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Abstract

Ensuring the effectiveness of text-based cri-
sis counseling requires observing ongoing
conversations and providing feedback, both
labor-intensive tasks. Automatic analysis of
conversations—at the full chat and utterance
levels—may help support counselors and pro-
vide better care. While some session-level train-
ing data (e.g., rating of patient risk) is often
available from counselors, labeling utterances
requires expensive post hoc annotation. But
the latter can not only provide insights about
conversation dynamics, but can also serve to
support quality assurance efforts for counselors.
In this paper, we examine if inexpensive—and
potentially noisy—session-level annotation can
help improve label utterances. To this end, we
propose a logic-based indirect supervision ap-
proach that exploits declaratively stated struc-
tural dependencies between both levels of anno-
tation to improve utterance modeling. We show
that adding these rules gives an improvement of
3.5% f-score over a strong multi-task baseline
for utterance-level predictions. We demonstrate
via ablation studies how indirect supervision
via logic rules also improves the consistency
and robustness of the system.

Trigger warning: This paper discusses suicide in
the context of crisis counseling and includes exam-
ples illustrating such conversations.

1 Introduction

Text-based crisis counseling services like Crisis
Text Line1 and the 988 Suicide & Crisis Lifeline2

are increasingly adopted by people seeking con-
fidential mental health support. They help thou-
sands of texters every day. But the volume of users
challenges the ability of crisis systems to provide
consistently high-quality service. For example, in
our experience with the regional suicide hotline,

1https://www.crisistextline.org
2https://988lifeline.org/

SafeUT,3 we found that counselors can have ex-
tended shifts involving up to eight conversations
with potentially suicidal clients simultaneously!
Figure 1a shows an illustrative anonymized exam-
ple of such a session.

Addressing the twin problems of managing coun-
selor workload and ensuring quality requires train-
ing new counselors and providing feedback to ex-
isting ones. In particular, understanding suicide
risk in client utterances may help counselors learn
to prioritize high-risk client situations, especially
when dealing with multiple chats simultaneously or
when fatigued. As Imel et al. (2017) note, scaling
such efforts requires technological assistance. Pre-
vious work (e.g., Broadbent et al., 2023; Guzman-
Nateras et al., 2022; Shrestha et al., 2021; Haque
et al., 2020) has shown that NLP models can reli-
ably assess risk in crisis chats. Yet, building models
for risk assessment at the utterance level is chal-
lenging because of the dearth of training data.

Utterance-level risk labeling requires post hoc
annotation by experts who follow a coding manual;
the process can be slow and expensive. In contrast,
session-level risk data is relatively easier to obtain.
At the end of a session, in their standard workflow,
counselors can tag the risk level (e.g., low- or high-
risk) for record keeping requirements. Session-
level assessments are undeniably useful (Xu et al.,
2021; Bantilan et al., 2021); but the nuances of
moment-to-moment situational judgments are also
key for clinical training and supervision.

In this paper, we ask: Can the easy-to-obtain
session-level risk data help improve utterance risk
classifiers? These two tasks have structural depen-
dencies between them: session-level classification
of risk should be dependent on utterance-level clas-
sification, such that a session containing any high-
risk utterances should be deemed high risk. This
connection paves the way to extract auxiliary signal

3https://safeut.org. This work was conducted under
IRB oversight. Appendix A has more details.
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I’ve been thinking of ending my life, my mental
health is bad. I had an attempt [#DATE].

D1,
D9

I am here for you. How can I help?

Hi. I feel I’m worthless and unhappy all the time.
And I’m tired of being anxious. No-D

I am sorry you feel that way. Have you talked to a
therapist about your anxiety?

I have. But I can’t work with my therapist anymore.
I’m looking for a new one. No-D

Have you ever tried things like the 5 senses ground-
ing skill for your anxiety?

I did. I tried so hard, and nothing worked. I’m just
exhausted. Sometimes I feel like wanting to give it
an end.

D2b

...

1
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I am sorry you feel that way. Have you talked to a

therapist about your anxiety?.
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Figure 1: (a) Example snippet of an anonymized Higher risk chat session with associated utterance-level labels for
client ( ) utterances. (b) Overview of the problem and our approach. We have two disjoint datasets of annotated
crisis sessions: one set is labeled at the session level (with Higher or Lower risk) by the counselor immediately
after the chat ends, the other set is labeled post hoc at the utterance level (with one or more risk status codes
shown in Table 1) by coding experts. There are structural dependencies between the two levels of annotation. Our
work proposes a framework that exploits these dependencies via a logic-guided declarative learning loss where the
easy-to-obtain session data provides auxiliary supervision for the low-resource utterance classification task.

from the easily obtained session labels to indirectly
supervise utterance models.

Prior work on indirect supervision with struc-
tured prediction (Chang et al., 2010a,b) focuses
on feature-rich linear models. However, import-
ing these ideas to the deep learning realm can be
computationally untenable due to the discrete opti-
mization step within the training loop. We propose
a mechanism to instantiate this cross-task indirect
supervision problem as a declarative learning ob-
jective encoded by logical constraints. For efficient
training, these constraints are relaxed into differen-
tiable losses (e.g., Richardson et al., 2022; Li et al.,
2019; Rocktäschel et al., 2015). Figure 1b illus-
trates the approach. The flexibility of the frame-
work allows us to incorporate further structural
constraints inherent in the utterance-level task.

We show that the auxiliary supervision via con-
straints significantly improves utterance risk predic-
tion over both direct supervision and strong multi-
task baselines. Our analysis reveals that the rules
also improve model consistency and robustness.

In summary, our contributions are: We intro-
duce a framework for indirect supervision that uses
relaxed logic. We instantiate it to the problem of us-
ing cheap, abundant, but noisy annotation (session-
level risk labels) as auxiliary signal to improve
the performance on a low-resource task (utterance-

level labels). We show that structural dependencies
across tasks help outperform a directly supervised
and a strong multi-task baselines.

2 Crisis Counseling and Coding

In text-based crisis intervention, a client starts a
chat session (also called an encounter) by typing a
message, and the first available counselor replies
to it. The session goes on till either the client fin-
ishes the conversation, or a certain amount of time
elapses with no client response.

The volume of messages to text-based crisis ser-
vices presents quality assurance challenges and de-
mands increased counselor training. NLP-based
tools can help both with quality control and for
counselor feedback during training (Sharma et al.,
2021; Demasi et al., 2020, 2019; Dinakar et al.,
2015). In particular, monitoring chat-level and also
utterance (or message) suicide risk status can be
critical to improve service effectiveness. To build
such models, we need risk assessment annotation
at two levels: at the session level and the utterance
level. The former is easy to obtain, whereas the
latter is not.

Once a session concludes, counselors tag the
conversation as being higher or lower suicide risk
as part of their routine reporting requirements. Con-
sequently, we can organically obtain session-level
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Code Notation

Lifetime ideation D1

Current ideation D2

Imminent risk D2a

Passive ideation D2b

Attempt in progress D3

Method chosen or considered D6

Availability of means D6b

Prior attempt(s) D9

Table 1: Client utterance risk status codes from the
crisis chat scheme of Lake et al. (2022). Codes in bold
are associated with client high suicide risk. We denote
with No-D when there is no D-code label associated.

annotation, but perhaps with some noise due to
provider fatigue.

In contrast, labeling the suicide risk status of
client utterances needs careful post hoc analysis
over the session. For this process, a group of expert
annotators label each utterance using a standard
coding system for risk. In this work, we use the
crisis chat coding scheme of Lake et al. (2022).4

Specifically, the coders assign to each client utter-
ance zero, one, or more suicide risk status codes
from the section D of the coding manual. We refer
to these labels as “D-codes” in this paper; Table 1
lists the eight codes used. Utterances for which no
codes apply are labeled with a special No-D label.
The right columns of the example chats in Figure 1a
and Appendix B show the D-codes associated with
the client utterances. The subtle differences be-
tween the label definitions make the utterance-level
annotation an expensive and slow process. Conse-
quently, only a limited amount of labeled data with
utterance suicide risk status is available.

With these two types of counseling annotation—
the cheap and noisy session-level data, and the ex-
pensive and slow utterance-level data—we seek to
use the naturally occurring session risk assessment
signal to improve an utterance risk status model.

Datasets. We use two datasets from the regional
suicide crisis hotline SafeUT. Both contain encoun-
ters consisting of text messages between the client
and possibly multiple counselors. Since they were
created in different development stages of SafeUT,
they are disjoint: one with client utterances labeled
for risk status and the other with labeled encounters.
No encounter is annotated at both levels.

The first dataset, denoted as U , contains 425
sessions labeled by seven annotators: six graduate

4Our SafeUT data uses a revised version of the Suicide
Risk Factors in the Crisis Chat Transcript Abstraction.

students and a psychology professor. The aver-
age session has 23 utterances, with 13 from the
client. Each annotator independently labeled client
utterances with a nine-dimensional label indicat-
ing a no-code or a combination of risk status D-
codes (Table 1) and achieved a high 0.8 intra-class
correlation coefficient. The set U contains 4912
client utterances, 688 of which are labeled with
at least one D-code. The second dataset, denoted
as E, contains 5990 encounters labeled by trained
SafeUT counselors with binary risk assessment la-
bels. They labeled 879 and 5111 encounters with
higher and lower risk respectively.5

Problem statement. Previous research with sim-
ilar kinds of data has used multi-task learning
techniques to create joint representations of the
input, successfully improving utterance-level pre-
diction (Gibson et al., 2022; Cahn, 2021).

The two types of labels are tied by structural
dependencies. From the definitions of the D-codes,
and their associated coding manual (Lake et al.,
2022), we observe that certain utterance D-codes
suggest a higher risk session: an encounter con-
taining a client utterance coded with Imminent risk
(D2a), Attempt in progress (D3), Method chosen
or considered (D6) or Availability of means (D6b)
must be assessed as having higher risk. Conversely,
a lower risk assessed encounter cannot contain an
utterance coded with any high-risk D-code.

Beyond the cross-task dependencies, the defi-
nition of the D-codes also entails that the occur-
rence of certain labels logically necessitates the
occurrence of certain others. For example, a client
who has attempted suicide in the past had (at least)
one lifetime suicide ideation. Hence, an utter-
ance coded with Prior attempt(s) (D9) must also be
coded with Lifetime ideation (D1).6 We list all the
D-code dependencies in the appendix (Table 13).

The structural dependencies between the tasks
open the possibility of using encounter-level an-
notation as indirect supervision for utterance-level
risk status coding. Moreover, the dependencies
between D-codes can be used to guide models to-

5The set E was previously used for session binary risk
assessment by Broadbent et al. (2023).

6This dependency between the D9 and D1 labels is from
the D-code annotation guidelines. However, we note that it is
theoretically possible that one could make a suicide attempt
without ideation. Indeed, since we are dealing with mental
states of people, the dependencies between the D-codes are
actually only highly probable rather than being inviolable
mandates. But rule violations are psychologically improbable;
so for this work, we can treat them as constraints.
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wards more consistent and robust utterance risk
status prediction despite the paucity of data.

We ask: Can we exploit the structural dependen-
cies between the two kinds of annotation and within
the D-codes to aid utterance-level prediction?

3 Indirect Supervision via Logic

In this work, we introduce a logic-guided indirect
supervision framework that uses cross-task depen-
dencies to transfer signal from the session data to
the utterance models. The declarative nature of
the structural dependencies between the two tasks
allows us to express them as predicate logic rules.

The question of indirect supervision with struc-
tural constraints has been studied in the structured
prediction literature (Chang et al., 2010a,b). How-
ever, instantiating these approaches for neural net-
works is computationally expensive because of the
need to perform combinatorial inference in the in-
nermost loop of the already slow training process.

Instead, we build on the approach presented in Li
et al. (2019) and Medina Grespan et al. (2021) and
relax the rules to define sub-differentiable losses
that encourage utterance and session models to sat-
isfy them. Doing so allows us to train a jointly con-
strained pair of models from the two data sources.

The rest of this section expands on this intuition
to present a declarative formulation of the problem.
The next section focuses on using the formulation
to design a loss function for learning.

3.1 Notation

We denote by e = {m1,m2, . . . ,mn} an en-
counter with n utterances where each mi repre-
sents a client or a counselor utterance. We denote
by R = {Lower,Higher} the set of risk labels at
the session level, and by D the set of all risk status
utterance labels in Table 1. Additionally, we denote
the no-code label as No-D. We denote the subset
of high-risk D-codes (bold rows in Table 1) by H.

We represent the fact that an encounter e has risk
r ∈ R as the predicate Risk(e, r). Similarly, we
define the predicates HasCode(m, d) to denote the
fact that an utterance m has the label d ∈ D, and
NoCode(m) to denote that the label of m is No-D.

3.2 Declarative Problem Formulation

For the declarative loss learning approach, we first
need to represent the labeled data and structural
constraints in predicate logic.

Data Constraints. The dataset of encounters E
sets the Risk for each session it contains:

∀(e, r) ∈ E, Risk(e, r). (1)

To represent the fact that a client utterance m is
labeled with a set of D-codes D∗ ⊂ D, we need
to ensure that (a) the labels of m are in D∗, and
(b) neither the No-D, nor other D-codes should
apply for the message. For notational convenience,
we will call these M1 and M2 respectively.

M1(m,D∗) :=
∧

d∈D∗
HasCode(m, d) (2)

M2(m,D∗) := ¬NoCode(m)∧
∧

d∈D\D∗
¬HasCode(m, d) (3)

Using these helper predicates, we can represent a
session in the utterance labeled data U . Each client
utterance in a session e ∈ U either has a set of D
codes associated with it, or has the No-D label.

∀e ∈ U, ∀(m,D∗) ∈ e, M1(m,D∗) ∧ M2(m,D∗),

∀(m,No-D) ∈ e, NoCode(m). (4)

Joint constraint. A session assessed with
Lower risk must not contain a client utterance with
a high-risk D-code from the set H. This constraint
applies for every utterance in the session. Impor-
tantly, the rule applies to all sessions, whether they
are labeled or not, and in particular, to sessions in
both datasets E and U . We can write:

∀e ∈ E ∪ U, ∀m ∈ e, ∀d ∈ H
Risk(e,Lower) → ¬HasCode(m, d). (5)

D-Code constraints. For a set of pairs of D-
codes (di, dj), if the former applies to a message,
so should the latter. We will refer to the full set of
pairs (Table 13 in the appendix) as RULES. These
label dependencies apply to every message in every
encounter in both datasets E and U . We can write:

∀e ∈ E ∪ U, ∀m ∈ e, ∀(di, dj) ∈ RULES,

HasCode(m, di) → HasCode(m, dj). (6)

NoCode constraint. Our final constraint en-
forces structural consistency among the utterance
risk predictions. In the multi-label setting, every ut-
terance either has the No-D label or a combination
labels in D, but never both. The constraint holds
for all encounters in our data. We write:

∀e ∈ E ∪ U, ∀m ∈ e,

NoCode(m) ↔
∧

d∈D
¬HasCode(m, d). (7)
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Full declarative specification. We can state the
desired properties involving our predicates as a for-
mula composed by the conjunction of the expres-
sions (1), (4)—representing the labeled datasets—
and the expressions (5), (6), and (7)—representing
the domain knowledge rules. Together, these can
be thought of as “contracts” that any model for the
tasks should seek to satisfy.

4 From Logic to Losses

In our declarative formulation, we have three
atomic predicates: HasCode, NoCode and Risk. We
model the truth value of these predicates as the
output probabilities of a transformer-based clas-
sifier. We denote the relaxed truth value of the
predicate classifiers with square brackets. For in-
stance, given a session e, we denote the predicted
probability that the fact Risk(e,Higher) holds as
[Risk(e,Higher)].

All the constraints we have encountered will
be relaxed into differentiable forms, such that the
truth values of the atomic predicates define the
truth value of the entire loss under the relaxation.
Consequently, learning the three predicates will
require optimizing their parameters to maximize
the truth value of the relaxed declarative loss.

4.1 Multi-task Predicate Models

We use a joint neural model for the relaxed truth val-
ues of the predicates NoCode, HasCode and Risk.
The network receives an input session and predicts
the probabilities of risk for the entire session, and
client risk status for each utterance.

Our models are based on RoBERTa (Liu et al.,
2019). To make the embeddings domain-aware,
following Gururangan et al. (2020), we adapted the
RoBERTa-base model using a large corpus of 2
million fully unlabeled SafeUT utterances.

Given a session, we obtain representations for
each utterance by averaging its token RoBERTa
embeddings. We input the utterance representa-
tions into a 2-layer transformer encoder to obtain
session-contextualized utterance embeddings. The
average of the utterance embeddings is used to rep-
resent the entire session. The session embedding is
the input of a linear layer with two outputs, whose
softmaxed values serve as the Lower and Higher
risk probabilities of the session. These probabilities
model the truth values of the Risk predicate.

To each utterance embedding in the session, we
apply a linear layer with |D|+ 1 outputs followed

by an element-wise sigmoid activation. These give
us the utterance risk status probabilities and the
No-D probability, which model the truth value of
the HasCode and NoCode predicates.

Appendix C gives additional details about the
model architecture. Note that since the output prob-
abilities share a common session-contextualized
embedding model, they represent a simple multi-
task model where each one task has the opportunity
to influence and improve the other.

4.2 Losses
The key idea behind our relaxation approach is
that each boolean operator can be softened into a
sub-differentiable function. We follow the recom-
mendations of Medina Grespan et al. (2021) and
use the R-product t-norm relaxations of the logic
operators to produce loss functions. Table 11 in the
appendix shows the relaxations for each operator.

Applying the relaxation to rules in section 3.2,
we can construct loss functions that we then opti-
mize. In other words, every loss defined below has
an analogue in section 3.2.

Data losses. The expression (1) requires all the
predicates representing the labeled sessions in E
should hold. This is equivalent to asking the con-
junction of Risk(e, r) facts for all (e, r) pairs in
E to hold, which is relaxed as the product of its
conjuncts. Equivalently, we can minimize the neg-
ative log the expression, and recover the standard
cross-entropy loss for encounter risk classification.

LE =
∑

(e,r)∈E
− log [Risk(e, r)] (8)

Analogously, we can write the losses for the
helper predicates in expressions (2) and (3),

ℓM1(m,D∗) =
∑

d∈D∗
− log[HasCode(m, d)]

ℓM2(m,D∗) = log(1− [NoCode(m)])+
∑

d∈D\D∗
log(1− [HasCode(m, d)])

These helper losses let us write the loss of the ut-
terance labeled data U , thus relaxing the Boolean
expression (4) to recover the binary cross entropy
loss for multi-label classification:

LU =
∑

e∈U

( ∑

(m,D∗)∈e

(
ℓM1(m,D∗) + ℓM2(m,D∗)

)
+

∑

(m,No-D)∈e
− log[NoCode(m)]

)
(9)
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Joint constraint loss. For the joint constraint (5),
using the R-Product definition of implication, we
obtain a loss composed of the sum of ReLU func-
tions:

LJoint =
∑

e∈U∪E

∑

m∈e

∑

d∈H
ℓJ(e,m, d) (10)

where,

ℓJ (e,m, d) = ReLU
(
log[Risk(e, Lower)]−

log(1− [HasCode(m, d)])
)

(11)

D-Code constraints loss. In a similar fashion as
above, we can derive the D-code dependencies (6).

LD =
∑

e∈U∪E

∑

m∈e

∑

(di,dj)∈RULES

ℓI(m, di, dj) (12)

where,

ℓI (m, di, dj) = ReLU
(
log[HasCode(m, di)]

− log[HasCode(m, dj)]
)

NoCode constraint loss. Following the structure
of the NoCode constraint (7), we can write the
NoCode loss as

LNoCode =
∑

e∈U∪E

∑

m∈e
ℓn(m, d) (13)

However, unlike the cases we have seen so far,
naively applying the conversion rules gives us a
loss that is not stable for learning. This was also
observed by Li et al. (2020), who suggest that for
stability, the conjunction of the negation on the
right-hand side of the double implication be relaxed
using the Gödel conjunction (which is the min of
the conjuncts). Doing so and simplifying gives us:

ℓn(m, d) =

∣∣∣∣∣ log ([NoCode(m)])−

log
(
1−max

d∈D
[HasCode(m, d)]

)
∣∣∣∣∣

(14)

Full logic-based loss. Just as the full declara-
tive specification is the conjunction of individual
components, the problem of learning the predicate
models requires minimizing the total loss:

L =LU + λELE + λNoCodeLNoCode

+ λDLD + λJointLJoint (15)

No-D D Size

Train 1796 231 135
Dev. 1732 193 144
Test 1384 264 146

Table 2: Data statistics of the utterance risk set U . The
first and second columns show the number of client ut-
terances labeled with no-code and D-codes respectively,
and the third column the number of encounters.

Lower Higher Size

Train 4600 793 5393
Test 511 86 597

Table 3: Data statistics of the encounter set E. The first
and second columns show the number of encounters
labeled with Lower and Higher risk respectively, and
the last column shows the number of encounters.

Here, the λ’s are non-negative hyper-parameters
that regulate the signal from each loss term. Im-
portantly, the unsupervised losses LJoint, LD and
LNoCode apply to encounters in both datasets E and
U ; they are not defined over ground truth labels.
The joint loss serves to transfer signal from the en-
counter data to the utterance predictors, while the
other two unsupervised losses enforce structural
consistency in the utterance predictors.

5 Experiments and Results

5.1 Experimental Setup

Data. We partition the utterance-level dataset U
with stratified splits of 135, 144 and 146 encounters
for training, development and testing respectively.
We split the encounter-level dataset E into 5,393
encounters for training and 597 encounters for test-
ing. Tables 2 and 3 provide summary statistics.

Baselines. Our proposed approach optimizes the
total loss that includes all the relaxed rule com-
ponents. We compare our system against two
baselines with the same architecture but simplified
rule-less losses: Lbaseline = LU and Lmulti-task =
LU + LE . The first baseline is trained only on
utterance D-coded data. The second baseline in-
corporates the labeled session-level data under a
standard multi-task learning regime that shares rep-
resentations.

Training details. We train all models on the U
and E training splits. For each training epoch, we
use a random combination of batches from U and
E—respectively computing the truth values of the
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F1 P R

Baseline 43.2(4.2) 57.1(7.2) 34.7(3.4)

Multi-Task (MT) 46.5(3.3) 54.9(5.0) 40.8(5.0)

MT+Rules 50.0(0.7) 49.4(3.6) 51.0(3.6)

Table 4: Utterance code multi-label classification F1,
precision (P ) and recall (R) micro average scores.

predicates HasCode and NoCode, and Risk. Since
our goal is to build a better utterance predictor, we
use the development set from U for hyperparam-
eter tuning and model selection using the micro-
average of the F1 score in multi-label utterance
classification. We train the models for 150 epochs
with early stopping after 50 epochs using AdamW
optimizer (Loshchilov and Hutter, 2019). We refer
the reader to appendix C.4 for details.

Evaluation. For the utterance and chat labels, we
report the precision, recall and F1 micro-averages.
Further, we measure the consistency of model pre-
dictions by analyzing how much they violate the
declarative rules we are incorporating. We report
the average performance of the models on the test
splits across five different training random seeds.

5.2 Main Results

Utterance results. Table 4 reports the utterance
D-code classification results over utterances la-
beled with at least one D-code.

We expect the baseline to already have some
domain tuning because the RoBERTa embeddings
were additionally pre-trained on counseling text.
Standard multi-task (MT) classification improves
the F1 score by 3.3% with respect to the baseline,
corresponding to a 6.1% increase in recall. We
can attribute this improvement to the shared feature
space in the transformer encoder layers becoming
better from the encounter labeled data. Finally,
we observe that introducing the relaxed rules loss
components (MT+Rules) produces a F1 gain of
3.5% over the already improved multi-task system
(corresponding to a 10.2% improvement in recall).
Each subsequent F1 improvement is statistically
significant at p < 0.05 using the paired t-test. Re-
lated to the recall increase, we observe that the F1

for the majority label No-D dropped. Compared
to the baseline’s 95.2%, the full and multi-task
systems’ scores dropped to 91.5% and 88.9% re-
spectively. Importantly, in this domain, the recall
improvements are desired. False positive D-code
predictions are preferable to missing any important

F1 P R

Baseline 13.7(13.0) 10.6(10.8) 24.8(25.0)

Multi-Task (MT) 50.6(3.9) 43.7(3.4) 60.9(8.8)

MT+Rules 47.5(0.8) 33.0(0.7) 84.4(3.1)

Table 5: Risk assessment binary classification F1, pre-
cision (P ) and recall (R) micro average scores.

NoCode D-Code Joint

Baseline 41.4(10.6) 2.2(2.8) 30.8(18.6)

Multi-Task (MT) 74.6(55.6) 1.9(1.2) 11.6(8.4)

MT+Rules 27.2(5.6) 0.0(0.0) 0.6(0.9)

Table 6: Number of utterances in the test split of the ut-
terance labeled data U violating each of the constraints.

suicide-related cues.

Session results. Table 5 reports F1, precision and
recall scores for the Higher risk label.

The baseline is unsurprisingly as good as ran-
dom; it does not have any access to session-level
risk supervision. Compared to the multi-task base-
line, we observe a drop in F1 performance in our
system. We discover that this difference corre-
sponds to a 10.7% drop in precision, but also to a
significant gain of 23.5% in recall. These results
show that incorporating indirect signal from the
rules prioritizes recall which aligns with the goals
of suicide risk detection application: Improved re-
call for the Higher risk label can help focus coun-
selors attention to such clients.7

Constraint violations. Table 6 shows how of-
ten (on average across random seeds) the systems
violate each of the declarative rules.

For the NoCode constraint, which introduces a
mutual exclusion between the No-D label and any
D-code for every utterance, we find that the multi-
task system has more violations than the baseline.
This implies that multi-task model’s gain in utter-
ance D-code recall over the baseline (Table 4) is
related to errors where the system assigns utter-
ances with the right D-codes but also the No-D
label. Adding the rules mitigates this problem.

For the D-Code rules, which enforce dependen-
cies between D-codes, even the baselines have only

7In this work, we do not consider encounter-only model
training. Broadbent et al. (2023) showed that doing so—i.e.,
optimizing the loss LE alone—results in better session-level
risk classification. Our focus here is the D-codes, and we tune
our models and hyper-parameters for utterance-level predic-
tions. However, we also note that our models, jointly trained
with rules, improve recall over their reported performance.
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F1 P R

Multi-Task (MT) 46.5(3.3) 54.9(5.0) 40.8(5.0)

MT+NoCode Rule 47.7(1.2) 45.0(1.5) 50.9(3.4)

MT+D-Code Rules 45.4(2.9) 55.8(6.8) 38.7(4.0)

MT+Joint Rule 49.7(2.8) 56.8(7.7) 44.6(3.0)

Table 7: Ablation results on D-code prediction.

F1 P R

Multi-Task (MT) 50.6(3.9) 43.7(3.4) 60.9(8.8)

MT+NoCode Rule 45.8(2.0) 31.4(2.1) 85.3(3.9)

MT+D-Code Rules 45.2(2.0) 31.5(2.4) 80.74.8

MT+Joint Rule 48.8(3.7) 36.2(6.0) 77.7(7.6)

Table 8: Ablation results on session risk prediction.

few violations. Nevertheless, our system recovers
perfect consistency with respect to these rules.

Lastly, the joint rule prohibits all client utter-
ances from Lower risk encounters from having any
high-risk D-code. Given that we have a random
risk classifier in the baseline, we only compare sys-
tem violation performance against the multi-task
system for this rule. We observe that our system
improves in terms of violations for the joint rule im-
plying that it successfully incorporates the knowl-
edge from the LJoint loss during training.

5.3 Ablation Analysis

To better understand the impact of each rule, we
perform an ablation study with respect to the multi-
task baseline. Tables 7, 8 and 9 report the impact
of each rule individually added during training.

Adding only NoCode rule. As expected, we see
that NoCode rule violations drop when adding only
the NoCode rule loss (Table 9). Furthermore, the
NoCode rule loss by itself improves utterance F1

(1.2%) by reducing the precision and increasing
the recall by 10% each (Table 7). This improve-
ment indicates that the system is predicting more
D-codes and fewer No-D. (As expected, the F1

score on the No-D label decreases from 91.5% for
the multi-task baseline to 87.5%.)

We observe a more dramatic effect on the en-

NoCode D-Code Joint

Multi-Task (MT) 74.6(55.6) 1.9(1.2) 11.6(8.4)

MT+NoCode Rule 9.4(3.4) 0.0(0.0) 2.0(1.6)

MT+D-Code Rules 118.2(81.3) 0.00.0 9.6(7.4)

MT+Joint Rule 68.4(5.7) 1.8(2.0) 8.4(4.7)

Table 9: Ablation rules on utterance rule violations

counter risk classifier with a big improvement in
recall at the cost of a significant drop in precision,
resulting in an overall F1 drop of 4.8% (Table 8). In
this case, updating the model weights to optimize
the NoCode loss (LNoCode) defined at the utterance
level makes the encounter-level risk assessment
classifier to predict more Higher risk.

Adding only D-Code rules. For D-code classifi-
cation, precision increases at the cost of recall (Ta-
ble 7). In this case, the system incorrectly predicts
messages without any label (No-D and D-codes)
to trivially satisfy all the D-Code rules; hence, the
reduced D-code recall.

The system has perfect consistency for the D-
Code rules as expected. Analyzing the effect of
the D-Code loss on the risk classifier, we observe a
similar behaviour as using only the NoCode loss.
This similarity implies that adding constraints at
the utterance level affects the weights in the shared
feature space to make the risk classifier more sensi-
tive to risk, i.e. more recall at the cost of precision.

Adding only the joint rule. We observe a signif-
icant 3.2% gain in F1 performance corresponding
to precision and recall gains of 1.9% and 3.8%
respectively (Table 7). We attribute this improve-
ment to the indirect supervision coming from the
risk classifier through the inter-label dependency
encoded by the (relaxed) joint constraint.

Analyzing the performance on the risk classifier
we observe a comparable F1 performance with re-
spect to the multi-task baseline with a considerable
7.5% drop in precision offsetting a significant 17%
gain in recall (Table 8). In this case, the signal from
the utterance risk classifier on high-risk D-codes
makes the encounter risk assessment model more
sensitive to risk, which is a desirable behaviour.
The classifier using only the joint rule loss, unsur-
prisingly, does not improve NoCode and D-Code
rules violations as they are not part of the objective
function during training, but it improves the joint
rule violations (Table 9).

6 Error Analysis

We manually examined false positive and false neg-
ative predictions of the MT+Rules model on the
development split of U . For this analysis, we used
the model corresponding to the random seed that
provided the best micro F1 performance on Table 4.
We found four dominant kinds of errors, listed be-
low.
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Passive [D2b] vs Current [D2] Ideation. Confu-
sion between passive and current ideation accounts
for 27% of the total errors. We observe that half of
these mistakes are edge cases which can be hard
to discern even for a human. For example, the D2b

utterance “I am having those thoughts again. Being
better off dead” is classified with both D2b and D2.

Lifetime [D1] vs Current [D2] Ideation. The
inability to distinguish lifetime and current suicidal
ideation (perhaps related to deficiencies in temporal
reasoning) accounts for 15% of the errors. For
example, the D2 utterance “I’m worried. She has
sent me a text saying she was going to commit
suicide” is classified with both D2 and D1.

Excessive No-code [No-D]. Missing D-codes ac-
count for 20% of the errors. We observe that in
almost all of this cases, the true label depends on
previous context (e.g., “Yes...”,“Not really”).

Commonsense Knowledge. We observe that 4%
of the errors come from poor commonsense reason-
ing. For example, our model does not predict D2

and D2b for the utterances “a kid on social media
posted bloody cuts, the caption said bye bye!...”,
and “I know I am only alive for my friends and
food! LOL” respectively.

The table in Appendix E shows additional exam-
ples of these errors.

7 Related Work & Discussion

Mental Health NLP-based methods have proven
useful to detect risk in mental health counseling.
Benton et al. (2017) built a multi-task model to
predict suicide risk on social media, and report
improvements over single-task models trained on
limited data. Gibson et al. (2022) developed a
multi-task model to predict therapist use of psy-
chological interventions for each talk turn. Like
our multi-task model, their model simultaneously
learned two different labeling schemes by building
two separate encoders for respective tasks plus a
shared encoder. Their multi-task model also outper-
formed single-task models. Our work goes beyond
the multi-task approach and incorporates indirect
supervision from structural dependencies between
the two sources of annotation.

Indirect supervision. Our work is conceptually
related to an indirect supervision joint inference
paradigm (e.g., Roth, 2017) which leverages do-
main knowledge to enforce structural dependency

constraints. Other efforts also use indirect su-
pervision paradigms (as presented in Wang and
Poon (2018)) for biomedical and mental health do-
mains. Cusick et al. (2021) use weak supervision
from a regular-expression-based algorithm that suc-
cessfully leverages noisy labels that improve sui-
cidal ideation on clinical notes classification. Fu
et al. (2021) use a suicide ontology-based knowl-
edge graph for distant supervision in suicide risk
detection on social comments.

Logic-driven learning. Among a variety of
logic-driven learning approaches (e.g., Besold et al.,
2017), our method is probably the closest to proba-
bilistic soft logic of Kimmig et al. (2012). This ap-
proach softens booleans to the interval [0, 1] using
the Lukasiewicz t-norm relaxation. This approach
has shown promising results in several empirical
studies, especially in low-data regimes. For ex-
ample, Li et al. (2019) used the product t-norm
to relax logic for entailment, while Wang et al.
(2020) showed that by introducing logic constraints,
their model outperformed benchmark models on
the event-event relation data that lacked joint la-
bels. Our work shows that the logic-driven learn-
ing framework can be used to transfer supervision
signal between tasks with very different input (en-
counter vs. session) and output (binary vs. multi-
label classification) characteristics.

8 Conclusion

In this work, we study the problem of predicting
utterance-level labels in a suicide crisis chat with
the goal of better understanding such sessions and
providing better feedback to fatigued counselors.
We propose a fully declarative framework that in-
tegrates different data sources with a logic-guided
loss. We experiment with two text-based crisis
counseling datasets from the same source, but with
different and disjoint annotations. One level of
annotation—the session level—occurs naturally
but is noisy, while the other level of annotation—
the utterance level—is expensive but precise. Our
results show that exploiting the structural depen-
dencies among the sources of annotations allows
the session labels to help improve the utterance
model.

9 Limitations

Our experiments reveal that simultaneously incor-
porating more rules into the loss produces better
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performance in the task of interest (Table 4). These
results indicate that rules working in tandem signif-
icantly complement supervision coming from both
sources of direct annotation under a fully declara-
tive loss. Nevertheless, controlling the influence of
each term in the loss is crucial for training stability.
We found that the system has different sensitivities
to each term in the loss, requiring a full search over
the λ hyper-parameters (15). From this perspective,
the possible benefits of increasing the number of
rules in the loss come at the cost of more difficult
learning.

Due to hardware limitations of the protected en-
vironment server that stores the datasets we use,
RoBERTa-base was the best model that could fit
in the available GPUs. Although other pre-trained
embeddings could provide better performance, we
argue that this is orthogonal to our contribution
of incorporating indirect supervision under a fully
declarative learning framework. Moreover, inte-
grating logic-driven frameworks and prompt-based
models like T5 is an interesting future line of work.

Choosing RoBERTa as the underlying embed-
ding foundation of our system introduces all the
inherent limitations of large language models (Ben-
der et al., 2021). From this standpoint, we envision
the application of these sorts of systems as a human-
guided tool used only for counselor training and
quality assurance, and never for real counseling
sessions.

10 Ethics Statement

Hovy and Spruit (2016) list several ethical issues
in the study and application of natural language
processing, and advocate increased awareness of
possible adverse social impacts. This is especially
true in mental health care in general, and in crisis
services in particular. Linthicum et al. (2019) points
out the latent bias in the demographic composition
of a dataset, with the potential risk of excluding un-
derrepresented populations. In addition, machines
cannot understand the social meanings of some bi-
ased datapoints, such as particular language use
that could be inappropriate or offensive to particu-
lar cultural groups. When picking up these biases,
the model may run the risk of reinforcing these
prejudices if no manual check is available (Lin
et al., 2022). This is true not only for patients but
equally for clinicians. Although our model was
designed with a clinical application in mind, with
no access to the demographic information of pa-

tients or clinicians due to confidentiality concerns,
the current model should not be interpreted as a
system that can be applied directly to local crisis
services without manual supervision. Instead, this
study should be seen as a test for the feasibility of
multi-task learning in a particular clinical setting.
If the model is ultimately applied to crisis services,
it still should not be allowed to run on its own or
override manual judgment, but should instead be
used as an assisting tool to better inform clinicians
in their clinical cases or training.
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A Data Anonymization and Storage

The data was anonymized following HIPAA com-
pliance guidelines. We use special mask tokens
for identifiable information, including names, lo-
cations, ZIP codes, ages, phone numbers, related
entities (e.g., school, hospital, etc.), and any other
numbers. All the data are stored in a HIPAA-
compliant cloud folder. Only staff signed under
the IRB approval of this project (IRB_00131153)
were allowed to have access to the folder. The staff
have all been trained with basic knowledge on data
confidentiality, privacy, and protection.

B Anonymized examples of sessions

Figures 2 and 3 show example snippets of en-
counters with associated D-codes with Lower and
Higher risk assessment respectively.

11715

https://doi.org/10.18653/v1/2020.acl-main.744
https://doi.org/10.18653/v1/2020.acl-main.744
https://aclanthology.org/2022.emnlp-main.139
https://aclanthology.org/2022.emnlp-main.139
https://doi.org/https://doi.org/10.1002/bsl.2392
https://doi.org/https://doi.org/10.1002/bsl.2392
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.24963/ijcai.2021/387
https://doi.org/10.24963/ijcai.2021/387
https://aclanthology.org/2022.emnlp-main.658
https://aclanthology.org/2022.emnlp-main.658
https://doi.org/10.3115/v1/N15-1118
https://doi.org/10.3115/v1/N15-1118
https://doi.org/10.1145/3442381.3450097
https://doi.org/10.1145/3442381.3450097
https://doi.org/10.1145/3442381.3450097
https://doi.org/10.1109/BigData52589.2021.9671472
https://doi.org/10.1109/BigData52589.2021.9671472
https://doi.org/10.1109/BigData52589.2021.9671472
https://aclanthology.org/D18-1215
https://aclanthology.org/D18-1215
https://doi.org/10.18653/v1/2020.emnlp-main.51
https://doi.org/10.18653/v1/2020.emnlp-main.51
https://proceedings.mlr.press/v80/xu18h.html
https://proceedings.mlr.press/v80/xu18h.html
https://doi.org/https://doi.org/10.1016/j.socscimed.2021.114176
https://doi.org/https://doi.org/10.1016/j.socscimed.2021.114176
https://doi.org/https://doi.org/10.1016/j.socscimed.2021.114176


I have depression. It’s not super severe. I have
depression in my family history so I’m not
surprised. I just want to talk to someone to
see if I can make sense of it.

No-D

I am here for you! Can you say more about
your feeling depressed?
I feel hopeless most of the time and have little
motivation to go to places. No-D

Sometimes It can be hard to identify our feel-
ings like this. Have you ever had any kind of
thought of killing yourself? just want to make
sure you are safe.
I did have it a while ago but I’m okay. I’m not
suicidal. D1

And by a while I mean [#DATE] ago. D1

I’m glad to hear that you are okay right now.
Can you tell me more about your life?
...

Figure 2: Example snippet of an anonymized Lower risk
session with associated utterance-level labels (D-codes)
for client ( ) utterances.

I think I’m not safe right now. No-D

Hi, I’m sorry to hear that. What happened?
I’m behind in school and they will not let me
graduate. My mom is pissed off. No-D

Who doesn’t let you graduate?

I don’t want to be alive anymore. I took some
pills.

D2,
D2a,
D2b,
D3

What pills did you take?
I did this before but I was stopped. That’s all
I need. I don’t want to be there anymore.

D1,
D9

...

Figure 3: Example snippet of an anonymized Higher
risk session with associated utterance-level labels (D-
codes) for client ( ) utterances.

C Reproducibility

C.1 Encoding Model

We pre-process both datasets U and E by prepend-
ing special tokens indicating the originator of
each utterance in a session: we added the token
[#COUNSELOR] or [#CLIENT] to counselor and
client utterances accordingly. Each utterance is
then encoded with a domain-adapted RoBERTa
model of 768-dimensional outputs.

Before the utterance encoding, we add the origi-
nator tokens to the matrix embedding of RoBERTa.
We respectively initialize these tokens by averaging
the pre-trained embeddings of the words “client”,
“counselor” with corresponding direct synonyms

(e.g.,“patient”/“therapist”). Similarly, we add and
initialize the special anonymization mask tokens
(e.g., [#SCHOOL], [#ZIP-CODE], [#PERSON]).
Following Gururangan et al. (2020), we adapt the
RoBERTa-base from the hugginface library us-
ing 2 million general mental health counseling
(crisis,tips,support) unlabeled utterances extracted
from SafeUT. We continue training RoBERTa-base
for 5 epochs with AdamW optimization, learning
rate of 5e − 5, batch size 4, and using a mask
language model head with masking probability of
0.15 (seed=1). To obtain the utterance RoBERTa
encondings, we average the concatenation of the
last four hidden states of the adapted RoBERTa-
base outputs from the truncated (max length 512)
input utterance tokens. The resulting utterance en-
codings are 3072-dimensional vectors.

C.2 Architecture
On top of the RoBERTa utterance embeddings, we
use two trasformer encoder layers. Each trans-
former layer has 8 heads, 2048 feedforward dimen-
sion, ReLU activation on the intermediate layer
and 1e-5 eps stability value at the normalization
layer. We applied a positional encoding layer with
dropout probability of 0.2 and a eps value of 1e-12
to the input utterance embeddings before the trans-
former block. In all, our system has 275 million
parameters.

C.3 Full System Description
Let e = {m1,m2, . . . ,mn} be an input session.
For each utterance mi ∈ e, we denote as m∗

i the
corresponding utterance RoBERTa embedding ob-
tained as described in C.1.

RoBERTa(mi) = m∗
i

We input the encoded encounter e∗ =
{m∗

1,m
∗
2, . . . ,m

∗
n} into the transformer block to

obtain a list of session-contextualized utterance
embeddings {u1, u2, . . . , un}

Transformer(e∗) = {u1, u2, . . . , un} = u

To obtain an entire session embedding s we aver-
age (as described in C.1) the transformer utterance
embeddings

average({u1, u2, . . . , un}) = s

We apply a linear layer Pu of length 9 and an
element-wise sigmoid activation to each client ut-
terance uc ∈ u obtaining a nine-dimensional vector
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σ(Pu(uc)). Each entry in σ(Pu(uc)) represents the
probability that the utterance uc having each of the
D-codes is True. For instance, the first and second
coordinates of σ(Pu(uc)) are the probabilities that
the facts NoCode(uc) and HasCode(uc,D1) respec-
tively hold. This is,

σ(Pu(uc))[1] = [NoCode(uc)]

and

σ(Pu(uc))[2] = [HasCode(uc,D1)]

Similarly, we apply a linear layer Ps of length
2 and a softmax activation to the session em-
bedding s obtaining a two-dimensional vector
softmax(Ps(s)). Here, we have that

softmax(Ps(s))[1] = Risk(e,Lower)

and

softmax(Ps(s))[2] = Risk(e,Higher)

We use the relaxed truth-values in the ut-
terance and encounter vectors—σ(Pu(uc)) and
softmax(Ps(s))—to compute all the loss compo-
nents in (15) using the R-product logic.

We do not fine-tune the underlying domain
adapted RoBERTa model due to hardware limi-
tations. The data for this project is housed in a
secure compute infrastructure whose GPUs size do
not allow us to load entire input sessions and their
gradients in memory.

C.4 Experimental setting
Multiple runs We train the system using the
training splits of the utterance U and session E
datasets using 5 different seeds (0,1,2,3,4).

Data Batching and optimization We randomly
select batches from U (we denote BU ) and E (de-
noted BE) until completing each epoch. For BU

batches we have the labels to compute the utterance
multi-label loss LU and not the session binary loss
LE , therefore the latter does not contribute during
back-propagation. Similarly, input BE batches up-
date the LE loss but not the LU loss. Importantly,
the unsupervised losses LJoint, LD and LNoCode can
be computed from both BU and BE batches. We
use rescaling weights on LU and LE to compen-
sate label imbalance. In this setting, the size of
a batch is defined by the number of sessions, and
sessions can have different sizes in terms of con-
tained utterance. Hence, we normalize the loss for

BU batches (also for BE batches for implementa-
tion convenience) by averaging the utterance losses
from all sessions in the batch. This strategy makes
the system performance more stable across epochs.

Training with rules The MT+Rules system re-
ported in the tables from section 5.2 is obtained
from training the baseline Multi-Task (MT) system
for 75 epochs until convergence and then continue
training adding the rules for 75 epochs more. We
found that this strategy mitigates high variance in
performance across different runs.

Evaluation and model selection We run hyper-
parameter tuning for 75 epochs, and then train with
the best combination for 150 epochs (using seed 1).
We select the model from the epoch with best micro
averaged F1 over the client utterances labeled with
at least one D-code in the development split of the
set U . We stop training after 50 epochs of non-
increase in F1 and keep the model from the latest
best epoch.

Hyper-parameter tuning details The hyper-
parameter search space is the following:

• Learning rate (lr): 1e-4, 2e-4, 5e-4, 1e-5, 2e-5,
5e-5, 1e-6, 2e-6, 5e-6

• λ’s (eq. 15) : 0.0001, 0.001, 0.01, 0.1, 1, 5, 10

• Batch size (bs): 4, 8, 16

Due to the size of the search space we do not
perform full grid hyper-parameter search for all the
systems reported. We first select the best hyper-
parameters exploring the search space for the base-
line models that only includes learning rate, batch
size, and λE (for the multi-task baseline). From
this process we discover values for which the base-
lines do not converge, and discard them for the
subsequent search—when adding the rules into the
system. For instance, we discard the learning rate
values 1e − 4, 2e − 4, 5e − 4, 1e − 6, 2e − 6,
5e− 6, and the λE values 0.1, 1, 5, 10. We further
reduce the search space by incrementally adding
rules into the system and exploring the influence
of different λ values. For instance, we observe
that the multi-task baseline system trained using
only the NoCode rule under-performs with λNoCode
values smaller below 1. Due to the running time
of each hyper-parameter combination, this aggres-
sive pruning strategy was necessary to make the
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lr bs λE λNoCode λD λJoint

Baseline 2e-4 16 - - - -
MT 5e-5 4 1e-3 - - -
MT+Rules 2e-5 8 1e-4 1 1e-4 1e-3
MT+NoCode 2e-5 4 1e-3 10 - -
MT+D-rules 5e-5 16 1e-4 - 1e−3 -
MT+Joint 5e-5 4 1e-4 - - 0.01

Table 10: Best hyper-parameter combinations used to train the models reported in section 5.2

experiments feasible. Table 10 shows the hyper-
parameter combinations used to train the models
reported in section 5.2.

Running times We give an approximate esti-
mated time for each stage of our experiments with
significant running time:

1. Adapting RoBERTa with SafeUT utterances:
4 days

2. RoBERTa session encodings: 4 hours for the
risk assessment set E, and 30 minutes for ut-
terance risk status set U .

3. One training epoch: 1.2 hours for each hyper-
parameter combination including evaluation
for development and rules violations.

Code and computing infrastructure We imple-
mented all our experiments in Python, using the
PyTorch, Pandas, and scikit-learn libraries. We
used a server located in an IRB approved HIPAA
protected environment with the following configu-
ration:

• CPU: Intel (R) Xeon (R), E5-2640, 2.40 GHz

• GPU: NVIDIA TITAN X (Pascal)

• RAM 12GB

D Logic Relaxations

D.1 Implementation details

As discussed in Xu et al. (2018) t-norm logic re-
laxations are syntactic, rather than semantic, repre-
sentations of boolean statements. In our particular
case, the relaxation of a predicate rule may produce
a different loss than the relaxation of its contrapos-
itive. From this perspective, to obtain signal from
syntactically different but semantically identical
representations of the constraints in our system,

S-Gödel R-Product

∧ min(a, b) a · b
¬ - 1− a
∨ max(a, b) a+ b− a · b
→ - min(1, b

a)

Table 11: Relaxation definition for the basic logical con-
nectives as presented in Medina Grespan et al. (2021).
The letters a and b denote the relaxed truth values of
the arguments of the formulas. In the implication defini-
tions, a and b denote the antecedent and the consequent
respectively.

we also add their respective contrapositive in the
learning loss.

In the declarative definition of the loss, we can
incorporate each constraint along its contrapositive
in two logically equivalent ways – as a conjunc-
tion or as a disjunction. For instance, let F1 and
F2 be Boolean formulas. A constraint of the form
F1 → F2, can be added along its contrapositive
into a declarative boolean statement as the con-
junctive term (F1 → F2) ∧ (¬F2 → ¬F1) or as
the disjunctive term (F1 → F2) ∨ (¬F2 → ¬F1).
Although the latter equivalent expressions also gen-
erate different relaxation signals, we found through
preliminary experiments that adding the constraint-
contrapositive disjunction terms accelerates system
convergence.

As an example, by adding the contrapositive to
the joint constraint (5) we obtain:

∀e ∈ E ∪ U, ∀m ∈ e, ∀d ∈ H(
Risk(e,Lower) → ¬HasCode(m, d)

)
∨(

HasCode(m, d) → Risk(e,Higher)
)

(16)

We use the S-Gödel over the R-Product logic
(Table 11) to relax the disjunction of the rule and
its contrapositive. We encounter that taking the
maximum of the disjuncts, as defined by S-Gödel,
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provides better learning stability (the maximum
function becomes the minimum after taking the
negative logarithm for optimization). In this way,
we implement the relaxation of the joint rule from
equation (16) as:

∑

e∈U∪E

∑

m∈e

∑

d∈H
min

(
ℓJ (e,m, d) , ℓC (e,m, d)

)

(17)

where, ℓJ (e,m, d) is defined in equation (11), and

ℓC (e,m, d) = ReLU
(
log([HasCode(m, d)])−
log[Risk(e,Higher)]

)

(18)

The D-Code and NoCode constraints are imple-
mented following an analogous strategy.

E Error Analysis

Table 12 shows examples of the four types of errors
discussed in the paper.

F D-code rules

Table 13 shows the full set of dependencies be-
tween the D-codes.
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Error type Total % Examples

Gold Predicted Utterance

Passive vs.
Ideation

27%
D2b D2b, D2

I am having those thoughts again. Being better
off dead.

D2 D2b
I need a reason not to kill myself. I’ve let myself
become the very thing I hate.

Lifetime vs.
Current

15%
D2 D1

I’m worried. She has sent me a text saying she
was going to commit suicide.

D1 D2 One day I just woke up with the feeling.

D1 D1, D2
He told us last night that he is suicidal. What
should we do?

No Code 20%
D6 No-D Not really.

D2, D2a No-D Yes...

D6, D6b No-D But I know where the key is.

Commonsense
Knowledge

4%

D2 No-D A kid on social media posted bloody cuts, the
caption said bye bye!...

D2b No-D I know I am only alive for my friends and food!
LOL

D1, D6 D1
Earlier I was wading through a fast moving creek
wanting to lie down in the rapid part.

Table 12: Error analysis of the MT+Rules model on the development split of the utterance risk status dataset U . The
first column lists the four main types of errors we found, the second column indicates the percentage of the total
errors (false positives and false negative) corresponding to the type of mistake, the third column shows representative
examples of miss-classified client utterances (modified from the real data for anonymity)—we respectively report
the gold and predicted D-codes for each utterance.

Prior attempts (D9) implies Lifetime ideation (D1)
Imminent risk (D2a) implies Current ideation (D2)
Attempt in progress (D3) implies Current ideation (D2)
Attempt in progress (D3) implies Imminent risk (D2a)
Attempt in progress (D3) implies Method chosen or considered (D6)
Attempt in progress (D3) implies Availability of means (D6b)
Availability of means (D6b) implies Method chosen or considered (D6)

Table 13: List of existing dependencies between D-codes. We denote this list of logical constraints as RULES.
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