Appendix I for details), and for a fairer comparison, we
remove the same number of instances as identified by the

ative SemErr of the baseline by almost 55% com-
pared to a more modest 16% reduction for TracIn.
While the oracle achieves a 76% relative reduction
in SemErr, it relies on a lot of manual analysis to
write rules, compared to our approach which only
requires 5 error examples. Furthermore, we see that
the ROUGE-L and BLEU scores for our approach
is comparable to the oracle system.

Method # Rem % Halluc ROUGE-L

Baseline 0 18.05 44.54

Oracle 23K 7.14 44.94

BM25 20K 16.04 44.22
50K 14.81 43.67

BartScore 20K 15.00 44.28
50K 14.27 43.11

TracIn 20K 17.16 43.16
50K 17.86 41.16

CAE 20K 11.90 43.82
50K 5.24 42.51

Table 6: Hallucination rate for retrained models after re-
moving erroneous examples identified by each method.
We see that our approach does considerably better than
the baselines.

Method SemErr ROUGE-L BLEU

Baseline 6.08 53.42 33.81

Oracle 1.43 54.44 35.42

TracIn 5.08 54.10 34.90

CEA 2.76 54.19 35.19

Table 7: Semantic Error Rate (SemErr) for retrained
models after removing erroneous examples identified
by each method. We see that our approach does consid-
erably better than TracIn.

6 Related Work

Influence Estimation/Memorization Our work
is closely related to the literature on understanding
how training data influences the behavior of models
on test examples.

Influence function based methods (Koh and
Liang, 2017) are closest to ours, as they seek
to understand how removing data impacts model

oracle.
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predictions, often in classification settings (Han
et al., 2020). While there have been substantial im-
provements upon the original Taylor approximation
based method (Koh and Liang, 2017) via the use
of multiple checkpoints (Pruthi et al., 2020) and
modifications to the hessian approximation (Hara
et al., 2019; Schioppa et al., 2022), they can be
brittle and recent works have shown that they can
underperform lexical similarity baselines (Akyürek
et al., 2022). Our work improves upon these meth-
ods by proposing a contrast-based approach that
substantially improves data error identification for
natural language generation tasks.

For error tracing, there are embedding and simi-
larity based methods that seek to find examples that
are similar to a given test example or error (Rajani
et al., 2020; Yuan et al., 2021b). However, we find
that although these methods often improve upon
influence-based estimates and are useful for inter-
preting errors, they still do not achieve high enough
precision and recall to substantially improve down-
stream properties such as hallucination rates.

Faithfulness in Text Summarization Our work
aims to improve recent observations that summa-
rization systems can generate information that is
not supported by the source article (Pagnoni et al.,
2021; Durmus et al., 2020). Prior work has fur-
ther shown that some of these errors can be due
to the noise in the dataset (Maynez et al., 2020).
Our work complements a growing literature on
modeling-based solutions to this problem, includ-
ing using information extraction (Cao et al., 2018)
or a QA model (Nan et al., 2021b) by creating
cleaner datasets with error tracing.

7 Conclusion

We explore whether error attribution can be used
to produce cleaner datasets that lead to fewer er-
rors in model generation. Prior approaches to data
cleaning, such as gradient-based influence mea-
sures, do not work well for generation tasks. We
propose a novel Contrastive Error Attribution ap-
proach that addresses the shortcomings that make
existing gradient-based approximation methods un-
reliable in text generation settings. We benchmark
our method on a synthetic dataset, as well as two
real-world generation tasks. We find that our ap-
proach dramatically outperforms existing error at-
tribution approaches on all benchmarks, and leads
to substantial reduction in generation error using
only a few examples.

8 Limitations

Our proposed approach is based on the premise
that faithfulness errors observed in generation sys-
tems are due to noise in the dataset. While there
is substantial evidence for this from prior work,
and our method outperforms existing approaches
on the datasets we used, it’s possible the the util-
ity of our approach could drop in cases where we
have clean, curated datasets. It’s possible that cer-
tain generation errors made by the model could
be due to spurious patterns learned by the model
that do not generalize well. In such cases, it’s un-
clear whether using our error attribution approach
to remove training instances would alleviate the
problem. However, as most large-scale datasets
in natural language generation tend to be sourced
from the internet, it’s inevitable that these datasets
will likely contain at least a few erroneous exam-
ples that could lead to undesirable model genera-
tions. Therefore, we believe that our approach to
using error attribution to clean datasets is still a
valuable method to improve generation systems.
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A Number of Examples Hyperparameter

Table 8 Shows the performance of our approach as
we change the size of the error set DErr. We see
that increasing from 5 samples to 15 can lead to
substantial improvements in AuPR.

Num Examples auPR auROC

5 68.55 97.53
10 72.31 97.98
15 72.27 98.07
20 71.37 97.97

Table 8: Performance of our contrast-based tracing ap-
proach. We find that increasing the number of examples
leads to substantial improvements in auPR.

B Number of Gradient Steps
Hyperparameter

Table 9 shows how the number of gradient steps
affects the performance of our method. We find
that 3-5 steps usually works well, and going beyond
that leads to slight degradations.

Num Steps auPR auROC

3 86.47 98.99
5 86.22 99.00

10 85.68 99.07
15 85.14 99.16
20 84.15 99.20

Table 9: Performance of our method vs. number of
gradient steps. We see that increasing the number of
steps does not lead to improvements in performance.

C Learning Rate Hyperparam

Table 10 shows the effect of the learning rate on
the performance of our approach. We find that
relatively smaller learning rates between 1e-6 and
1e-5 work best. Increasing the learning rate further
leads to a small degradation in performance.

D Checkpoint Hyperparameter

Table 11 shows the performance of our contrast-
based tracing approach. Checkpoint 1 is the opti-
mal checkpoint, but other checkpoints do not sub-
stantially degrade the performance. Crucially, our
method performs drastically better than prior work
regardless of which checkpoint we use. We note
that these results were computed after 5 gradient

LR auPR auROC

1e-6 86.73 99.01
5e-6 86.47 98.99
1e-5 86.11 99.0
5e-5 83.72 99.13
1e-4 81.06 99.07

Table 10: Performance of our method vs. learning rate.
Increasing the learning rate can give small additional
improvement.

steps with a learning rate of 1e − 5. Optimizing
these parameters further for each checkpoint could
have yielded better results.

Chkpt auPR auROC

0 82.47 99.21

1 85.70 99.05

2 83.47 99.08

3 79.22 98.78

4 80.53 98.74

5 78.61 98.01

6 77.95 98.45

7 78.19 98.44

8 77.45 98.16

9 76.93 98.11

10 76.92 98.06

Table 11: Ablations for England-China perturbation
across epochs (without classifier distillation). We see
that chkpt 1 is the optimal setting.

E NYT Post-editing Examples

Table 12 shows example model generations with
entity hallucinations, and the corresponding post-
edits we make to create the contrast.

F Retrieval results on the NYT dataset

Table 13 shows the retrieval results for the different
approaches. Since we don’t have actual ground-
truth labels in this case, we use spaCy’s NER tagger
to identify the set of training instances that contain
PERSON entity hallucinations and treat that as the
ground truth to measure auPR and auROC. We see
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Model Generation Contrast

Michael Mewshaw travel article on Naples,
Italy, describes sights and sounds of city’s
Spanish Quarter and Vomero, two neighbor-
hoods that have distinctly European flavor.

Travel article on Naples, Italy, describes sights
and sounds of city’s Spanish Quarter and
Vomero, two neighborhoods that have dis-
tinctly European flavor.

Sleeping arrangements author Sarah Ferrell
article on being bundled up in Arctic winter
gear to get to China to adopt baby from or-
phanage.

Sleeping arrangements article on being bun-
dled up in Arctic winter gear to get to China
to adopt baby from orphanage.

Table 12: Examples of contrasts used for the NYT setup. Model generation containing PERSON entity hallucinations,
shown in red, are minimally edited to make them consistent with the original input articles.

that our method does drastically better than prior
work both in terms of auPR and auROC.

Method auPR auROC

Random 17.75 49.84

BM25 20.77 55.41

BartScore 21.98 60.07

TracIn 20.99 57.27

CEA 44.72 74.89

Table 13: Retrieval results on the NYT dataset. We use
spaCy’s NER tagger to get reference labels to measure
auPR and auROC. We see that our approach improves
upon prior work.

G Example outputs after retraining.

Table 15 shows some example outputs from the
model obtained after cleaning the NYT dataset us-
ing our approach. We observe that our method
can even correct hallucination errors that the oracle
method misses, in some cases. Qualitatively, the
summaries look fluent and are usually selecting
similar content as the oracle and baseline systems.

H Analysis of retrieved errors

We show some training examples that were flagged
by our method as possible hallucinations, but were
penalized according to the automated measure, in
Table 16. We find that this happens because there
are several such cases where spaCy is unable to
correctly classify entities in the reference summary.
Our method may be performing even better than
the numbers reported in Table 13.

I Retrieval results on E2E dataset.

Table 14 shows the retrieval results for the different
approaches on the E2E dataset. We treat the set of
training instances for which the handcrafted rules
from Dušek et al. (2019) fire as the ground truth
to measure auPR and auROC. Among the prior
approaches, we find that BM25 and BartScore do
not perform much better than the random baseline,
while TracIn does substantially better. We see that
our method does drastically better than all other
methods in terms of auPR and auROC.

Method AuPR AuROC

Random 50.49 50.39

BM25 53.11 54.80

BartScore 52.87 54.24

TracIn 65.79 62.54

CEA 71.60 65.34

Table 14: Retrieval results on the E2E dataset. We
see that our approach substantially improves upon prior
work.

J Compute Power

Training and evaluation jobs were run on a machine
with four NVIDIA A100 GPUs for roughly 200
hours in total.
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Examples Summaries

Article: Why are these people not smiling? Michael, Jonathan and Jenifer, the anxious trio at the
heart of ”Snakebit,” David Marshall Grant’s solid and savvy new yuppie melodrama at the Grove
Street Playhouse, should have found a measure of contentment by now. Bright, good looking,
capable, they present themselves as a group that is as likely as any in the culture to attain full and
rewarding lives ... [truncated]
Reference: Peter Marks reviews David Marshall Grant play Snakebit at Grove Street Playhouse;
Jace Alexander directs; photo (M)
Baseline: Ben Brantley reviews Naked Angels production of David Marshall Grant play Snakebit,
directed by Jace Alexander; Geoffrey Nauffts, Jodie Markell and David Alan Basche star; photo
(M)
Oracle: Stephen Holden reviews Naked Angels production of David Marshall Grant play Snakebit;
photo (M)
CEA: Review of David Marshall Grant’s new play Snakebit, which is presented by Naked Angels
theater company at Grove Street Playhouse; photo (M)

Article: HERE is a case of pathology with its utilitarian side. In this year’s Yankee media guide,
the ”Opponents” section begins with a photograph of a certain left-handed hitter with a graceful
swing and deceptive smile. Ken Griffey Jr., delights in tormenting the Yankees, and he did it again
last night with a first-inning single that drove in the first run as the Seattle Mariners went on to beat
the Yanks, 8-0. This opponent has a career .410 batting average against the Yankees with 25 home
runs and 77 runs batted in ... [truncated]
Reference: George Vecsey Sports of The Times column discusses success Seattle Mariners
outfielder Ken Griffey Jr has had against New York Yankees (M)
Baseline: George Vecsey Sports of The Times column discusses Seattle Mariners outfielder Ken
Griffey Jr, who has career .410 batting average against New York Yankees; photo (M)
Oracle: George Vecsey Sports of The Times column discusses Seattle Mariners outfielder Ken
Griffey Jr, who has long-running vendetta against New York Yankees; photo (M)
CEA: Article discusses Seattle Mariners outfielder Ken Griffey Jr’s lifelong vendetta against New
York Yankees; photo (M)

Table 15: Example outputs after removing training examples and retraining. Our method is able to correct some
instances that the oracle approach misses.
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Retrieved training examples by our method

Article: A REVIEWER’S lot is not always a happy one. A terrific restaurant is discovered, praised
and then kissed good-bye, usually forever. Another awaits. Five years ago, I swooned over Villa
Doria in Bellmore. Now, with the arrival of new owners, chef and staff, another visit was called
for. The place looks much as it did: a somewhat drab dining room with a more inviting glassed-in
porch, overlooking a canal ... [truncated]
Reference: Joanne Starkey reviews Villa Doria restaurant in Bellmore, Long Island (M)

Article: The band members wore uniforms and did some synchronized moves. Their songs had
snappy little hooks and robotic drumbeats. They even started their set with an introductory video.
But Devo was hardly a boy band when it played on Friday night at Central Park SummerStage, in
its first public New York concert since the 1980’s. Just in time for the current new-wave revival,
Devo, which got started in Ohio in 1972 and released its first album in 1978, returned to prove that
its songs still have some bite. Paradoxes have always collected around Devo ... [truncated]
Reference: Jon Pareles reviews performance by Devo, part of Central Park SummerStage series;
photo (M)

Table 16: Training examples retrieved by our system. The hallucinated entity is marked in red. SpaCy’s NER
model is unable to recognize that Joanne Starkey and Jon Pareles are people, and therefore does not count them as
hallucinations. Our method is penalized for retrieving these examples, even though they are correct.
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information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Table 2

C �3 Did you run computational experiments?
5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
J
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�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
5, appendix

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
5

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
5

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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