
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 11597–11609

July 9-14, 2023 ©2023 Association for Computational Linguistics

Recall, Expand and Multi-Candidate Cross-Encode:
Fast and Accurate Ultra-Fine Entity Typing

Chengyue Jiang3♠, Wenyang Hui3♠, Yong Jiang♣, Xiaobin Wang♣,
Pengjun Xie♣, Kewei Tu♠∗

♠School of Information Science and Technology, ShanghaiTech University
Shanghai Engineering Research Center of Intelligent Vision and Imaging

♣DAMO Academy, Alibaba Group, China
{jiangchy,huiwy,tukw}@shanghaitech,edu.cn;

{yongjiang.jy,xuanjie.wxb,chengchen.xpj}@alibaba-inc.com

Abstract

Ultra-fine entity typing (UFET) predicts ex-
tremely free-formed types (e.g., president,
politician) of a given entity mention (e.g., Joe
Biden) in context. State-of-the-art (SOTA)
methods use the cross-encoder (CE) based ar-
chitecture. CE concatenates a mention (and
its context) with each type and feeds the pair
into a pretrained language model (PLM) to
score their relevance. It brings deeper inter-
action between the mention and the type to
reach better performance but has to perform
N (the type set size) forward passes to infer
all the types of a single mention. CE is there-
fore very slow in inference when the type set
is large (e.g., N = 10k for UFET). To this
end, we propose to perform entity typing in
a recall-expand-filter manner. The recall and
expansion stages prune the large type set and
generate K (typically much smaller than N)
most relevant type candidates for each mention.
At the filter stage, we use a novel model called
MCCE to concurrently encode and score all
these K candidates in only one forward pass to
obtain the final type prediction. We investigate
different model options for each stage and con-
duct extensive experiments to compare each op-
tion, experiments show that our method reaches
SOTA performance on UFET and is thousands
of times faster than the CE-based architecture.
We also found our method is very effective
in fine-grained (130 types) and coarse-grained
(9 types) entity typing. Our code is avail-
able at http://github.com/modelscope/
AdaSeq/tree/master/examples/MCCE.

1 Introduction

Ultra-fine entity typing (UFET) (Choi et al., 2018)
aims to predict extremely fine-grained types (e.g.,
president, politician) of a given entity mention
within its context. It provides detailed semantic

∗ Kewei Tu is the corresponding author.
3 Equal Contribution.

PLM

 [CLS] Mention & Context [SEP]

hcls 0/1 Entailment for

PLM

 [CLS] Mention & Context [SEP]

hcls Scores of Type 1 … N

Type k

(b) Cross-Encoder based methods

(a) Multilabel Classification

Type k

Figure 1: Cross-Encoder and multi-label classification.

understandings of entity mentions and is a funda-
mental step in fine-grained named entity recogni-
tion (Ling and Weld, 2012). It can also be uti-
lized to assist various downstream tasks such as
relation extraction (Han et al., 2018), keyword ex-
traction (Huang et al., 2020) and content recom-
mendation (Upadhyay et al., 2021). Most recently,
the cross-encoder (CE) based method (Li et al.,
2022) achieves the SOTA performance in UFET.
Specifically, Li et al. (2022) proposes to treat the
mention with its context as a premise, and each
ultra-fine-grained type as a hypothesis. They then
concatenate them together as input and feed it into a
pretrained language model (PLM) (e.g., RoBERTa
(Liu et al., 2019)) to score the entailment between
the mention-type pair as illustrated in Figure 1(b).
Compared with the traditional multi-label classifi-
cation method (shown in Figure 1(a)) that simul-
taneously scores all types using the same mention
representation, CE has the advantage of incorporat-
ing type semantics in the encoding and inference
process (by taking words in type labels as input)
and enabling deeper interactions between each type
and the mention via cross-encoding. However, the
CE-based method is slow in inference because it

11597

http://github.com/modelscope/AdaSeq/tree/master/examples/MCCE
http://github.com/modelscope/AdaSeq/tree/master/examples/MCCE

10331
Types

Trained
MLC

MLM

Match
Expanded

Types

Recalled
Types

Mention &
Context

(b) Inference: Recall-Expand-Filter

Inference Data

Mention &
Context

Expansion

Recall Inference Data

Filter
Model

Filter

Filtered
Types

Figure 2: Recall-expand-filter paradigm.

has to enumerate all the types (up to 10k types in
UFET) and score entailment for each of them given
the mention as a premise. There is also no direct
interaction between types in CE for modeling corre-
lations between types (e.g., one has to be a person
if he or she is categorized as a politician), which
has been proven to be useful in previous works
(Xiong et al., 2019; Jiang et al., 2022).

To this end, we propose a recall-expand-filter
paradigm for UFET (illustrated in Figure 2) for
faster and more accurate ultra-fine entity typing.
As the name suggests, we first train a multi-label
classification (MLC) model to efficiently recall top
candidate types, which reduces the number of po-
tential types from 10k to hundreds. As the MLC
model recalls candidates based on representations
learned from the training data, it may not be able
to recall candidates that are scarce or unseen in the
training set. Consequently, we apply a type candi-
date expansion step utilizing lexical information
and weak supervision from masked language mod-
els (Dai et al., 2021) to improve the recall rate of the
candidate set. Finally, we propose a novel method
called multi-candidate cross-encoder (MCCE) to
concurrently encode and filter the expanded type
candidate set. Different from CE, MCCE concate-
nates all the recalled type candidates with the men-
tion and its context. The concatenated input is then
fed into a PLM to obtain candidate representations
and candidate scores. The MCCE allows us to
simultaneously encode and infer all the types from
the candidate set and is thus much faster than the
CE-based method, but it still preserves the advan-
tages of CE in modeling interactions between the
types and the mention. Concatenating all the candi-
dates also enables MCCE to implicitly learn corre-
lations between types. The advantages of MCCE
over existing methods are summarized in Figure 3.

Experiments on two UFET datasets show that
our recall-expand-filter paradigm reaches SOTA
performance and MCCE is thousands of times

Fast
Infer

Interact
M&C - T

Interact
T - T

Semantics
of T

MLC

CE

MCCE

Figure 3: Comparison of different models. M, C, and T
are abbreviations of mention, context, and type.

dataset |Y| avg(|yg|) train/dev/test language

UFET 10331 5.4 2k/2k/2k English
CFET 1299 3.5 3k/1k/1k Chinese

Table 1: Statistics of UFET datasets. avg(|yg|) denotes
the average number of gold types per instance.

faster than the previous SOTA CE-based method.
We also comprehensively investigate the perfor-
mance and efficiency of MCCE with different in-
put formats and attention mechanisms. We found
MCCE is effective in fine-grained (130 types) and
coarse-grained (9 types) entity typing. Our code
is available at http://github.com/modelscope/
AdaSeq/tree/master/examples/MCCE.

2 Background

2.1 Problem Definition
Given an entity mention m within its context sen-
tence c, ultra-fine entity typing (UFET) aims to
predict its correct types yg ⊂ Y (|Y| can be larger
than 10k). As |yg| > 1 in most cases, UFET is a
multi-label classification problem. We show statis-
tics of two UFET datasets, UFET (Choi et al.,
2018) and CFET1 (Lee et al., 2020), in Table 1.

2.2 Multi-label Classification Model for UFET
Multi-label classification (MLC) models are widely
adopted as backbones for UFET (Choi et al., 2018;
Onoe and Durrett, 2019; Onoe et al., 2021). They
use an encoder to obtain the mention representation
and use a decoder (e.g., MLP) to score types simul-
taneously. Figure 1(a) shows a representative MLC
model adopted by recent methods (Dai et al., 2021;
Jiang et al., 2022). The contextualized mention
representation is obtained by feeding c and m into
a pretrained language model (PLM) and taking the
last hidden state of [CLS], hcls. The mention rep-
resentation is then fed into an MLP layer to concur-
rently obtain all type scores s1, · · · sN (N = |Y|).

1As there is no official split available for CFET, we split
it by ourselves and will release our split in our code.

11598

http://github.com/modelscope/AdaSeq/tree/master/examples/MCCE
http://github.com/modelscope/AdaSeq/tree/master/examples/MCCE

MLC Inference Types with a probability higher
than a threshold τ are predicted: yp =
{yj |σ(sj) > τ, 1 ≤ j ≤ N}, where σ is the sig-
moid function. τ is tuned on the development set.

MLC Training The binary cross-entropy (BCE)
loss over the predicted label probabilities and the
gold types is used to train the MLC model. MLC
is very efficient in inference. However, the inter-
actions between mention and types in MLC are
weak, and the correlations between types are ig-
nored (Onoe et al., 2021; Xiong et al., 2019; Jiang
et al., 2022). In addition, MLC has difficulty in
integrating type semantics (Li et al., 2022).

2.3 Vanilla Cross-Encoders for UFET
Li et al. (2022) first proposed to use Cross-Encoder
(CE) for UFET. As shown in Figure 1(b), CE con-
catenates m, c together with a type yj ∈ Y and
feeds them into a PLM to obtain the [CLS] embed-
ding. Then an MLP layer is used to obtain the score
of yj given m, c.

hcls = PLM([CLS] c [SEP]m [SEP] yj) (1)

sj = MLP(hcls) (2)

The concatenation allows deeper interaction be-
tween the mention, context, and type (via the multi-
head self-attention in PLMs), and also incorporates
type semantics.

CE Inference Similar to MLC, types that have
a higher probability than a threshold are predicted.
To compute the probabilities, CE requires N for-
ward passes to infer types of a single mention, so
its inference is very slow when N is large.

CE Training CE is typically trained with the
marginal ranking loss (Li et al., 2022). A positive
type y+ ∈ yg and a negative type y− ̸∈ yg are
sampled from Y for each training sample (m, c).
The loss is computed as:

L = max(σ(s−)− σ(s+) + δ, 0)

where s+, s− are scores of the sampled positive
and negative types, and δ is the margin tuned on
the development set to determine how far positive
and negative samples should be separated.

3 Method

Inspired by techniques in information retrieval (Lar-
son, 2010) and entity linking (Ledell et al., 2020),
we decompose the inference of UFET into three

stages as illustrated in Figure 2: (1) A recall stage
to reduce the type candidate number (e.g., from
N = 10k to K = 100) while maintaining a good
recall rate using an efficient MLC model. (2) An
expansion stage to improve the recall rate by incor-
porating lexical information using exact matching
and weak supervision (Dai et al., 2021) from large
pretrained language models such as BERT-Large
(Devlin et al., 2019). (3) A filter stage to filter the
expanded type candidates to obtain the final predic-
tion. For the filter stage, we propose an efficient
model, Multi-Candidate Cross-Encoder (MCCE),
to concurrently encode and filter type candidates
of a given mention with only a single forward pass.

3.1 Recall Stage

To prune the type candidate set, we train a MLC
model introduced in Sec. 2.2 on the training set
and tune it based on the recall rate (e.g., recall@64)
on the development set. Then we use it to infer
the top K1 (typically less than 256) candidates
CR for each data point (m, c). We find that MLC
significantly outperforms BM25 (Robertson and
Zaragoza, 2009) as a recall model (see Sec. 5.1.1).

3.2 Expansion Stage

In UFET, the number of training data per type is
small, especially for fine-grained and ultra-fine-
grained types. 30% of the types in the develop-
ment set of UFET dataset is unseen during train-
ing. Consequently, we find the MLC used in the
recall stage easily overfits the train set and has dif-
ficulty in predicting types that only appear in the
development or test set. Therefore, we utilize two
methods, exact match and masked language models
(MLM), to expand the recalled candidates. Both
exact match and MLM are able to recall unseen
type candidates without any training.

Exact Match MLC recalls candidates using
dense representations. They are known to be weak
at identifying and utilizing lexical matching infor-
mation between the input and types (Tran et al.,
2019; Khattab and Zaharia, 2020). However, types
are extremely fine-grained in UFET (e.g., son,
child) and are very likely to appear in the context or
mention (e.g., mention “He” in context “He is the
son and child of ...”). To this end, we first identify
and normalize all nouns in the context and mention
using NLTK2, and then recall types that exactly

2nltk.tag package https://www.nltk.org

11599

https://www.nltk.org

BERT-Large-for-MLM

 [CLS] Left context mention right contextsuch as [SEP] [Mask] × l

p1⋯pl

Figure 4: Recall from MLM using prompts.

match these nouns. We denote the recalled type set
as CEM .

MLM Inspired by recent prompt-based methods
for entity typing (Ding et al., 2021; Pan et al., 2022),
we recall candidates by asking PLMs to fill masks
in prompts. Suppose a type y ∈ Y is tokenized to l
subwords w1, · · ·wl. To score y given m, c, we first
formulate the input as in Figure 4. We use ‘such
as’ as the template to induce types. The input is
then fed into BERT-large-uncased3 to obtain the
probabilities of the subwords. The score of y is
calculated by sMLM = (

∑l
n=1 log pn)/l, where

pn denotes the probability of subword wn predicted
by the PLM. We rank all types in descending order
by their scores sMLM .

We expand K2 candidates by the following strat-
egy: First, expand all candidates recalled by exact
match CEM \ CR. Then expand K2 − |CEM \ CR|
candidates using MLM based on their scores. After
expansion, we obtain K = K1 + K2 type candi-
dates for each data point.

3.3 Filter Stage

The filter stage infers types from the candidate pool
C generated by the recall and expansion stages. Let
K = |C| = K1 +K2 and K is typically less than
128. A trivial choice of the filter model is the CE
model introduced in Sec. 2.3. We can score these
candidates C using CE by K forward passes as
introduced before. For training, the positive type
y+ and negative type y_ are sampled from C instead
of Y and are then used for calculating the marginal
ranking loss. As K is much smaller than |Y|, the
inference speed with CE under our Recall-Expand-
Filter paradigm is much faster than that of vanilla
CE. However, it is still inefficient compared with
the MLC model that concurrently predicts scores
of all types in a single forward pass. For faster
inference and training, we propose multi-candidate
cross-encoders (MCCE) in the next section.

3We use the PLM from https://huggingface.co

PLM

 [CLS] [SEP]

h1

…

hKh2

Linear

s1 s2 sK

Mention & Context Type 1 Type 2 Type K

…

…

Figure 5: Multi-candidate cross-encoder (MCCE).

4 Multi-Candidate Cross-Encoder

4.1 Overview

As shown in Figure 5, compared with CE that con-
catenates one candidate at a time, MCCE concate-
nates all the candidates in C with the mention and
context. The concatenated input is then fed into the
PLM to obtain the hidden state of each candidate.
Finally, we apply an MLP over the hidden states
to concurrently score all the candidates. MCCE
models use only one forward pass to infer types
from candidates.

h1:K = PLM([CLS] c [SEP]m [SEP] y1:K)

s1:K = Linear(h1:K)
(3)

where y1:K is short for y1, . . . , yK ∈ C, and sim-
ilarly, h1:K and s1:K denote hidden states and
scores of all the candidates respectively.

Similar to MLC training and inference discussed
in Sec. 2.2, we use the binary cross-entropy loss as
the training objective and tune a probability thresh-
old on the development set for inference. We find
that during training, all positive types are ranked
very high in the candidate set at the first stage,
which is however not the case for the development
and test data. To prevent the filter model from over-
fitting the order of training candidates and only
learning to predict the highest-ranked candidates,
we keep permuting candidates during training.

4.2 Input Format of Candidates

We show two kinds of candidates representations
in this section.

Average of type sub-tokens We treat each pos-
sible type y ∈ C as a new token u and add it to
the vocabulary of the PLM. The static embedding
(layer 0 embedding of the PLM) of u is initialized
with the average static embedding of all the sub-
tokens in type y. The advantages of this method
include: (1) Compressing types into single tokens
allows us to consider more candidates; (2) Types

11600

https://huggingface.co

in UFET are tokenized into only 2.1 sub-tokens
on average (by RoBERTa’s tokenizer), so averag-
ing sub-token embeddings does not lose too much
semantic information of the sub-tokens.

Fixed-size sub-token block To preserve more
type semantics, we represent each candidate type
with its sub-tokens. We pad or truncate the sub-
tokens to a fixed-sized block to facilitate parallel
implementation of the attention mechanisms that
we will introduce next. We use the PLM hidden
state of the first sub-token in the block as the output
representation of each candidate.

4.3 Attention in MCCE

There are four kinds of attention in MCCE
as shown in Figure 6: sentence-to-sentence
(S2S), sentence-to-candidates (S2C), candidate-to-
sentence (C2S), and candidate-to-candidate (C2C).
Since we score candidates based on the mention
and its context, the attention from candidates to the
sentence (C2S) is necessary. On the other hand, the
C2C, S2S, and S2C attention are optional. We em-
pirically find that S2C is important, S2S is useful,
and C2C is only useful in some settings (see Sec.
6). Considering that C2C is computationally expen-
sive, we propose a variant of MCCE in which C2C
attention is discarded in computation (not by mask-
ing), as shown in the right part of Figure 6. Remov-
ing C2C attention significantly reduces the time
complexity of attention from O(D(LS + LC)

2) to
O(D(L2

S + 2LSLC +B2LC)), where LS and LC

be the number of sub-tokens used by the sentence
and candidates respectively, LC > LS in most
cases. D is the embedding dimension, and B is
the block size (B = 1 when we use the averaged
sub-tokens to represent a candidate). The detailed
computation procedure after removing C2C atten-
tion is shown in Appendix A.

Q
ue
ry

Key
Sentence Candidates

Se
nt
en
ce

C
an
di
da
te
s

SS

CS

SC

Q
ue
ry

Key
Sentence Candidates

SC

Se
nt
en
ce

C
an
di
da
te
s

CS

SS

CC

Figure 6: Attention in MCCE (left) and in MCCE
without candidate-to-candidate (C2C) attention (right).

64 128 256 512

0.6

0.7

0.8

0.9

Re
ca

ll

UFET

MLC
BM25

16 32 64 128
of Candidates Recalled

0.7

0.8

0.9

Re
ca

ll

CFET

MLC
BM25

Figure 7: Recall@K of MLC and BM25.

5 Experiments

We conduct experiments on two ultra-fine entity
typing datasets, UFET (English) and CFET (Chi-
nese). Their statistics are shown in Table 1. We
mainly report macro-averaged recall at the recall
and expansion stages and macro-F1 of the final
prediction. We also evaluate the MCCE models
on fine-grained (130 types) and coarse-grained (9
types) entity typing.

5.1 UFET and CFET

5.1.1 Recall Stage
We compare recall@K on the test sets of UFET
and CFET between our MLC model and a tra-
ditional BM25 model (Robertson and Zaragoza,
2009) in Figure 7. The MLC model uses RoBERTa-
large as the backbone and is tuned based on
recall@128 on the development set. We use the
AdamW optimizer with a learning rate of 2×10−5.
Results show that MLC is a strong recall model,
consistently outperforming BM25 on both UFET
and CFET datasets. Its recall@128 reaches over
85% on UFET and over 94% on CFET.

5.2 Expansion Stage

We show the improvement of recall from using
candidate expansion in Figure 8. On the UFET
dataset, the recall of expanding K2 = 32 addi-
tional candidates based on K1 = 96 MLC candi-
dates is 2% (absolute value) higher than the recall
of K1 = 128,K2 = 0, and is comparable to the
recall of K1 = 179,K2 = 0 (the red dotted line
in Figure 8). Similarly in CFET, expanding 10
candidates based on 54 MLC candidates is compa-
rable to recalling 141 candidates using MLC alone
in the recall. In subsequent experiments, we ex-

11601

0 1 2 4 8 16 32 96
Candidates Expanded by MLM/MLM+MATCH

0.84

0.85

0.86

0.87

0.88

0.89
Re

ca
ll@

12
8

MLM+MATCH
MLM
MLC Recall@64
MLC Recall@179

46

(a) Recall@128 on UFET by including different numbers
of expanded candidates.

0 1 2 4 8 16 32 48
Candidates Expanded by MLM/MLM+MATCH

0.90

0.91

0.92

0.93

0.94

0.95

0.96

Re
ca

ll@
64

MLM+MATCH
MLM
MLC Recall@64
MLC Recall@141

(b) Recall@64 on CFET by including different numbers
of expanded candidates.

Figure 8: The effect of the expansion stage.

pand 48 and 10 candidates for UFET and CFET
respectively for the filter stage.

5.3 Filter Stage and Final Results.

We report the performance of MCCE variants as
the filter model and compare them with various
strong baselines. We treat the number of candi-
dates K1 and K2 recalled and expanded by the first
two stages as a hyper-parameter and tune it on the
development set. For a fair comparison with base-
lines, we conduct experiments of MCCE using
different backbone PLMs. For all MCCE models,
we use the AdamW optimizer with a learning rate
tuned between 5× 10−6 and 2× 10−5. The batch
size we use is 4 and we train the models for at most
50 epochs with early stopping.

Baselines The MLC model we use for the recall
stage and the cross-encoder (CE) we introduced
in Sec. 2.3 are natural baselines. We also compare
our methods with recent PLM-based methods. We
introduce them in Appendix B.

Naming Conventions MCCE-S denotes the
MCCE model using the average of sub-tokens
as candidates’ input, and MCCE-B denotes
the model representing candidates as fixed-sized
blocks. The MCCE model without C2C attention
(mentioned in Sec. 4.3) is denoted as MCCE-
B w/o C2C. For PLM backbones used in UFET,

Base Models on UFET P R F1

MLC-like models
B BOX4TYPES(Onoe et al., 2021) 52.8 38.8 44.8
B LDET† (Onoe and Durrett, 2019) 51.5 33.0 40.1
B MLMET† (Dai et al., 2021) 53.6 45.3 49.1
B PL (Ding et al., 2021) 57.8 40.7 47.7
B DFET (Pan et al., 2022) 55.6 44.7 49.5
B MLC (reimplemented by us) 46.5 34.9 39.9
R MLC (reimplemented by us) 42.2 44.9 43.5
Seq2seq based models
B LRN (Liu et al., 2021) 54.5 38.9 45.4
Filter models under our recall-expand-filter paradigm
B CE128 47.2 48.5 47.8
B MCCE-S128 (Ours) 53.2 48.3 50.6
B MCCE-S128 W/O C2C (Ours) 52.3 48.3 50.2
B MCCE-B128 (Ours) 49.9 50.0 49.9
B MCCE-B128 W/O C2C (Ours) 49.9 48.2 49.0
R CE128 49.6 49.0 49.3
R MCCE-S128 (Ours) 53.3 47.3 50.1
R MCCE-S128 W/O C2C (Ours) 53.2 46.6 49.7
R MCCE-B128 (Ours) 52.5 47.9 50.1
R MCCE-B128 W/O C2C (Ours) 52.7 46.4 49.3

Large Models on UFET P R F1

MLC-like models
R MLC (Jiang et al., 2022) 47.8 40.4 43.8
R MLC-NPCRF (Jiang et al., 2022) 48.7 45.5 47.0
R MLC-GCN (Xiong et al., 2019) 51.2 41.0 45.5
R PL-NPCRF (Jiang et al., 2022) 49.9 46.9 48.4
B PL (Ding et al., 2021) 59.3 42.6 49.6
B PL-NPCRF (Jiang et al., 2022) 55.3 46.7 50.6
Cross-encoder based models and MCCEs
R LITE+L (Li et al., 2022) 48.7 45.8 47.2
RM LITE+NLI+L (Li et al., 2022) 52.4 48.9 50.6
Filter models under our recall-expand-filter paradigm
B CE128 50.3 49.6 49.9
B MCCE-S128 (Ours) 52.5 49.1 50.8
B MCCE-S128 W/O C2C (Ours) 54.1 47.1 50.4
B MCCE-B128 (Ours) 54.0 48.6 51.2
B MCCE-B128 W/O C2C (Ours) 52.8 48.3 50.4
R CE128 54.5 49.3 51.8
R MCCE-S128 (Ours) 50.8 49.8 50.3
R MCCE-S128 W/O C2C (Ours) 51.5 48.8 50.1
R MCCE-B128 (Ours) 51.9 50.8 51.4
R MCCE-B128 W/O C2C (Ours) 51.6 51.6 51.6
RM MCCE-B128 W/O C2C (Ours) 56.3 48.5 52.1

Table 2: Macro-averaged UFET result. LITE+L is
LITE without NLI pretraining, LITE+L+NLI is the
full LITE model. Methods marked by † additionally
utilize either distantly supervised or augmented data for
training. MCCE-S128 denotes we use 128 candidates
recalled and expanded from the first two stages.

we use B, R, RM to denote BERT-base-cased (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), and
RoBERTa-MNLI (Liu et al., 2019) respectively.
For CFET, we adopt two widely-used Chinese
PLM, BERT-base-Chinese (C) and NEZHA-base
(N) (Wei et al., 2019) . We call 12-layer PLMs base
models and 24-layer PLMs large models.

11602

Models on CFET P R F1

MLC-like models
N MLC 55.8 58.6 57.1
N MLC-NPCRF (Jiang et al., 2022) 57.0 60.5 58.7
N MLC-GCN (Xiong et al., 2019) 51.6 63.2 56.8
C MLC 54.0 59.5 56.6
C MLC-NPCRF (Jiang et al., 2022) 54.0 61.6 57.3
C PL-NPCRF (Xiong et al., 2019) 52.4 64.1 57.7
C MLC-GCN (Xiong et al., 2019) 56.4 58.6 57.5

Filter models under our recall-expand-filter paradigm
N CE64 57.6 64.3 60.7
C CE64 54.0 63.3 58.3
N MCCE-S64 (Ours) 58.4 62.1 60.2
N MCCE-S64 W/O C2C (Ours) 59.1 61.5 60.3
N MCCE-B64 (Ours) 56.7 66.1 61.1
N MCCE-B64 W/O C2C (Ours) 58.8 64.1 61.4
C MCCE-S64 (Ours) 55.5 62.6 58.8
C MCCE-S64 W/O C2C (Ours) 54.0 63.4 58.3
C MCCE-B64 (Ours) 55.0 63.5 59.0
C MCCE-B64 W/O C2C (Ours) 57.3 61.3 59.3

Table 3: Macro-averaged CFET result.

UFET Results We show the results on the
UFET dataset in Table 2 and make the following
observations. (1) The recall-expand-filter paradigm
is effective. Our methods outperform all the base-
lines without the paradigm by a large margin. The
CE under our paradigm reaches 51.8 F1, while
LITE, a more complicated CE, achieves only 50.6
F1. (2) MCCEs are strong filter models and
reach SOTA performances. MCCE-S128 with
BERT-base performs best and reaches 50.6 F1
score among base models, which is comparable
with previous SOTA performance of large mod-
els such as LITE+NLI+L and PL+NPCRF.
Among large models, MCCE-B128 W/O C2C also
reaches SOTA performance with 52.1 F1 score. (3)
C2C attention is not necessary on large models,
but is useful in base models. (4) Large models can
utilize type semantics better. We find MCCE-B
outperforms MCCE-S on large models, but un-
derperforms MCCE-S on base models. (5) The
choice of the backbone PLM matters. We find the
performance of CE under our paradigm is largely
affected by the PLM it uses. It reaches 47.8 F1 with
BERT-base and 51.8 F1 with RoBERTa-large. We
also find that BERT is more suitable for MCCE-
S compared to RoBERTa, and RoBERTa is more
suitable for MCCE-B as the backbone.

CFET Results On CFET, we compare MCCE
models with several strong baselines: NPCRF and
GCN with an MLC-like architecture, and CE un-
der our paradigm which is shown to be better than
LITE on UFET. The results are shown in Table 3.

MODEL # FP SENTS/S F1

MLC 1 58.8 43.8
LITE+NLI+L (CE) N 0.02 50.6

filter stage inference speed.
CE128 128 1.64 51.8
MCCE-S128 1 60.8 50.1
MCCE-B128 1 22.3 51.4
MCCE-B128 W/O C2C 1 25.2 52.1

Table 4: Inference speed comparison of models. # FP
means the number of PLM forward passes required by a
single inference. We also report the practical inference
speed SENTS/S and the F1 scores on UFET.

Models P R F1

coarse (9 types) Open Entity
R MLC 76.8 78.5 77.6
R CE9 82.3 81.0 81.6
R MCCE-S9 77.0 87.7 82.0
R MCCE-B9 W/O C2C 77.2 85.4 81.1
fine (130 types)
R MLC 70.4 63.7 66.9
R CE130 67.9 66.4 67.1
R MCCE-S130 65.8 71.8 68.7
R MCCE-B130 W/O C2C 64.1 70.5 67.1

Table 5: Micro-averaged results for fine and coarse-
grained entity typing on UFET.

Similar to the results on UFET, filter models under
our paradigm significantly outperform MLC-like
baselines, +2.0 F1 for NEZHA-base and +1.8 F1
for BERT-base-Chinese. MCCE-B is significantly
better than MCCE-S on both NEZHA-base and
BERT-base-Chinese, indicating the importance of
type semantics in the Chinese language. We also
find that MCCE w/o C2C is generally better than
MCCE w/ C2C, possibly because C2C attention
distracts the candidates from attending to the men-
tion and contexts.

Speed Comparison Table 4 shows the number
of PLM forward passes and the empirical infer-
ence speed of different RoBERTa-Large models on
UFET. We conduct the speed test using NVIDIA
TITAN RTX for all the models and the inference
batch size is 4. At the filter stage, the inference
speed of MCCE-S is 40 times faster than CE128

and thousands of times faster than LITE. Surpris-
ingly, MCCE-B W/O C2C is not significantly
faster than MCCE-B. It is possibly because the
computation (Appendix A) related to the block at-
tention is not fully optimized by the deep learning
framework we use. However, we expect the speed
advantage of MCCE-B W/O C2C over MCCE-

11603

Ablation of expansion stage P R F1

UFET MCCE WITH C2C BERT-LARGE
B MCCE-S128 (Ours) 52.5 49.1 50.8
B MCCE-S128 W/O EXPAND (Ours) 52.7 48.1 50.2
CFET MCCE WITH C2C BERT-BASE-CHINESE
C MCCE-S64 (Ours) 55.5 62.6 58.8
C MCCE-S64 W/O EXPAND (Ours) 55.4 60.4 57.8

Table 6: Ablation study of the expansion stage.

B would become greater with more candidates.

5.4 Fine and Coarse-grained Entity Typing
We also conduct experiments on fine-grained (130-
class) and coarse-grained (9-class) entity typing,
and the results are shown in Table 5. Since the
type candidate set is already small, it is not neces-
sary to apply the recall and expand stage to further
prune the type set. Then, we only evaluate different
model options for the filter stage. Results show
that MCCE models are still better than MLC and
CE, and MCCE-S is better than MCCE-B on
the coarser-grained setting possibly because the
coarser-grained types are simpler in surface-forms
and MCCE-S does not lose much type semantics.

6 Analysis

6.1 Importance of expansion stage
We perform an ablation study on the importance
of the expansion stage by comparing the results of
MCCE-S with and without the expansion stage
in Table 6. It can be seen that the expansion stage
has a positive effect, improving the final recall by
+1.0 and +2.2 on UFET and CFET respectively
without harming the precision.

6.2 Attention
We conduct an ablation study on S2S, C2S, S2C,
and C2C attention introduced in Sec. 4.3 and show
the results in Table 7. According to the results,
we find that C2C is useful but not necessary on
base models, MCCE-S using BERT-base reaches
50.2 without C2C on UFET. Removing S2S has a
non-negligible negative effect but surprisingly, it
will not destroy the model. A possible reason is
the interaction between sub-tokens in the sentence
can be achieved indirectly by first attending to the
candidates and then being attended back by the
candidates in the next layer. We also find that C2S
is necessary for the task (18.7 F1 w/o C2S) because
we rely on the mention and context to encode and
classify candidates. Furthermore, it is important

Analysis about attention on UFET P R F1

MCCE-S USING BERT-BASE
B MCCE-S128 FULL 53.2 48.3 50.6
B MCCE-S128 W/O C2C 52.3 48.3 50.2
B MCCE-S128 W/O S2S 50.6 48.4 49.4
B MCCE-S128 W/O S2C 48.7 47.1 47.9
B MCCE-S128 W/O C2S 19.7 17.4 18.7
B MCCE-S128 W/O S2S,C2C 50.2 47.3 48.8

Table 7: Ablation of different types of attention.

for sentences to attend to all the candidates (S2C),
possibly because certain candidate types may help
highlight informative words in the sentence.

7 Related Work

While writing this paper, we noticed that a paper
(Du et al., 2022) that has similar ideas to our work
was submitted to arXiv. They target the task of
selecting from multiple options, of which UFET is
a special case. Their second model, Parallel-TE, is
similar to our MCCE-B. In addition, when apply-
ing their model to UFET in their experiments, they
prune types in a similar manner to our recall stage.
Below we summarize the differences between our
method and theirs when applied to UFET. (1) Dif-
ference in the paradigms. Our paradigm has an ad-
ditional expansion stage which improves the qual-
ity of recalled candidates, as shown in Sec. 6. (2)
There are many differences in model details. For
example, in the PLM input, our MCCE-S learns a
single token for each type and our MCCE-B uses
fixed-sized blocks without SEP tokens in-between,
while they use full text of types separated by SEP
tokens. We also propose a new model variant with
C2C attention removed. (3) We conduct more com-
prehensive experiments on UFET, covering two lan-
guages and three settings (ultra-fine-grained, fine-
grained, and coarse-grained), as well as comparing
and analyzing different options such as PLM back-
bones and types of attention. More related works
about entity typing are shown in Appendix B.

8 Conclusion

We propose a recall-expand-filter paradigm for
ultra-fine entity typing. We train a recall model
to generate candidates, use MLM and exact match
to improve the quality of recalled candidates, and
finally use filter models to obtain final type pre-
dictions. We propose a filter model called multi-
candidate cross-encoder (MCCE) to concurrently
encode and filter all candidates, and investigate

11604

different input formats and attention mechanisms.
Extensive experiments on entity typing show that
our paradigm is effective and the MCCE mod-
els under our paradigm reach SOTA performances
on both English and Chinese UFET datasets and
are also very effective on fine and coarse-grained
entity typing. Further, MCCE models have compa-
rable inference speed to simple (MLC) models and
are thousands of times faster than previous SOTA
cross-encoder-based methods.

Limitation

One limitation of the MCCE models is that the
number of candidates during training and inference
should be the same, otherwise, the performance
drops severely. One simple potential solution is
to divide or pad the candidates during inference
to match the number of candidates during training.
For example, divide 128 candidates into two sets
with 64 candidates and apply twice forward passes
of a filter model if it is trained on 64 candidates
and required to filter 128 candidates during infer-
ence. We don’t fully explore the solutions to this
limitation and leave it as future work.

Acknowledgement

This work was supported by the National Natu-
ral Science Foundation of China (61976139) and
by Alibaba Group through Alibaba Innovative Re-
search Program.

References
Eunsol Choi, Omer Levy, Yejin Choi, and Zettlemoyer.

2018. Ultra-fine entity typing. In Proceedings of the
ACL. Association for Computational Linguistics.

Hongliang Dai, Yangqiu Song, and Haixun Wang. 2021.
Ultra-fine entity typing with weak supervision from a
masked language model. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1790–1799, Online. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. ArXiv, abs/1810.04805.

Ning Ding, Yulin Chen, Xu Han, Guangwei Xu,
Pengjun Xie, Hai-Tao Zheng, Zhiyuan Liu, Juanzi
Li, and Hong-Gee Kim. 2021. Prompt-learning
for fine-grained entity typing. arXiv preprint
arXiv:2108.10604.

Jiangshu Du, Wenpeng Yin, Congying Xia, and Philip
Yu. 2022. Learning to select from multiple options.
ArXiv, abs/2212.00301.

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Y. Yao,
Zhiyuan Liu, and Maosong Sun. 2018. Fewrel: A
large-scale supervised few-shot relation classification
dataset with state-of-the-art evaluation. In Confer-
ence on Empirical Methods in Natural Language
Processing.

Han Huang, Xiaoguang Wang, and Hongyu Wang. 2020.
Ner-rake: An improved rapid automatic keyword ex-
traction method for scientific literatures based on
named entity recognition. Proceedings of the As-
sociation for Information Science and Technology,
57(1):e374.

Chengyue Jiang, Yong Jiang, Weiqi Wu, Pengjun Xie,
and Kewei Tu. 2022. Modeling label correlations
for ultra-fine entity typing with neural pairwise con-
ditional random field. In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics.

O. Khattab and Matei A. Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert. Proceedings of the 43rd
International ACM SIGIR Conference on Research
and Development in Information Retrieval.

Ray R. Larson. 2010. Introduction to information re-
trieval. J. Assoc. Inf. Sci. Technol., 61:852–853.

Wu Ledell, Petroni Fabio, Josifoski Martin, Riedel Se-
bastian, and Zettlemoyer Luke. 2020. Zero-shot en-
tity linking with dense entity retrieval. In EMNLP.

Chin Lee, Hongliang Dai, Yangqiu Song, and Xin Li.
2020. A Chinese corpus for fine-grained entity typ-
ing. In Proceedings of the Twelfth Language Re-
sources and Evaluation Conference, pages 4451–
4457, Marseille, France. European Language Re-
sources Association.

Bangzheng Li, Wenpeng Yin, and Muhao Chen. 2022.
Ultra-fine entity typing with indirect supervision
from natural language inference. arXiv preprint
arXiv:2202.06167.

Xiao Ling and Daniel S. Weld. 2012. Fine-grained en-
tity recognition. Proceedings of the AAAI Conference
on Artificial Intelligence.

Qing Liu, Hongyu Lin, Xinyan Xiao, Xianpei Han,
Le Sun, and Hua Wu. 2021. Fine-grained entity
typing via label reasoning. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4611–4622, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.

11605

https://doi.org/10.18653/v1/2021.acl-long.141
https://doi.org/10.18653/v1/2021.acl-long.141
https://aclanthology.org/2020.lrec-1.548
https://aclanthology.org/2020.lrec-1.548
https://doi.org/10.18653/v1/2021.emnlp-main.378
https://doi.org/10.18653/v1/2021.emnlp-main.378

Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yasumasa Onoe, Michael Boratko, Andrew McCallum,
and Greg Durrett. 2021. Modeling fine-grained entity
types with box embeddings. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 2051–2064, Online. As-
sociation for Computational Linguistics.

Yasumasa Onoe and Greg Durrett. 2019. Learning to
denoise distantly-labeled data for entity typing. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 2407–2417,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Weiran Pan, Wei Wei, and Feida Zhu. 2022. Automatic
noisy label correction for fine-grained entity typing.
arXiv preprint arXiv:2205.03011.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Stephen E. Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Found. Trends Inf. Retr., 3:333–389.

Vu Mai Tran, Minh Le Nguyen, and Ken Satoh. 2019.
Building legal case retrieval systems with lexical
matching and summarization using a pre-trained
phrase scoring model. Proceedings of the Seven-
teenth International Conference on Artificial Intelli-
gence and Law.

Chirayu Upadhyay, Hasan Abu-Rasheed, Christian
Weber, and Madjid Fathi. 2021. Explainable job-
posting recommendations using knowledge graphs
and named entity recognition. In 2021 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics
(SMC), pages 3291–3296. IEEE.

Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong
Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin
Jiang, Xiao Chen, and Qun Liu. 2019. NEZHA:
neural contextualized representation for chinese lan-
guage understanding. CoRR, abs/1909.00204.

Wenhan Xiong, Jiawei Wu, Deren Lei, Mo Yu, Shiyu
Chang, Xiaoxiao Guo, and William Yang Wang.
2019. Imposing label-relational inductive bias for
extremely fine-grained entity typing. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and
Short Papers), Minneapolis, Minnesota. Association
for Computational Linguistics.

A Removing C2C Attention

Let LS and LC be the number of sub-tokens used
by the sentence and candidates respectively. We
can formulate the attention query of the sentence
as QS = [qs1; · · · ; qsLS

] ∈ RLS×D, where qsi is
the query vector of the i-th sub-token in the sen-
tence, and D is the embedding dimension. Sim-
ilarly, the query of candidates is formulated as
QC = [qc1; · · · ; qcLC

] ∈ RLC×D. When we treat
candidates as average of sub-tokens, qci is a D-
dimensional vector, and when we use fixed-sized
blocks to place candidates, qci ∈ RB×D is the con-
catenation of the query vectors in the i-th candi-
date block and B is the number of sub-tokens in a
block. The keys and values are defined similarly as
KC ,VC ,OC ∈ RLC×D,KS ,VS ,OS ∈ RLS×D.
The attention outputs are computed as:

OS = Softmax
(QS [KS ;KC]

T

√
D

)
· [VS ;VC] (4)

[ACS ;ACC] = Softmax
([QCK

T
S ;M

T
C]√

D

)
(5)

MC = [qc1
Tkc

1; · · · ; qcLC

Tkc
LC

] (6)

ACC = [ac
1; · · · ;ac

LC
] (7)

OC = ACSVS +

LC∑

j=1

ajv
c
j (8)

where ACC is the intra-candidate or intra-block at-
tention, and ac

j is a scaler when we treat candidates
as the average of sub-tokens and is a B × B ma-
trix when we represent candidates as blocks. The
last step (Eq. 8) can be parallelly implemented by
Einstein summation.

B Baselines

We introduce recent PLM-based methods for UFET
that we compare in Sec. 5.3 here. LDET (Onoe
and Durrett, 2019) is an MLC with Bert-base-
uncased and ELMo (Peters et al., 2018) trained
on 727k examples automatically denoised from the
distantly labeled UFET. GCN (Xiong et al., 2019)
uses GCN to model type correlations and obtain
type embeddings. Types are scored by dot-product
of mention and type embeddings. The original pa-
per uses BiLSTM as the mention encoder, but we
report the results of the re-implementation by Jiang

11606

https://doi.org/10.18653/v1/2021.acl-long.160
https://doi.org/10.18653/v1/2021.acl-long.160
https://doi.org/10.18653/v1/N19-1250
https://doi.org/10.18653/v1/N19-1250
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
http://arxiv.org/abs/1909.00204
http://arxiv.org/abs/1909.00204
http://arxiv.org/abs/1909.00204
https://aclanthology.org/N19-1084
https://aclanthology.org/N19-1084

et al. (2022) using RoBERTa-large. BOX4TYPE
(Onoe et al., 2021) uses Bert-large as the backbone
and uses box embedding to encode mentions and
types for training and inference. LRN (Liu et al.,
2021) use Bert-base as the encoder and an LSTM
decoder to generate types in a seq2seq manner.
MLMET (Dai et al., 2021) is an MLC with Bert-
base, first pretrained by distantly-labeled data aug-
mented with masked word prediction, and then fine-
tuned and self-trained on the 2k human-annotated
data. PL (Ding et al., 2021) uses prompt learning
for entity typing. DFET (Pan et al., 2022) uses PL
as the backbone and is a multi-round automatic de-
noising method on the 2k labeled data. LITE (Li
et al., 2022) is the previous SOTA system that for-
mulates entity typing as textual inference. LITE
uses RoBERTa-large-MNLI as the backbone and
is a cross-encoder (introduced in Sec. 2.3) with
designed templates and a hierarchical loss. Jiang
et al. (2022) proposes NPCRF to enhance back-
bones such as PL and MLC by modeling type
correlations, reaching performance comparable to
LITE.

11607

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

after conclusion

�7 A2. Did you discuss any potential risks of your work?
currently don’t find any risks

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
abstract

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
2.1, use dataset

�3 B1. Did you cite the creators of artifacts you used?
2.1

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
2.1

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
2.1, footnote

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
2.1

C �3 Did you run computational experiments?
5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
5

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

11608

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
5

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
5

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
3.2

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

11609

