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Abstract
We tackle the problem of neural machine trans-
lation of mathematical formulae between am-
biguous presentation languages and unambigu-
ous content languages. Compared to neural
machine translation on natural language, math-
ematical formulae have a much smaller vocab-
ulary and much longer sequences of symbols,
while their translation requires extreme preci-
sion to satisfy mathematical information needs.
In this work, we perform the tasks of translat-
ing from LATEX to Mathematica as well as from
LATEX to semantic LATEX. While recurrent, re-
cursive, and transformer networks struggle with
preserving all contained information, we find
that convolutional sequence-to-sequence net-
works achieve 95.1% and 90.7% exact matches,
respectively.

1 Introduction

Mathematical notations consist of symbolic rep-
resentations of mathematical concepts. For the
purpose of displaying them, most mathematical
formulae are denoted in presentation languages
(PL) (Schubotz et al., 2018) such as LATEX (Lam-
port, 1994). However, for computer-interpretation
of formulae, machine-readable and unambiguous
content languages (CL) such as Mathematica or se-
mantic LATEX are necessary. Thus, this work tackles
the problem of neural machine translation between
PLs and CLs as a crucial step toward machine-
interpretation of mathematics found in academic
and technical documents.

In the following, we will illustrate the ambigui-
ties of representational languages. Those ambigu-
ities range from a symbol having different mean-
ings over notational conventions that change over
time to a meaning having multiple symbols. Con-
sider the ambiguous mathematical expression (x)n.
While Pochhammer (Pochhammer, 1870) himself
used (x)n for the binomial coefficient

(
x
n

)
, for

mathematicians in the subject area of special func-
tions, more precisely hypergeometric series, (x)n

usually denotes the Pochhammer symbol, which is
defined for natural numbers as

(x)n := xn =
n−1∏

k=0

(x+ k). (1)

To further complicate matters, in statistics and com-
binatorics, the same notation is defined as

(x)n := xn =

n−1∏

k=0

(x− k). (2)

This work uses LATEX as PL and Mathematica as
well as semantic LATEX as CLs. Mathematica is one
of the most popular Computer Algebra Systems
(CASs); we use Mathematica’s standard notation
(InputForm) as a CL (from now on, for simplicity,
referred to as Mathematica.) Semantic LATEX is a
set of LATEX macros that allow an unambiguous
mathematical notation within LATEX (Miller and
Youssef, 2003) and which has been developed at
the National Institute for Standards and Technol-
ogy (NIST) by the Digital Library of Mathematical
Functions (DLMF) and the Digital Repository of
Mathematical Formulae (DRMF).

In LATEX, the Pochhammer symbol (x)n is sim-
ply denoted as (x)_n. In semantic LATEX, it is de-
noted as \Pochhammersym{x}{n} and compiled
to LATEX as {\left(x\right)_{n}}. In Mathe-
matica, it is denoted as Pochhammer[x, n] and
can be exported to LATEX as (x)_n.

To display them, it is generally possible to trans-
late formulae from CLs to PLs, e.g., Mathematica
has the functionality to export to LATEX, and se-
mantic LATEX is translated into LATEX as a step of
compilation. However, the reverse translation from
PL to CL is ambiguous because semantic informa-
tion is lost when translating into a PL.

Mathematical formulae are generally similar to
natural language (Greiner-Petter et al., 2020). How-
ever, mathematical formulae are often much longer
than natural language sentences. As an example
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Figure 1: Schema of recurrent (top left), recursive (bottom left), transformer (middle), and convolutional sequence-
to-sequence (right) neural networks.

of sentence lengths, 98% of the sentences in the
Stanford Natural Language Inference entailment
task contain less than 25 words (Bowman et al.,
2016). In contrast, the average number of Mathe-
matica tokens in the Mathematical Functions Site
data set is 173, only 2.25% of the formulae con-
tain less than 25 tokens, and 2.1% of the formulae
are longer than 1 024 tokens. At the same time,
mathematical languages commonly require only
small vocabularies of around 1 000 tokens (relative
to natural languages.)

By applying convolutional sequence-to-
sequence networks, this work achieves an exact
match accuracy of 95.1% for a translation from
LATEX to Mathematica as well as an accuracy of
90.7% for a translation from LATEX to semantic
LATEX. In contrast, the import function of the
Mathematica software achieves an exact match
accuracy of 2.7%. On all measured metrics, our
model outperforms export / import round trips
using Mathematica.

2 Related Work

2.1 Neural Machine Translation
The most common neural machine translation
models are sequence-to-sequence recurrent neural
networks (Sutskever et al., 2014), tree-structured
recursive neural networks (Goller and Kuchler,
1996), transformer sequence-to-sequence networks
(Vaswani et al., 2017), and convolutional sequence-
to-sequence networks (Gehring et al., 2017). In
the following, we sketch the core principle of these
network types, which are displayed in Figure 1.

Recurrent sequence-to-sequence neural net-
works (Figure 1, top left) are networks that process
the tokens one after each other in a linear fashion.
Note that the longest shortest path in this architec-
ture is the sum of the length of the input and the

length of the output. An attention mechanism can
reduce the loss of information in the network (not
shown in the schema).

Recursive tree-to-tree neural networks (Figure 1,
bottom left) are networks that process the input in
a tree-like fashion. Here, the longest shortest path
is the sum of the depths of input and output, i.e.,
logarithmic in the number of tokens.

Transformer sequence-to-sequence neural net-
works (Figure 1, middle) allow a dictionary-like
lookup of hidden states produced from the input
sequence. This is possible through an elaborate
multi-headed attention mechanism.

Convolutional sequence-to-sequence neural net-
works (Figure 1, right) process the input using a
convolutional neural network and use an attention-
mechanism to attribute which input is most relevant
for predicting the next token given previously pre-
dicted tokens.

In natural language translation, transformer net-
works perform best, convolutional second best, and
recurrent third best (Gehring et al., 2017; Vaswani
et al., 2017; Ott et al., 2018). Recursive neural
networks are commonly not applicable to natural
language translation.

2.2 Rule-Based Formula Translation
LATEXML is a LATEX to XML Converter (Ginev and
Miller, 2013). It can translate from semantic LATEX
to LATEX. As semantic information is lost during
this process, a rule-based back-translation is not
possible.

Mathematica can export expressions into LATEX
and also import from LATEX. However, the import
from LATEX uses strict and non-exhaustive rules
that oftentimes do not translate into the original
Mathematica expressions, e.g., we found that only
3.1% of expressions exported from Mathematica
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to LATEX and (without throwing an error) imported
back into Mathematica are exact matches. This is
because, when translating into LATEX, the semantic
information is lost. Moreover, we found that 11.5%
of the formulae exported from Mathematica throw
an error when reimporting them.

For the translation between CLs, from seman-
tic LATEX to CASs and back, there exists a rule-
based translator (Cohl et al., 2017; Greiner-Petter
et al., 2019). The semantic LATEX to Maple trans-
lator achieved an accuracy of 53.59% on cor-
rectly translating 4 165 test equations from the
DLMF (Greiner-Petter et al., 2019). The accu-
racy of the semantic LATEX to CAS translator is
relatively low due to the high complexity of the
tested equations and because many of the func-
tions which are represented by a DLMF/DRMF
LATEX macro are not defined or defined differently
in Maple (Greiner-Petter et al., 2019).

2.3 Deep Learning for Mathematics
Lample and Charton (2020) used deep learning to
solve symbolic mathematics problems. They used
a sequence-to-sequence transformer model to trans-
late representations of mathematical expressions
into representations of solutions to problems such
as differentiation or integration. In their results,
they outperform CASs such as Mathematica.

Wang et al. (2018) used a recurrent neural
network-based sequence-to-sequence model to
translate from LATEX (text including formulae) to
the Mizar language, a formal language for writing
mathematical definitions and proofs. Their system
generates correct Mizar statements for 65.7% of
their synthetic data set.

Other previous works (Deng et al., 2017; Wang
et al., 2019) concentrated on the “image2latex”
task, which was originally proposed by OpenAI.
This task’s concept is the conversion of mathemati-
cal formulae in images into LATEX, i.e., optical char-
acter recognition of mathematical formulae. Deng
et al. (2017) provide im2latex-100k, a data set con-
sisting of about 100 000 formulae from papers of
arXiv, including their renderings. They achieved
an accuracy of 75% on synthetically rendered for-
mulae. Compared to the data sets used in this work,
the formulae in im2latex-100k are much shorter.

This was followed by other relevant lines of work
by Wu et al. (2021); Zhang et al. (2020); Li et al.
(2022); Ferreira et al. (2022); Patel et al. (2021).

Table 1: Data set summary statistics. Format for number
of characters per formula/format: Mean±Std. (Median).

Data Set Formulae Input (LATEX) Output (Mat. / sem. L.)

Mathematica 307 672 345.5± 534.4 (195) 320.7± 585.7 (168)
semantic LATEX 11 639 163.8± 246.2 (116) 145.6± 230.1 (103)

3 Training Data Sets & Preprocessing

Mathematical Functions Site Data Set. The
“Mathematical Functions Site”1 by Wolfram Re-
search is a repository of 307 672 mathematical
formulae available in Mathematica InputForm for-
mat. By web-crawling, we retrieved all formulae in
Mathematica InputForm and (using Mathematica
v12.0) exported the formulae from Mathematica
into LATEX.

Semantic LATEX Data Set. The semantic LATEX
data set consist of 11 639 pairs of formulae in the
LATEX and semantic LATEX formats generated by
translating from semantic LATEX to LATEX using
LATEXML. Cohl et al. (2015) provided us this unre-
leased data set.

Preprocessing We preprocessed the data sets by
tokenizing them with custom rule-based tokenizers
for LATEX and Mathematica. Note that as semantic
LATEX follows the rules of LATEX, we can use the
same for both cases. Details on the tokenizers
are presented in the supplementary material. For
recursive neural networks, we parsed the data into
respective binary trees in postfix notation.

We randomly split the Mathematical Functions
Site data set into disjoint sets of 97% training, 0.5%
validation, and 2.5% test data and split the semantic
LATEX data set into 90% training, 5% validation,
and 5% test data since this data set is smaller. Data
set summary statistics can be found in Table 1.

4 Methods

We briefly discuss recurrent, recursive, and trans-
former architectures and then discuss convolutional
sequence-to-sequence networks in detail because
they showed, by far, the best results.

Recurrent Neural Networks showed the worst
performance. Our experiments used Long-Short-
Term-Memory (LSTM) recurrent networks but did
not achieve any exact matches on long equations
of the semantic LATEX data set. This is not surpris-
ing as recurrent neural networks generally have

1http://functions.wolfram.com/
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poor performance regarding long-term relation-
ships spanning over hundreds of tokens (Trinh et al.,
2018). For our data sets, the longest shortest path
in the neural network easily exceeds 2 000 blocks.
Note that the exact match accuracy on such long
equations produces successful responses only for a
very well-performing model; getting most symbols
correct does not constitute an exact match. For a
definition of exact matches, see Section 5.1.

Recursive Neural Networks showed slightly
better performance of up to 4.4% exact match ac-
curacy when translating from LATEX into semantic
LATEX. This can be attributed to the fact that the
longest path inside a recursive neural network is
significantly shorter than in a recurrent neural net-
work (as the longest shortest path in a tree can
be much shorter than the longest shortest path in
a sequence.) Further, an additional traversal into
postfix notation allows for an omission of most
braces/parentheses, which (on the semantic LATEX
data set) reduced the required amount of tokens
per formula by about 20 − 40%. Similar to the
recurrent networks, we also used LSTMs for the
recursive networks. Note that training recursive
neural networks is hard because they cannot easily
be batched if the topology of the trees differs from
sample to sample, which it does for equations.

Transformer Neural Networks significantly
outperform previous architectures. In our best ex-
periments, we achieved performances of up to 50%
exact matches on the Mathematical Functions Site
data set. This leap in performance can be attributed
to the elaborate multi-headed attention mechanism
underlying the transformer model. Because we ex-
perimented simultaneously with the convolutional
sequence-to-sequence architecture and the trans-
former architecture, and the performance of con-
volutional networks was by a large margin better
(> 90%) than the best performance on transformer
neural networks, we decided to set the focus of this
work on convolutional networks only. We note that
in natural language translation, transformer mod-
els typically outperform convolutional neural net-
works (Gehring et al., 2017; Vaswani et al., 2017;
Ott et al., 2018).

4.1 Convolutional Seq-to-Seq Networks
In contrast to recurrent and recursive neural net-
works, convolutional sequence-to-sequence net-
works do not need to compress the relevant infor-
mation. Due to the attention matrix architecture,

the convolutional model can easily replicate the
identity, a task that recurrent and recursive neural
networks struggle with. In fact, an above 99% accu-
racy can be achieved on learning the identity within
the first epoch of training. Given that the syntax
of two languages follows the same paradigm, the
translation is often not far from the identity, e.g.,
it is possible that only some of the tokens have to
be modified while many remain the same. This
separates mathematical notations from natural lan-
guages.

In the following, we discuss hyperparameters
and additional design choices for convolutional
networks. Note that the models for each language
pair are independent. In Supplementary Material C,
we provide respective ablation studies.

Learning Rate, Gradient Clipping, Dropout,
and Loss. Following the default for this model,
we use a learning rate of 0.25, applied gradient
clipping on gradients greater than 0.1, and used
a dropout rate of 0.2. As a loss, we use label-
smoothed cross-entropy.

State/Embedding Size(s). We found that a state
size of 512 performs best. In this architecture, it
is possible to use multiple state sizes by additional
fully connected layers between convolutional lay-
ers of varying state size. In contrast to the con-
volutional layers, fully connected layers are not
residual and thus increase the length of the short-
est path in the network. We found that networks
with a single state size performed best. Note that
while in natural language translation, with vocab-
ularies of 40 000− 200 000 tokens, a state size of
512 is also commonly used (Gehring et al., 2017),
while our examined mathematical languages con-
tain only 500 − 1 000 tokens. That a state size of
256 performed significantly worse (88.3% for 256
and 94.9% for 512) indicates a high entropy/infor-
mation content of the equations.

Number of Layers. We found that 11 layers per-
form best.

Batch Size. We found that 48 000 tokens per
batch perform best. This is equivalent to a batch
size of about 400 formulae.

Kernel Size. We use a kernel size of 3. We found
that a kernel size of 5 performs by 0.1% better
than a kernel size of 3, but as the larger kernel size
also requires much more parameters and is more
expensive to compute, we decided to go with 3.
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Substitution of Numbers. Since the Mathemati-
cal Functions Site data set contains more than 104

multi-digit numbers, while it contains less than
103 non-numerical tags, these numbers cannot be
interpreted as conventional tags. Thus, numbers
are either split into single digits or replaced by
variable tags. Splitting numbers into single digits
causes significantly longer token streams, which
degrades performance. Substituting all multi-digit
numbers with tags like <number_01> improved
the exact match accuracy of the validation data set
from 92.7% to 95.0%. We use a total of 32 of such
placeholder tags as more than 99% of the formu-
lae have less or equal to 32 multi-digit numbers.
We randomly select the tags that we substitute the
numbers with. Since multi-digit numbers basically
always perfectly correspond in the different mathe-
matical languages, we directly replace the tag with
their corresponding numbers after the translation.

LightConv. As an alternative to the model pro-
posed by Gehring et al. (2017), we also used the
LightConv model as presented by Wu et al. (2019).
As expected, this model did not yield good re-
sults on mathematical formula translation as it does
not use the strong self-attention that the model by
Gehring et al. (2017) has. Note that LightConv out-
performs the convolutional sequence-to-sequence
model by Gehring et al. (2017) on natural lan-
guage (Wu et al., 2019).

5 Evaluation of the Convolutional
Network

5.1 Evaluation Metrics
Exact Match (EM) Accuracy The EM accuracy
is the non-weighted share of exact matches. An
exact match is defined as a translation of a formula
where every token equals the ground truth. This
makes the EM accuracy an extremely strict met-
ric as well as a universal and definite statement
about a lower bound of the quality of the trans-
lation. For example, the exact match might fail
since E = mc2 can be written as both E=mcˆ2 and
E=mcˆ{2}, which is, although content-wise equal,
not an exact match. However, in our experiments,
such errors do not occur regularly since, for the
generation of the synthetic training data, the trans-
lation was performed using the rule-based trans-
lators Mathematica and LATEXML. Only 0.4% of
the erroneous translations to semantic LATEX were
caused by braces ({, }). In none of these cases the

braces were balanced, i.e., each of these formulae
was semantically incorrect. For the translation to
Mathematica, only 0.02% of the formulae did not
achieve an exact match due to brackets ([, ]).

Levenshtein Distance (LD) The LD, which is
also referred to as “edit distance”, is the mini-
mum number of edits required to change one token
stream into another (Levenshtein, 1966). This met-
ric reflects the error in a more differentiated way.
We denote the share of translations that have a Lev-
enshtein distance of up to 5 by LD≤5 and denote
the average Levenshtein Distance by LD.

Bilingual Evaluation Understudy (BLEU) The
BLEU score is a quality measure that compares the
machine’s output to a translation by a professional
human translator (Papineni et al., 2002). It com-
pares the n-grams (specifically n ∈ {1, 2, 3, 4})
between the prediction and the ground truth. Since
the translations in the data sets are ground truth
values instead of human translations, for the back-
translation of formulae, this metric reflects the
closeness to the ground truth. BLEU scores range
from 0 to 100, with a higher value indicating a
better result. For natural language on the WMT
data set, state-of-the-art BLEU scores are 35.0 for
a translation from English to German and 45.6 for
a translation from English to French (Edunov et al.,
2018). That the BLEU scores for formula trans-
lations are significantly higher than the scores for
natural language can be attributed to the larger vo-
cabularies in natural language and a considerably
higher variability between correct translations. In
contrast, in most cases of formula translation, the
translation is not ambiguous. We report the BLEU
scores to demonstrate how BLEU scores behave on
strictly defined languages like mathematical formu-
lae.

Perplexity The perplexity is a measurement of
how certain a probability distribution is to predict
a sample. Specifically, the perplexity of a discrete
probability distribution p is generally defined as

ppl(p) = 2H(p) = 2−
∑

x p(x) log2 p(x) (3)

where H denotes the entropy, and x is drawn
from the set of all possible translations (Cover and
Thomas, 2006). In natural language processing, a
lower perplexity indicates a better model. As we
will discuss later, this does not hold for mathemati-
cal language.
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5.1.1 Discussion on the Perplexity of
Mathematical Language Translations

In natural language translation, the perplexity is a
common measure for selecting the epoch at which
the performance on the validation set is best. That
is because its formulation is very similar to the em-
ployed cross-entropy loss. This procedure avoids
overfitting and helps to select the best-performing
epoch without having to compute the actual transla-
tions. Computing the translations would be compu-
tationally much more expensive because it requires
a beam search algorithm, and the quality of a re-
sulting translation cannot be measured by a simple
metric such as EM.

However, for formula translation, the perplexity
does not reflect the accuracy of the model. While
the validation accuracy rises over the course of the
training, the rising perplexity falsely indicates that
the model’s performance decays during training.
We presume that this is because the perplexity re-
flects how sure the model is about the prediction
instead of whether the prediction with the highest
probability is correct. Since many subexpressions
of mathematical formulae (e.g., n + 1) are invari-
ant to translations between many mathematical lan-
guages, the translations are closer to the identity
than translations between natural languages. There-
fore, a representation very close to the identity is
learned first. Consecutively, this translation is trans-
formed into the actual translation. Empirically, the
validation perplexity usually reaches its minimum
during the first epoch. Afterward, when the trans-
lation improves, the uncertainty (perplexity) of the
model also increases. Thus, we do not use the per-
plexity for early stopping but instead compute the
EM accuracy on the validation set.

5.2 Evaluation Techniques
Back-Translation. As, for the training data sets,
only the content language (i.e., Mathematica / se-
mantic LATEX, respectively) was available, we pro-
grammatically generated the input forms (presen-
tation language) using Mathematica’s conversion
and the LATEX macro definitions of semantic LATEX,
respectively. This process corresponds to the inter-
nal process for displaying Mathematica / semantic
LATEX equations in LATEX form. Thus, the task is to
back-translate from (ambiguous) LATEX to the (un-
ambiguous) Mathematica / semantic LATEX forms.

Additional Experiments. In addition to this, we
also perform round trip experiments from LATEX

Table 2: Main results for the back-translation.

Metric LATEX → Mathematica LATEX → semantic LATEX

EM 95.1% 90.7%
BLEU 99.68 96.79

Table 3: Comparison between Mathematica and our
model on back-translating the formulae of the Math-
ematical Functions Site data set. Import denotes the
fraction of formulae that can be imported by Mathe-
matica, i.e., whether Mathematica can import the LATEX
format or whether our model produces valid Mathemat-
ica syntax, respectively.

Method EM Import LD≤5 LD

Mathematica 2.7% 88.5% 16.4% 88.7
Conv. Seq2Seq 95.1% 98.3% 96.7% 0.615

into Mathematica and back again on the im2latex-
100k data set. Here, we use our model as well as
the Mathematica software to translate from LATEX
into Mathematica. In both cases, we use Mathe-
matica to translate back into LATEX. The im2latex-
100k data set contains equations as well as anything
else that was typeset in math environments LATEX.
66.8% of the equations in the im2latex-100k data
set contain tokens that are not in the vocabulary.
We note that an exact match is only possible if a
LATEX expression coincides with what would be ex-
ported from Mathematica. Thus, we did not expect
large accuracy values for this data set.

5.3 Evaluation Results
Back-Translation. For the back-translation from
LATEX to Mathematica, we achieved an EM accu-
racy of 95.1% and a BLEU score of 99.68. That
is, 95.1% of the expressions from Mathematica,
translated by Mathematica into LATEX can be trans-
lated back into Mathematica by our model without
changes. For the translation from LATEX to seman-
tic LATEX, we achieved an EM accuracy of 90.7%
and a BLEU score of 96.79. The translation from
LATEX to semantic LATEX performs not as well as
the translation to Mathematica, i.a., because the se-
mantic LATEX data set is substantially smaller than
the Mathematical Functions Site data set. The low
LATEX to semantic LATEX BLEU score of only 96.79
is because the translations into semantic LATEX are
on average 2% shorter than the ground truth ref-
erences. Note that 96.0% of the translations to
semantic LATEX had an LD of up to 3. The results
are displayed in Table 2.
For comparing our model to the LATEX import func-
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tion of Mathematica, we show the results in Table 3.
The low performance of Mathematica’s LATEX im-
porter can be attributed to the fact that Symbols
with a defined content/meaning, e.g., DiracDelta
are exported to LATEX as \delta, i.e., just as the
character they are presented by. Since \delta is
ambiguous, Mathematica interprets it as \[Delta].
With neural machine translation, on the other hand,
the meaning is inferred from the context and, thus,
it is properly interpreted as DiracDelta.

Additional Experiments. As for the round trip
experiments, Mathematica was able to import
15.3% of the expressions in the im2latex-100k
data set, while our model was able to generate
valid Mathematica syntax for 16.3% of those ex-
pressions. For the im2latex-100k data set, the
round trip experiment is ill-posed since the export
to LATEX will only achieve an exact match if the
original LATEX equation is written in the style in
which Mathematica exports. However, as the same
Mathematica export function is used for testing for
exact matches, neither our model nor the Mathe-
matica software has an advantage on this problem,
which allows for a direct comparison. Mathematica
achieved an exact match round trip in 0.153% and
our model in 0.698% of the equations. The average
LD for Mathematica is 18.3, whereas it is 12.9 for
our model. We also note that while im2latex-100k
primarily contains standard equations, our model is
specifically trained to interpret equations with spe-
cial functions. The results are presented in Table 4.

5.4 Qualitative Analysis
We present a qualitative analysis of the back-
translations from LATEX to Mathematica with the
help of randomly selected positive and negative
examples. The referenced translations / equations
are in the supplementary material. All mentioned
parts of equations will be marked in bold in the
supplementary material. We want to give a small
qualitative analysis of the translation from LATEX to
Mathematica and show in which cases the transla-
tion can fail, and give an intuition about why issues
arise in these cases. In the supplementary material,
further qualitative analysis is provided.

In Equation B.1, σk(n) is correctly interpreted
by our model as a DivisorSigma. Mathematica
interprets it as the symbol σ with the subscript
k, i.e., the respective semantic information is lost.
At the end of this formula, the symbol ∧ (\land)
is properly interpreted by our model as &&. In

Table 4: Round trip experiment with the im2latex-
100k (Deng et al., 2017) LATEX expressions. Import
denotes the fraction of formulae that can be imported
by Mathematica, i.e., whether Mathematica can import
the LATEX format or whether our model produces valid
Mathematica syntax, respectively. In this experiment,
exact matches can only occur coincidental, i.e., a perfect
translation by the model does not necessarily produce
an exact match.

Method EM Import LD≤5 LD

Mathematica 0.153% 15.3% 2.30% 18.3
Conv. Seq2Seq 0.698% 16.3% 2.56% 12.9

contrast, Mathematica interpreted it as \[Wedge],
which corresponds to the same presentation but
without the underlying definition that is attached
to &&. In this equation, our approach omitted one
closing bracket at a place where two consecutive
closing brackets should have been placed.

In Equation B.2, the symbol ℘ (\wp) is properly
interpreted by the model and Mathematica as the
Weierstrass’ elliptic function ℘ (WeierstrassP).
That is because the symbol ℘ is unique to the
Weierstrass ℘ function. The inverse of this func-
tion, ℘−1 is also properly interpreted by both sys-
tems as the InverseWeierstrassP. Our model
correctly interprets the sigmas in the same equation
as the WeierstrassSigma. As σ does not have a
unique meaning, Mathematica just interprets it as a
bare sigma \[Sigma]. The difference between our
translation and the ground truth is that our transla-
tion omitted a redundant pair of parentheses.

Equation B.3 displays an example of the token
<number_XX>, which operates as a replacement for
multi-digit numbers. In this example, our model in-
terpretsQ9

4(z) as GammaRegularized[4, 9, z]
instead of the ground truth LegendreQ[4, 9, 3,
z]. This case is especially hard since the argu-
ment “3” is not displayed in the LATEX equation
and LegendreQ has commonly only two to three
arguments.

Equation B.7 is correctly interpreted by our
model including the expression \int \sin
(az) ... dz. Note that Mathematica fails at
interpreting \int 2z dz2.

To test whether our model can perform transla-
tions on a data set that was generated by a differ-
ent engine, we perform a manual evaluation on

2The command ToExpression["\\int 2z dz",
TeXForm, Defer] fails for Mathematica v. 12.0
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translations from LATEX to Mathematica for the
DLMF data set (generated by LATEXML). To test
our model, which was trained on LATEX expressions
produced by Mathematica, on LATEX expressions
produced by LATEXML, we used a data set of 100
randomly selected expressions from the DLMF,
which is written in semantic LATEX. A caveat of this
is that LATEXML produces a specific LATEX flavor
in which some mathematical expressions are de-
noted in an unconventional fashion3. As 71 of those
100 expressions contain tokens that are not in the
Mathematica-export vocabulary, these cannot be
interpreted by the model. Further, as LATEX is very
flexible, a large variety of LATEX expressions can
produce a visually equivalent result; even among
a restricted vocabulary, there are many equivalent
LATEX expressions. This causes a significant distri-
butional domain shift between LATEX expressions
generated by different systems. Our model gen-
erates valid and semantically correct Mathemat-
ica representations for 5 equations. Specifically,
in equations (4.4.17), (8.4.13), and (8.6.7), the
model was able to correctly anticipate the incom-
plete Gamma function and Euler’s number e.

This translation from DLMF to Mathematica is
difficult for several reasons as explained by Greiner-
Petter et al. (2019). In their work, they translate the
same 100 equations, however, from semantic LATEX
into Mathematica, using their rule-based translator,
which was designed for this specific task (Greiner-
Petter et al., 2019). On this different task, they
achieved an accuracy of only 56%, which clearly
shows how difficult a translation between two sys-
tems is even when the semantic information is ex-
plicitly provided by semantic LATEX expressions.

In comparison, when the vocabulary of LATEXML
and Mathematica intersects, our model achieves a
17% accuracy while only inferring the implicit se-
mantic information (i.e., the semantic information
that can be derived from the structure of and con-
text within a LATEX expression).

6 Limitations

In this work, we evaluated neural networks on
the task of back-translating mathematical formulae
from the PL LATEX to semantic CLs. For this pur-
pose, we explored various types of neural networks
and found that convolutional neural networks per-

3For example, LATEXML denotes the binomial
as \genfrac{(}{)}{0pt}{0}{n}{k} instead of
\binom{n}{k}

form best. Moreover, we observed that the per-
plexity of the translation of mathematical formulae
behaves differently from the perplexity of the trans-
lation between natural languages.

Our evaluation shows that our model outper-
forms the Mathematica software on the task of
interpreting LATEX produced by Mathematica while
inferring the semantic information from the context
within the formula.

A general limitation of neural networks is that
trained models inherit biases from training data.
For a successful formula translation, this means
that the set of symbols, as well as the style in which
the formulae are written, has to be present in the
training data. Mathematica exports into a very com-
mon flavor / convention of LATEX, while semantic
LATEX, translated by LATEXML, yields many uncon-
ventional LATEX expressions. In both cases, how-
ever, the flavor / conventions of LATEX are constant
and do not allow variation as it is produced by a
rule-based translator. Because of the limited vocab-
ularies as well as limited set of LATEX conventions
in the data sets, the translation of mathematical
LATEX expressions of different flavors is not possi-
ble. In addition, we can see that a shift to a more
difficult domain, such as special functions in the
DLMF, produces a drop in performance but still
generates very promising results. In future work,
the translator could be improved by augmenting
the data set such that it uses more and different
ways to express the same content in the source lan-
guage. As an example, a random choice between
multiple ways to express a Mathematica expression
in LATEX could be added. For semantic LATEX, the
performance on real-world data could be improved
by using multiple macro definitions for each macro.
Ideal would be a data set of hand-written equiva-
lents between the PLs and CLs. An addition could
be multilingual translation (Johnson et al., 2017;
Blackwood et al., 2018). This could allow learning
translations and tokens that are not present in the
training data for the respective language pair. Fur-
ther, mathematical language-independent concepts
could support a shared internal representation.

Another limitation is that data sets of mathemati-
cal formulae are not publicly available due to copy-
right and licensing. We will attempt to mitigate
this issue by providing the data sets to interested
researchers.

Note that this work does not use information
from the context around a formula. Integrating
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such context information would aid the translation
as it can solve ambiguities. For example, for inter-
preting the expression (x)n, information about the
specific field of mathematics is essential. Further,
context information can include custom mathemati-
cal definitions. In real-world applications, building
on such additional information could be important
for reliable translations.

7 Conclusion

In this work, we have shown that neural networks,
specifically convolutional sequence-to-sequence
networks, can handle even long mathematical for-
mulae with high precision. Given an appropriate
data set, we believe that it is possible to train a
reliable formula translation system for real-world
applications.

We hope to inspire the research community to
apply convolutional neural networks rather than
transformer networks to tasks that operate on math-
ematical representations (Deng et al., 2017; Mat-
suzaki et al., 2017; Lample and Charton, 2020;
Wang et al., 2018; Wu et al., 2021; Zhang et al.,
2020; Patel et al., 2021; Li et al., 2022; Ferreira
et al., 2022). We think that convolutional networks
could also improve program-to-program transla-
tion as source code has strong similarities to digital
mathematical notations—after all, LATEX and Math-
ematica are programming languages.
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A Implementation Details

For the implementation of the transformer and convolutional sequence-to-sequence models, we built on
the PyTorch (Paszke et al., 2019) library fairseq (Ott et al., 2019) by Facebook AI Research. Since, as
depicted in the evaluation, the perplexity does not properly reflect the accuracy, we extended fairseq by an
option to measure the quality of models with an exact match accuracy and the Levenshtein distance.

We performed the computations on GPU-accelerated hardware. For the experiments, we used a server
with 8 Nvidia Tesla V100 GPUs. Training took, depending on the setup, 1− 96 hours.

For performance, memory, and architectural reasons, for training, we only consider formulae with up to
1 024 tokens following the trend of current research (Bowman et al., 2016; Dauphin et al., 2017).

A.1 Tokenizers
For LATEX, we developed a tokenizer for which LATEX commands, parentheses, braces, brackets, as well as
special characters are individual tokens. Letters are considered individual tokens and are thus split into
single letters. Multi-digit numbers are considered as tokens as described in Section 4.1. For Mathematica,
we developed a tokenizer that considers Mathematica functions, Symbols (e.g., \[Zeta]), parentheses,
braces, brackets, as well as special characters are individual tokens.

As most strings of letters are Mathematica functions, we also consider all strings of letters as individual
tokens, i.e., we do not split them into single letters. Multi-digit numbers are considered as tokens as
described in Section 4.1. In addition, the following are exceptional tokens: &&, ==, <=, >=, !=, and /;.

For examples, see Supplementary Material B, which contains equations tokenized by our tokenizers.

B Qualitative Analysis – Mathematical Functions Site

This supplementary material presents 8 translation samples from LATEX to Mathematica. All samples are
randomly selected, only restricted by the editorial constraint of fitting on a single page, and restricted to
have a similar amount of exact matches and erroneous cases. Equations B.1–B.4 are erroneous translations,
while Equations B.5–B.8 lead to exact matches.

Here, the LATEX formulae were generated by Mathematica’s export function.
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Table 5: [1/3] Equations including the tokenized LATEX input, the (optional) interpretation by Mathematica (Mat.),
our translation (NMT), and the ground truth (GT.). (NMT+GT.) denotes that our translation is equal to the ground
truth.

Table 3: Equations including the tokenized LATEX input, the (optional) interpretation by Mathematica (Mat.), our translation (NMT), and the
ground truth (GT.). (NMT+GT.) denotes that our translation is equal to the ground truth.

σk(n) =
∏m

j=1 σk
(
p
nj

j

)
/;FactorInteger[n] = {{p1, n1} , . . . , {pm, nm}} ∧ pj ∈ P ∧ k ∈ Z ∧ n ∈ Z ∧ n > 0 (B.1)

LATEX

\sigma _ k ( n )\sigma _ k ( n ) = \prod _ { j = 1 } ˆ m \sigma _ k \left( p _ j ˆ { n
_ j } \right) \text{/;} \text{FactorInteger} [ n ] = \le f t \{ \le f t
\{ p _ 1 , n _ 1 \right \} , \ldots , \le f t \{ p _ m , n _ m \right \}
\right \} \land p _ j \in \mathbb{P} \land k \in \mathbb{Z} \land n \in
\mathbb{Z} \land\land n > 0

Mat.

Subscript[\[Sigma], k][n]Subscript[\[Sigma], k][n] == \!\( \*UnderoverscriptBox[\(\[Product]\),
\(j = 1\), \(m\)]\( \(\*SubscriptBox[\(\[Sigma]\), \(k\)]\)[
\*SubsuperscriptBox[\(p\), \(j\), SubscriptBox[\(n\), \(j\)]]]\)\) /;
FactorInteger[ n] == {{Subscript[p, 1], Subscript[n, 1]}, \[Ellipsis],
{Subscript[p, m], Subscript[n, m]}}\[Wedge]Subscript[p, j] \[Element]
P\[Wedge]k \[Element] Z\[Wedge]n \[Element] Z\[Wedge]\[Wedge]n > 0

NMT

DivisorSigma [ k , n ]DivisorSigma [ k , n ] == Product [ DivisorSigma [ k , Subscript [ p , j
] ˆ Subscript [ n , j ] , { j , 1 , m } ] /; FactorInteger [ n ] == { {
Subscript [ p , 1 ] , Subscript [ n , 1 ] } , \[Ellipsis] , { Subscript
[ p , m ] , Subscript [ n , m ] } } && Element [ Subscript [ p , j ] ,
Primes ] && Element [ k , Integers ] && Element [ n , Integers ] &&&& n > 0

GT.

DivisorSigma [ k , n ]DivisorSigma [ k , n ] == Product [ DivisorSigma [ k , Subscript [ p , j
] ˆ Subscript [ n , j ] ]] , { j , 1 , m } ] /; FactorInteger [ n ] == { {
Subscript [ p , 1 ] , Subscript [ n , 1 ] } , \[Ellipsis] , { Subscript
[ p , m ] , Subscript [ n , m ] } } && Element [ Subscript [ p , j ] ,
Primes ] && Element [ k , Integers ] && Element [ n , Integers ] &&&& n > 0

℘ (z; g2, g3) = −σ(z−z0;g2,g3)σ(z+z0;g2,g3)
σ(z;g2,g3)2σ(z0;g2,g3)2

/;z0 = ℘−1 (0; g2, g3) (B.2)

LATEX

\wp\wp \left( z ; g _ 2 , g _ 3 \right) = - \frac { \sigma\sigma \left( z - z _ 0
; g _ 2 , g _ 3 \right) \sigma \left( z + z _ 0 ; g _ 2 , g _ 3 \right) }
{ \sigma \left( z ; g _ 2 , g _ 3 \right) { } ˆ 2 \sigma \left( z _ 0 ; g
_ 2 , g _ 3 \right) { } ˆ 2 } \text{/;} z _ 0 = \wp ˆ { - 1 }\wp ˆ { - 1 } \left( 0 ;
g _ 2 , g _ 3 \right)

Mat.

WeierstrassPWeierstrassP[ z, {Subscript[g, 2], Subscript[g, 3]}] == -((\[Sigma]\[Sigma][z
- Subscript[z, 0]; Subscript[g, 2], Subscript[g, 3]] \[Sigma][z +
Subscript[z, 0]; Subscript[g, 2], Subscript[g, 3]])/(\[Sigma][z;
Subscript[g, 2], Subscript[g, 3]] \[Null]ˆ2 \[Sigma][Subscript[z, 0];
Subscript[g, 2], Subscript[g, 3]] \[Null]ˆ2)) /; Subscript[z, 0] ==
InverseWeierstrassPInverseWeierstrassP[0, {Subscript[g, 2], Subscript[g, 3]}]

NMT

WeierstrassPWeierstrassP [ z , { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] == -
( WeierstrassSigmaWeierstrassSigma [ z - Subscript [ z , 0 ] , { Subscript [ g , 2 ] ,
Subscript [ g , 3 ] } ] WeierstrassSigma [ z + Subscript [ z , 0 ] , {
Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] / ( WeierstrassSigma [ z
, { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] ˆ 2 WeierstrassSigma [
Subscript [ z , 0 ] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] ˆ 2
) ) /; Subscript [ z , 0 ] == InverseWeierstrassPInverseWeierstrassP [ 0 , { Subscript [ g ,
2 ] , Subscript [ g , 3 ] } ]

GT.

WeierstrassPWeierstrassP [ z , { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] == -
( (( WeierstrassSigmaWeierstrassSigma [ z - Subscript [ z , 0 ] , { Subscript [ g , 2 ]
, Subscript [ g , 3 ] } ] WeierstrassSigma [ z + Subscript [ z , 0 ] , {
Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] )) / ( WeierstrassSigma [ z
, { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] ˆ 2 WeierstrassSigma [
Subscript [ z , 0 ] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] ˆ 2
) ) /; Subscript [ z , 0 ] == InverseWeierstrassPInverseWeierstrassP [ 0 , { Subscript [ g ,
2 ] , Subscript [ g , 3 ] } ]

4
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Table 6: [2/3] Equations including the tokenized LATEX input, the (optional) interpretation by Mathematica (Mat.),
our translation (NMT), and the ground truth (GT.). (NMT+GT.) denotes that our translation is equal to the ground
truth.

Table 3: Equations including the tokenized LATEX input, the (optional) interpretation by Mathematica (Mat.), our translation (NMT), and the
ground truth (GT.). (NMT+GT.) denotes that our translation is equal to the ground truth.

Q9
4(z) = − <number_17>(3+<number_04>z2+<number_21>z4)

(z−1)9/2(z+1)9/2
(B.3)

LATEX
Q _ 4 ˆ 9 ( z )Q _ 4 ˆ 9 ( z ) = - \frac { <number_17><number_17> \left( 3 + <number_04><number_04> z ˆ 2 +
<number_21><number_21> z ˆ 4 \right) } { ( z - 1 ) ˆ { 9 / 2 } ( z + 1 ) ˆ { 9 / 2 }
}

NMT
GammaRegularizedGammaRegularized [ 4 , 9 , z ] == - ( ( <number_17><number_17> ( 3 + <number_04><number_04> z ˆ
2 + <number_21><number_21> z ˆ 4 ) ) / ( ( z - 1 ) ˆ ( 9 / 2 ) ( z + 1 ) ˆ ( 9 / 2 )
) )

GT.
LegendreQLegendreQ [ 4 , 9 , 3 , z ] == - ( ( <number_17><number_17> ( 3 + <number_04><number_04> z ˆ 2
+ <number_21><number_21> z ˆ 4 ) ) / ( ( z - 1 ) ˆ ( 9 / 2 ) ( z + 1 ) ˆ ( 9 / 2 ) )
)

℘ (z1 ± z2; g2, g3) =
(℘(z1;g2,g3)+℘(z2;g2,g3))(2℘(z1;g2,g3)℘(z2;g2,g3)− g2

2 )−(g3∓℘′(z1;g2,g3)℘
′(z2;g2,g3))

2(℘(z1;g2,g3)−℘(z2;g2,g3))2
(B.4)

LATEX

\wp \left( z _ 1 \pm z _ 2 ; g _ 2 , g _ 3 \right) = \frac { \left( \wp
\left( z _ 1 ; g _ 2 , g _ 3 \right) + \wp \left( z _ 2 ; g _ 2 , g _ 3
\right) \right) \left( 2 \wp \left( z _ 1 ; g _ 2 , g _ 3 \right) \wp
\left( z _ 2 ; g _ 2 , g _ 3 \right) - \frac { g _ 2 } { 2 } \right) -
\left( g _ 3 \mp \wp ’ \left( z _ 1 ; g _ 2 , g _ 3 \right) \wp ’ \left(
z _ 2 ; g _ 2 , g _ 3 \right) \right) } { 2 \left( \wp \left( z _ 1 ; g
_ 2 , g _ 3 \right) - \wp \left( z _ 2 ; g _ 2 , g _ 3 \right) \right) {
} ˆ 2 }

NMT

WeierstrassP [ Subscript [ z , 1 ] \[PlusMinus] Subscript [ z , 2 ] ,
{ Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] == ( ( WeierstrassP [
Subscript [ z , 1 ] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] +
WeierstrassP [ Subscript [ z , 2 ] , { Subscript [ g , 2 ] , Subscript [
g , 3 ] } ] ) / ( 2 ( WeierstrassP [ Subscript [ z , 1 ] , { Subscript
[ g , 2 ] , Subscript [ g , 3 ] } ] WeierstrassP [ Subscript [ z , 2 ]
, { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] - Subscript [ g , 2
] / 2 ) - ( Subscript [ g , 3 ] , WeierstrassPPrime [ Subscript [ z , 1
] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] WeierstrassPPrime
[ Subscript [ z , 2 ] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] }
] ) ) / ( 2 ( WeierstrassP [ Subscript [ z , 1 ] , { Subscript [ g , 2
] , Subscript [ g , 3 ] } ] - WeierstrassP [ Subscript [ z , 2 ] , {
Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] ) )

GT.

WeierstrassP [ Subscript [ z , 1 ] \[PlusMinus] Subscript [ z , 2 ] , {
Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] == ( 1 / ( 2 ( WeierstrassP
[ Subscript [ z , 1 ] , { Subscript [ g , 2 ] , Subscript [ g , 3 ]
} ] - WeierstrassP [ Subscript [ z , 2 ] , { Subscript [ g , 2 ] ,
Subscript [ g , 3 ] } ] ) ˆ 2 ) ) ( ( WeierstrassP [ Subscript [ z ,
1 ] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] + WeierstrassP
[ Subscript [ z , 2 ] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] }
] ) ( 2 WeierstrassP [ Subscript [ z , 1 ] , { Subscript [ g , 2 ] ,
Subscript [ g , 3 ] } ] WeierstrassP [ Subscript [ z , 2 ] , { Subscript
[ g , 2 ] , Subscript [ g , 3 ] } ] - ( 1 / 2 ) Subscript [ g , 2 ] ) -
( Subscript [ g , 3 ] \[MinusPlus] WeierstrassPPrime [ Subscript [ z , 1
] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] WeierstrassPPrime [
Subscript [ z , 2 ] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] ) )

δ(0, 0, 0, 0) = 1 (B.5)

LATEX \delta ( 0 , 0 , 0 , 0 ) = 1
Mat. \[Delta][0, 0, 0, 0] == 1
NMT+GT. DiscreteDelta [ 0 , 0 , 0 , 0 ] == 1

5

Table 3: Equations including the tokenized LATEX input, the (optional) interpretation by Mathematica (Mat.), our translation (NMT), and the
ground truth (GT.). (NMT+GT.) denotes that our translation is equal to the ground truth.

Q9
4(z) = − <number_17>(3+<number_04>z2+<number_21>z4)

(z−1)9/2(z+1)9/2
(B.3)

LATEX
Q _ 4 ˆ 9 ( z )Q _ 4 ˆ 9 ( z ) = - \frac { <number_17><number_17> \left( 3 + <number_04><number_04> z ˆ 2 +
<number_21><number_21> z ˆ 4 \right) } { ( z - 1 ) ˆ { 9 / 2 } ( z + 1 ) ˆ { 9 / 2 }
}

NMT
GammaRegularizedGammaRegularized [ 4 , 9 , z ] == - ( ( <number_17><number_17> ( 3 + <number_04><number_04> z ˆ
2 + <number_21><number_21> z ˆ 4 ) ) / ( ( z - 1 ) ˆ ( 9 / 2 ) ( z + 1 ) ˆ ( 9 / 2 )
) )

GT.
LegendreQLegendreQ [ 4 , 9 , 3 , z ] == - ( ( <number_17><number_17> ( 3 + <number_04><number_04> z ˆ 2
+ <number_21><number_21> z ˆ 4 ) ) / ( ( z - 1 ) ˆ ( 9 / 2 ) ( z + 1 ) ˆ ( 9 / 2 ) )
)

℘ (z1 ± z2; g2, g3) =
(℘(z1;g2,g3)+℘(z2;g2,g3))(2℘(z1;g2,g3)℘(z2;g2,g3)− g2

2 )−(g3∓℘′(z1;g2,g3)℘
′(z2;g2,g3))

2(℘(z1;g2,g3)−℘(z2;g2,g3))2
(B.4)

LATEX

\wp \left( z _ 1 \pm z _ 2 ; g _ 2 , g _ 3 \right) = \frac { \left( \wp
\left( z _ 1 ; g _ 2 , g _ 3 \right) + \wp \left( z _ 2 ; g _ 2 , g _ 3
\right) \right) \left( 2 \wp \left( z _ 1 ; g _ 2 , g _ 3 \right) \wp
\left( z _ 2 ; g _ 2 , g _ 3 \right) - \frac { g _ 2 } { 2 } \right) -
\left( g _ 3 \mp \wp ’ \left( z _ 1 ; g _ 2 , g _ 3 \right) \wp ’ \left(
z _ 2 ; g _ 2 , g _ 3 \right) \right) } { 2 \left( \wp \left( z _ 1 ; g
_ 2 , g _ 3 \right) - \wp \left( z _ 2 ; g _ 2 , g _ 3 \right) \right) {
} ˆ 2 }

NMT

WeierstrassP [ Subscript [ z , 1 ] \[PlusMinus] Subscript [ z , 2 ] ,
{ Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] == ( ( WeierstrassP [
Subscript [ z , 1 ] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] +
WeierstrassP [ Subscript [ z , 2 ] , { Subscript [ g , 2 ] , Subscript [
g , 3 ] } ] ) / ( 2 ( WeierstrassP [ Subscript [ z , 1 ] , { Subscript
[ g , 2 ] , Subscript [ g , 3 ] } ] WeierstrassP [ Subscript [ z , 2 ]
, { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] - Subscript [ g , 2
] / 2 ) - ( Subscript [ g , 3 ] , WeierstrassPPrime [ Subscript [ z , 1
] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] WeierstrassPPrime
[ Subscript [ z , 2 ] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] }
] ) ) / ( 2 ( WeierstrassP [ Subscript [ z , 1 ] , { Subscript [ g , 2
] , Subscript [ g , 3 ] } ] - WeierstrassP [ Subscript [ z , 2 ] , {
Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] ) )

GT.

WeierstrassP [ Subscript [ z , 1 ] \[PlusMinus] Subscript [ z , 2 ] , {
Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] == ( 1 / ( 2 ( WeierstrassP
[ Subscript [ z , 1 ] , { Subscript [ g , 2 ] , Subscript [ g , 3 ]
} ] - WeierstrassP [ Subscript [ z , 2 ] , { Subscript [ g , 2 ] ,
Subscript [ g , 3 ] } ] ) ˆ 2 ) ) ( ( WeierstrassP [ Subscript [ z ,
1 ] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] + WeierstrassP
[ Subscript [ z , 2 ] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] }
] ) ( 2 WeierstrassP [ Subscript [ z , 1 ] , { Subscript [ g , 2 ] ,
Subscript [ g , 3 ] } ] WeierstrassP [ Subscript [ z , 2 ] , { Subscript
[ g , 2 ] , Subscript [ g , 3 ] } ] - ( 1 / 2 ) Subscript [ g , 2 ] ) -
( Subscript [ g , 3 ] \[MinusPlus] WeierstrassPPrime [ Subscript [ z , 1
] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] WeierstrassPPrime [
Subscript [ z , 2 ] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] ) )

δ(0, 0, 0, 0) = 1 (B.5)

LATEX \delta ( 0 , 0 , 0 , 0 ) = 1
Mat. \[Delta][0, 0, 0, 0] == 1
NMT+GT. DiscreteDelta [ 0 , 0 , 0 , 0 ] == 1
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Table 7: [3/3] Equations including the tokenized LATEX input, the (optional) interpretation by Mathematica (Mat.),
our translation (NMT), and the ground truth (GT.). (NMT+GT.) denotes that our translation is equal to the ground
truth.

Table 3: Equations including the tokenized LATEX input, the (optional) interpretation by Mathematica (Mat.), our translation (NMT), and the
ground truth (GT.). (NMT+GT.) denotes that our translation is equal to the ground truth.

Q9
4(z) = − <number_17>(3+<number_04>z2+<number_21>z4)

(z−1)9/2(z+1)9/2
(B.3)

LATEX
Q _ 4 ˆ 9 ( z )Q _ 4 ˆ 9 ( z ) = - \frac { <number_17><number_17> \left( 3 + <number_04><number_04> z ˆ 2 +
<number_21><number_21> z ˆ 4 \right) } { ( z - 1 ) ˆ { 9 / 2 } ( z + 1 ) ˆ { 9 / 2 }
}

NMT
GammaRegularizedGammaRegularized [ 4 , 9 , z ] == - ( ( <number_17><number_17> ( 3 + <number_04><number_04> z ˆ
2 + <number_21><number_21> z ˆ 4 ) ) / ( ( z - 1 ) ˆ ( 9 / 2 ) ( z + 1 ) ˆ ( 9 / 2 )
) )

GT.
LegendreQLegendreQ [ 4 , 9 , 3 , z ] == - ( ( <number_17><number_17> ( 3 + <number_04><number_04> z ˆ 2
+ <number_21><number_21> z ˆ 4 ) ) / ( ( z - 1 ) ˆ ( 9 / 2 ) ( z + 1 ) ˆ ( 9 / 2 ) )
)

℘ (z1 ± z2; g2, g3) =
(℘(z1;g2,g3)+℘(z2;g2,g3))(2℘(z1;g2,g3)℘(z2;g2,g3)− g2

2 )−(g3∓℘′(z1;g2,g3)℘
′(z2;g2,g3))

2(℘(z1;g2,g3)−℘(z2;g2,g3))2
(B.4)

LATEX

\wp \left( z _ 1 \pm z _ 2 ; g _ 2 , g _ 3 \right) = \frac { \left( \wp
\left( z _ 1 ; g _ 2 , g _ 3 \right) + \wp \left( z _ 2 ; g _ 2 , g _ 3
\right) \right) \left( 2 \wp \left( z _ 1 ; g _ 2 , g _ 3 \right) \wp
\left( z _ 2 ; g _ 2 , g _ 3 \right) - \frac { g _ 2 } { 2 } \right) -
\left( g _ 3 \mp \wp ’ \left( z _ 1 ; g _ 2 , g _ 3 \right) \wp ’ \left(
z _ 2 ; g _ 2 , g _ 3 \right) \right) } { 2 \left( \wp \left( z _ 1 ; g
_ 2 , g _ 3 \right) - \wp \left( z _ 2 ; g _ 2 , g _ 3 \right) \right) {
} ˆ 2 }

NMT

WeierstrassP [ Subscript [ z , 1 ] \[PlusMinus] Subscript [ z , 2 ] ,
{ Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] == ( ( WeierstrassP [
Subscript [ z , 1 ] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] +
WeierstrassP [ Subscript [ z , 2 ] , { Subscript [ g , 2 ] , Subscript [
g , 3 ] } ] ) / ( 2 ( WeierstrassP [ Subscript [ z , 1 ] , { Subscript
[ g , 2 ] , Subscript [ g , 3 ] } ] WeierstrassP [ Subscript [ z , 2 ]
, { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] - Subscript [ g , 2
] / 2 ) - ( Subscript [ g , 3 ] , WeierstrassPPrime [ Subscript [ z , 1
] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] WeierstrassPPrime
[ Subscript [ z , 2 ] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] }
] ) ) / ( 2 ( WeierstrassP [ Subscript [ z , 1 ] , { Subscript [ g , 2
] , Subscript [ g , 3 ] } ] - WeierstrassP [ Subscript [ z , 2 ] , {
Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] ) )

GT.

WeierstrassP [ Subscript [ z , 1 ] \[PlusMinus] Subscript [ z , 2 ] , {
Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] == ( 1 / ( 2 ( WeierstrassP
[ Subscript [ z , 1 ] , { Subscript [ g , 2 ] , Subscript [ g , 3 ]
} ] - WeierstrassP [ Subscript [ z , 2 ] , { Subscript [ g , 2 ] ,
Subscript [ g , 3 ] } ] ) ˆ 2 ) ) ( ( WeierstrassP [ Subscript [ z ,
1 ] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] + WeierstrassP
[ Subscript [ z , 2 ] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] }
] ) ( 2 WeierstrassP [ Subscript [ z , 1 ] , { Subscript [ g , 2 ] ,
Subscript [ g , 3 ] } ] WeierstrassP [ Subscript [ z , 2 ] , { Subscript
[ g , 2 ] , Subscript [ g , 3 ] } ] - ( 1 / 2 ) Subscript [ g , 2 ] ) -
( Subscript [ g , 3 ] \[MinusPlus] WeierstrassPPrime [ Subscript [ z , 1
] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] WeierstrassPPrime [
Subscript [ z , 2 ] , { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] ) )

δ(0, 0, 0, 0) = 1 (B.5)

LATEX \delta ( 0 , 0 , 0 , 0 ) = 1
Mat. \[Delta][0, 0, 0, 0] == 1
NMT+GT. DiscreteDelta [ 0 , 0 , 0 , 0 ] == 1

5

Table 3: Equations including the tokenized LATEX input, the (optional) interpretation by Mathematica (Mat.), our translation (NMT), and the
ground truth (GT.). (NMT+GT.) denotes that our translation is equal to the ground truth.

σk(2) = 1 + 2k (B.6)

LATEX \sigma _ k ( 2 ) = 1 + 2 ˆ k
Mat. Subscript[\[Sigma], k][2] == 1 + 2ˆk
NMT+GT. DivisorSigma [ k , 2 ] == 1 + 2 ˆ k

∫
sin(az)Jν(az)dz =

z(az)1+ν
3 F4( 3

4+
ν
2 ,1+

ν
2 ,

5
4+

ν
2 ;

3
2 ,2+

ν
2 ,1+ν, 32+ν;−a2z2)

2ν((2+ν)Γ(1+ν)) (B.7)

LATEX

\int \sin ( a z ) J _ { \nu } ( a z ) d z\int \sin ( a z ) J _ { \nu } ( a z ) d z = \frac { z ( a z ) ˆ { 1 + \nu
} _ 3 F _ 4 \left( \frac { 3 } { 4 } + \frac { \nu } { 2 } , 1 + \frac {
\nu } { 2 } , \frac { 5 } { 4 } + \frac { \nu } { 2 } ; \frac { 3 } { 2 }
, 2 + \frac { \nu } { 2 } , 1 + \nu , \frac { 3 } { 2 } + \nu ; - a ˆ 2 z
ˆ 2 \right) } { 2 ˆ { \nu } ( ( 2 + \nu ) \Gamma ( 1 + \nu ) ) }

Mat.

Error; left half cannot be interpreted. Interpretation of right half: (z
\!\(\*SubsuperscriptBox[\(az\), \(3\), \(1 + \[Nu]\)]\) Subscript[F,
4][3/4 + \[Nu]/2, 1 + \[Nu]/2, 5/4 + \[Nu]/2; 3/2, 2 + \[Nu]/2, 1 +
\[Nu], 3/2 + \[Nu]; -aˆ2 zˆ2])/(2ˆ\[Nu] ((2 + \[Nu]) Gamma[1 + \[Nu]]))

NMT+GT.

Integrate [ Sin [ a z ] BesselJ [ \[Nu] , a z ] , z ]Integrate [ Sin [ a z ] BesselJ [ \[Nu] , a z ] , z ] == ( z ( a z ) ˆ (
1 + \[Nu] ) HypergeometricPFQ [ { 3 / 4 + \[Nu] / 2 , 1 + \[Nu] / 2 , 5 /
4 + \[Nu] / 2 } , { 3 / 2 , 2 + \[Nu] / 2 , 1 + \[Nu] , 3 / 2 + \[Nu] } ,
( - a ˆ 2 ) z ˆ 2 ] ) / 2 ˆ \[Nu] / ( ( 2 + \[Nu] ) Gamma [ 1 + \[Nu] ] )

℘ (z; g2, g3) =
1
z2 +

∑∞
m=−∞

∑∞
n=−∞ If

[
{m,n} = {0, 0}, 0, 1

(z−2mω1−2nω3)2
− 1

(2mω1+2nω3)2

]
(B.8)

LATEX

\wp \left( z ; g _ 2 , g _ 3 \right) = \frac { 1 } { z ˆ 2 } + \sum _ { m
= - \infty } ˆ { \infty } \sum _ { n = - \infty } ˆ { \infty } \text{If}
\left[ \{ m , n \} = \{ 0 , 0 \} , 0 , \frac { 1 } { \left( z - 2 m
\omega _ 1 - 2 n \omega _ 3 \right) { } ˆ 2 } - \frac { 1 } { \left( 2
m \omega _ 1 + 2 n \omega _ 3 \right) { } ˆ 2 } \right]

NMT+GT.

WeierstrassP [ z , { Subscript [ g , 2 ] , Subscript [ g , 3 ] } ] == 1 /
z ˆ 2 + Sum [ If [ { m , n } == { 0 , 0 } , 0 , 1 / ( z - 2 m Subscript
[ \[Omega] , 1 ] - 2 n Subscript [ \[Omega] , 3 ] ) ˆ 2 - 1 / ( 2 m
Subscript [ \[Omega] , 1 ] + 2 n Subscript [ \[Omega] , 3 ] ) ˆ 2 ] ,
{ m , - Infinity , Infinity } , { n , - Infinity , Infinity } ]

6
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C Network Ablation Studies

Ablation studies based on the LATEX→Mathematica translation model. The concrete results for the analysis
are displayed in Tables 8–11. For the tables, let Csxn denote a convolutional encoder and equal decoder
with state size s, kernel size 3, and n consecutive layers. Let Cskskxn be defined according to the
previous definition but with a kernel size of k. Further, let y-z be the concatenation of three elements: y,
a fully connected affine layer translating between the state sizes of y and z, and z. Let the embedding size
equal the state size of the first layer. For accuracy, we used the exact match accuracy on the validation set
of the LATEX→Mathematica translation.

Table 8: Experiments on mixed and constant state/embedding sizes.

Model Acc.

C256x8 86.4%
C256x12 88.3%
C512x6-C768x4-C1024x3-

88.6%C2048x1-C4096x1
C512x4-C1024x4 91.2%
C512x6-C768x4-C1024x2 91.6%
C512x8 91.9%
C512x4-C1024x8 92.3%
C512x8-C1024x4 92.7%
C512x20 93.0%
C512x12 94.9%

Table 9: Additional experiments (based on C512x8).

Modification Acc.

Substitute Numbers 95.0%
Single-digit tokens 92.7%
Training bias towards short formulae 94.8%
Input dict. ̸= output dict. 95.0%

Table 10: Experiments on different numbers of layers.

Model C512x8 C512x9 C512x10 C512x11 C512x12 C512x13
Acc. 94.3% 94.5% 94.7% 95.1% 95.0% 94.8%

Table 11: Experiments comparing kernel sizes (including number of parameters).

Model C512ks3x8 C512ks5x8 C512ks7x8 C512ks5x10 C512ks3x11 C512ks5x11
Acc. 94.3% 95.2% 94.1% 94.4% 95.1% 95.1%
Num. of param. 32 671 200 49 448 416 66 225 632 60 995 040 43 699 680 66 768 352
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