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Abstract

Multi-vector retrieval methods combine the
merits of sparse (e.g. BM25) and dense (e.g.
DPR) retrievers and achieve state-of-the-art
performance on various retrieval tasks. These
methods, however, are orders of magnitude
slower and need more space to store their
indexes compared to their single-vector
counterparts. In this paper, we unify different
multi-vector retrieval models from a token
routing viewpoint and propose conditional
token interaction via dynamic lexical routing,
namely CITADEL, for efficient and effective
multi-vector retrieval. CITADEL learns to
route each token vector to the predicted
lexical “keys” such that a query token
vector only interacts with document token
vectors routed to the same key. This design
significantly reduces the computation cost
while maintaining high accuracy. Notably,
CITADEL achieves the same or slightly
better performance than the previous state
of the art, ColBERT-v2, on both in-domain
(MS MARCO) and out-of-domain (BEIR)
evaluations, while being nearly 40 times faster.
Source code and data are available at https:
//github.com/facebookresearch/
dpr-scale/tree/citadel.

1 Introduction

The goal of information retrieval (Manning et al.,
2008) is to find a set of related documents from a
large data collection given a query. Traditional bag-
of-words systems (Robertson and Zaragoza, 2009;
Lin et al., 2021a) calculate the ranking scores based
on the query terms appearing in each document,
which have been widely adopted in many applica-
tions such as web search (Nguyen et al., 2016; Noy
et al., 2019) and open-domain question answer-
ing (Chen et al., 2017; Lee et al., 2019). Recently,
dense retrieval (Karpukhin et al., 2020) based on
∗This work is done during Minghan’s internship at Meta.
†Xilun and Minghan contributed equally to this work.
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Figure 1: GPU latency vs ranking quality (MRR@10)
on MS MARCO passages with an A100 GPU. The
circle size represents the relative index storage on disk.
All models are trained without hard-negative mining,
distillation, or further pre-training.

pre-trained language models (Devlin et al., 2019;
Liu et al., 2019) has been shown to be very effec-
tive. It circumvents the term mismatch problem
in bag-of-words systems by encoding the queries
and documents into low-dimensional embeddings
and using their dot product as the similarity score
(Figure 2a). However, dense retrieval is less robust
on entity-heavy questions (Sciavolino et al., 2021)
and out-of-domain datasets (Thakur et al., 2021),
therefore calling for better solutions (Formal et al.,
2021b; Gao and Callan, 2022).

In contrast, multi-vector retrieval has shown
strong performance on both in-domain and out-of-
domain evaluations by taking into account token-
level interaction. Among them, ColBERT (Khattab
and Zaharia, 2020) is arguably the most celebrated
method that has been the state of the art on multiple
datasets so far. However, its wider application is
hindered by its large index size and high retrieval la-
tency. This problem results from the redundancy in
the token interaction of ColBERT where many to-
kens might not contribute to the sentence semantics
at all. To improve this, COIL (Gao et al., 2021a)
imposes an exact match constraint on ColBERT
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Figure 2: A unified token routing view over different multi-vector and single-vector retrieval models. The cylinder
in (d) represents the lexical key for token routing. The grey tokens in (c) and (d) represent the tokens that do not
contribute to the final similarity. For (d), CITADEL routes “light”, “theory”, and “relativity” to the “Einstein” key to
avoid term mismatch using a learned routing function.

for conditional token interaction, where only token
embeddings with the same token id could interact
with each other. Although reducing the latency, the
word mismatch problem reoccurs and the model
may fail to match queries and passages that use
different words to express the same meaning.

In this paper, we first give a unified view of exist-
ing multi-vector retrieval methods based on token
routing (Section 2), providing a new lens through
which we expose the limitations of current models.
Under the token routing view, ColBERT could be
seen as all-to-all routing, where each query token
exhaustively interacts with all passage tokens (Fig-
ure 2b). COIL, on the other hand, could be seen
as static lexical routing using an exact match con-
straint, as each query token only interacts with the
passage tokens that have the same token id as the
query token (Figure 2c).

In contrast, we propose a novel conditional token
interaction method using dynamic lexical routing
called CITADEL as shown in Figure 2d. Instead
of relying on static heuristics such as exact match,
we train our model to dynamically moderate token
interaction so that each query token only interacts
with the most relevant tokens in the passage. This
is achieved by using a lexical router, trained end-

to-end with the rest of the model, to route each
contextualized token embedding to a set of acti-
vated lexical “keys” in the vocabulary. In this way,
each query token embedding only interacts with the
passage token embeddings that have the same acti-
vated key, which is dynamically determined during
computation. As we shall see in Section 5.1, this
learning-based routing does not lose any accuracy
compared to all-to-all routing while using fewer
token interactions than COIL (Section 3.4), leading
to a highly effective and efficient retriever.

Experiments on MS MARCO passages (Nguyen
et al., 2016) and TREC DL show that CITADEL

achieves the same level of accuracy as ColBERT-
v2. We further test CITADEL on BEIR (Thakur
et al., 2021) and CITADEL still manages to keep
up with ColBERT-v2 (Santhanam et al., 2022b)
which is the current state of the art. As for the la-
tency, CITADEL can yield an average latency of
3.21 ms/query on MS MARCO passages using
an A100 GPU, which is nearly 40× faster than
ColBERT-v2. By further combining with product
quantization, CITADEL’s index only takes 13.3 GB
on MS MARCO passages and reduces the latency
to 0.9 ms/query as shown in Figure 1.
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2 A Unified Token Routing View of
Multi-Vector Retrievers

We outline a unified view for understanding various
neural retrievers using the concept of token routing
that dictates token interaction.

2.1 Single-Vector Retrieval

Given a collection of documents and a set of
queries, single-vector models (Karpukhin et al.,
2020; Izacard et al., 2022) use a bi-encoder struc-
ture where its query encoder ηQ(·) and document
encoder ηD(·) are independent functions that map
the input to a low-dimensional vector. Specifically,
the similarity score s between the query q and doc-
ument d is defined by the dot product between their
encoded vectors vq = ηQ(q) and vd = ηD(d):

s(q, d) = vTq vd. (1)

As all the token embeddings are pooled before cal-
culating the similarity score, no routing is commit-
ted as shown in Figure 2a.

2.2 Multi-Vector Retrieval

ColBERT (Khattab and Zaharia, 2020) proposes
late interaction between the tokens in a query
q = {q1, q2, · · · , qN} and a document d =
{d1, d2, · · · , dM}:

s(q, d) =
N∑

i=1

max
j

vTqivdj , (2)

where vqi and vdj denotes the last-layer contextu-
alized token embeddings of BERT. This is known
as the MaxSim operation which exhaustively com-
pares each query token to all document tokens. We
refer to this as all-to-all routing as shown in Fig-
ure 2b. The latency of ColBERT is inflated by the
redundancy in the all-to-all routing, as many to-
kens do not contribute to the sentence semantics.
This also drastically increases the storage, requir-
ing complex engineering schemes to make it more
practical (Santhanam et al., 2022b,a).

Another representative multi-vector approach
known as COIL (Gao et al., 2021a) proposes an
exact match constraint on the MaxSim operation
where only the embeddings with the same token id
could interact with each other. Let Ji = {j | dj =

qi, 1 ≤ j ≤ M} be the subset of document tokens
{dj}Mj=1 that have the same token ID as query token

qi, then we have:

s(q, d) =

N∑

i=1

max
j∈Ji

vTqivdj , (3)

It could be further combined with Equation (1) to
improve the effectiveness if there’s no word overlap
between the query and documents.

s(q, d) = vTq vd +

N∑

i=1

max
j∈Ji

vTqivdj . (4)

We refer to this token interaction as static lexical
routing as shown in Figure 2c. As mentioned in
Section 1, the word mismatch problem could hap-
pen if Ji = ∅ for all qi, which affects the retrieval
accuracy. Moreover, common tokens such as “the”
will be frequently routed, which will create much
larger token indexes compared to those rare words.
This bottlenecks the search latency as COIL needs
to frequently iterate over large token indexes.

3 The CITADEL Method

3.1 Dynamic Lexical Routing
Instead of using the wasteful all-to-all routing or
the inflexible heuristics-based static routing, we
would like our model to dynamically select which
query and passage tokens should interact with each
other based on their contextualized representation,
which we refer to as dynamic lexical routing. For-
mally, the routing function (or router) routes each
token to a set of lexical keys in the vocabulary and
is defined as ϕ : Rc → R|V| where c is the embed-
ding dimension and V is the lexicon of keys. For
each contextualized token embedding, the router
predicts a scalar score for each key in the lexicon
indicating how relevant each token is to that key.
Given a query token embedding vqi and a docu-
ment token vector vdj , the token level router rep-
resentations are wqi = ϕ(vqi) and wdj = ϕ(vdj ),
respectively. The elements in the router representa-
tions are then sorted in descending order and trun-
cated by selecting the top-K query keys and top-L
document keys, which are {e(1)qi , e

(2)
qi , · · · , e(K)

qi }
and {e(1)dj

, e
(2)
dj

, · · · , e(L)dj
} for qi and dj , respec-

tively. In practice, we use K=1 and L=5 as the
default option which will be discussed in Sec-
tion 3.5 and Section 7. The corresponding routing
weights for qi and dj are {w(1)

qi , w
(2)
qi , · · · , w(K)

qi }
and {w(1)

dj
, w

(2)
dj

, · · · , w(L)
dj

}, respectively. The fi-
nal similarity score is similar to Equation (3), but
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we substitute the static lexical routing subset Ji

with a dynamic key set predicted by the router:
E(k)
i = {j, l | e(l)dj

= e
(k)
qi , 1 ≤ j ≤ M, 1 ≤ l ≤ L} for

each key e
(k)
qi of the query token qi:

s(q, d) =
N∑

i=1

K∑

k=1

max
j,l∈E(k)

i

(w(k)
qi · vqi)T (w(l)

dj
· vdj ), (5)

Optionally, all [CLS] tokens can be routed to an
additional semantic key to complement our learned
lexical routing. We then follow DPR (Karpukhin
et al., 2020) to train the model contrastively. Given
a query q, a positive document d+, and a set of
negative documents D−, the constrastive loss is:

Le = − log
exp(s(q, d+))

exp(s(q, d+)) +
∑

d− ∈ D−
exp(s(q, d−))

, (6)

such that the distance from the query to the posi-
tive document d+ is smaller than the query to the
negative document d−.

3.2 Router Optimization
To train the router representation ϕ(q) and ϕ(d),
we adopt a contrastive loss such that the num-
ber of overlapped keys between a query and doc-
uments are large for positive (q, d+) pairs and
small for negative pairs (q, d−). We first pool the
router representation for each query and document
over the tokens. Given a sequence of token-level
router representations {ϕ(v1), ϕ(v2), · · · , ϕ(vM )},
the sequence-level representation is defined as:

Φ =
M

max
j=1

ϕ(vj), (7)

where the max operator is applied element-wise.
Similar to (Formal et al., 2021a), We find max pool-
ing works the best in practice compared to other
pooling methods. Subsequently, the contrastive
loss for training the router is:

Lr = − log
exp(ΦT

q Φd+)

exp(ΦT
q Φd+) +

∑
d− ∈ D−

exp(ΦT
q Φd−)

. (8)

In addition, we follow SPLADE (Formal et al.,
2021b,a) to initialize the router with the pre-trained
Masked Language Modelling Layer (MLM). With-
out proper initialization, it is difficult to optimize
the router due the large lexical space and sparse ac-
tivation. With the pre-trained MLM initialization,
the router expands words with similar semantic
meaning to sets of keys with large overlap at the
beginning of training, making the contrastive loss
easier to optimize.

3.3 Sparsely Activated Router Design

Softmax activation is commonly used for comput-
ing the routing weights in conditional computation
models (Fedus et al., 2022; Mustafa et al., 2022).
However, softmax often yields a small probability
over a large number of dimensions (in our case,
about 30,000) and the product of two probability
values are even smaller, which makes it not suitable
for yielding the routing weights w

(k)
qi and w

(l)
dj

in
Equation (5) as the corresponding gradients are too
small. Instead, we use the activation from SPLADE
to compute the router representation for a token em-
bedding vj :

ϕ(vj) = log(1 + ReLU(W T vj + b)), (9)

where W and b are the weights and biases of
the Masked Language Modeling (MLM) layer of
BERT. The SPLADE activation brings extra advan-
tages as the ReLU activation filters irrelevant keys
while the log-saturation suppresses overly large
“wacky” weights (Mackenzie et al., 2021).

3.4 Regularization for Routing

ℓ1 Regularization. Routing each token to more
than one key increases the overall size of the index.
Therefore, we propose to use ℓ1 regularization on
the router representation to encourage the router to
only keep the most meaningful token interaction
by pushing more routing weights to 0:

Ls =
1

B

B∑

i=1

T∑

j=1

|V|∑

k=1

ϕ(vij)
(k), (10)

where |V| is the number of keys, B is the batch size,
and T is the sequence length. As shown in Figure 6,
CITADEL has a sparsely activated set of keys, by
routing important words to multiple lexical keys
while ignoring many less salient words, leading to
effective yet efficient retrieval.

Load Balancing. As mentioned in Section 2.2,
the retrieval latency of COIL is bottlenecked by fre-
quently searching overly large token indexes. This
results from the static lexical routing where com-
mon “keys” have a larger chance to be activated,
which results in large token indexes during index-
ing. Therefore, a vital point for reducing the la-
tency of multi-vector models is to evenly distribute
each token embedding to different keys. Inspired
by Switch Transformers (Fedus et al., 2022), we
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propose to minimize the load balancing loss that ap-
proximates the expected “evenness” of the number
of tokens being routed to each key:

Lb =

|V|∑

k=1

fk · pk, (11)

pk is the batch approximation of the marginal prob-
ability of a token vector routed to the k-th key:

pk =
1

B

B∑

i=1

T∑

j=1

exp(WT
k vij + bk)∑

k′ exp(WT
k′vij + bk′)

, (12)

where W and b are the weights and bias of the
routing function in Equation (9) and vij is the j-th
token embedding in sample i of the batch. fk is the
batch approximation of the total number of tokens
being dispatched to the k-th key:

fk =
1

B

B∑

i=1

T∑

j=1

I{argmax(pij) = k}, (13)

where pij = softmax(W T vij + b). Finally, we
obtain the loss for training CITADEL:

L = Le + Lr + α · Lb + β · Ls, (14)

where α ≥ 0 and β ≥ 0. The ℓ1 and load balancing
loss are applied on both queries and documents.

3.5 Inverted Index Retrieval
CITADEL builds an inverted index like BM25 but
we use a vector instead of a scalar for each token
and the doc product as the term relevance.

Indexing and Post-hoc Pruning. To reduce in-
dex storage, we prune the vectors with routing
weights less than a threshold τ after training. For a
key e in the lexicon V , the token index Ie consists
of token embeddings vdj and the routing weight
we
dj

for all documents d in the corpus C is:

Ie = {we
dj · vdj |we

dj > τ, 1 ≤ j ≤ M, ∀d ∈ C}. (15)

We will discuss the impact of posthoc pruning in
Section 5.2, where we find that posthoc pruning
can reduce the index size by 3× without significant
accuracy loss. The final search index is defined as
I = {Ie|e ∈ V}, where the load-balancing loss in
Equation (11) will encourage the size distribution
over Ie to be as even as possible. In practice, we
set the number of maximal routing keys of each
token to 5 for the document and 1 for the query. The
intuition is that the documents usually contain more
information and need more key capacity, which is
discussed in Section 7 in detail.

Token Retrieval. Given a query q, CITADEL

first encodes it into a sequence of token vectors
{vqi}Ni=1, and then route each vector to its top-1
key e with a routing weight we

qi . The final repre-
sentation we

qi · vqi will be sent to the corresponding
token index IE for vector search. The final rank-
ing list will be merged from each query token’s
document ranking according to Equation (5).

4 Experiments

4.1 MS MARCO Passages Retrieval

We evaluate MS MARCO passages (Nguyen et al.,
2016) and its shared tasks, TREC DL 2019/2020
passage ranking tasks (Craswell et al., 2020).
Dataset details are provided in Appendix A.1. Fol-
lowing standard practice, we train CITADEL and
other baseline models on MS MARCO passages
and report the results on its dev-small set and TREC
DL 2019/2020 test queries. The evaluation metrics
are MRR@10, nDCG@10, and Recall@1000 (i.e.,
R@1K). We provide a detailed implementation of
CITADEL and other baselines in Appendix A.

Table 1 shows the in-domain evaluation re-
sults on MS MARCO passage and TREC DL
2019/2020. We divide the models into two classes:
ones trained with only labels and BM25 hard
negatives and the others trained with further pre-
training (Gao and Callan, 2022), hard negative
mining (Xiong et al., 2021), or distillation from
a cross-encoder1. CITADEL is trained only with
BM25 hard negatives, while CITADEL+ is trained
with cross-encoder distillation and one-round hard
negative mining. The default pruning threshold
is τ = 0.9. As shown in Section 5.2, τ can
be adjusted to strike different balances between
latency, index size and accuracy. In both cate-
gories, CITADEL/CITADEL+ outperforms the base-
line models on the MS MARCO passages dev set
and greatly reduces the search latency on both GPU
and CPU. For example, CITADEL+ achieves an
average latency of 3.21 ms/query which is close
to DPR-768 (1.28 ms/query) on GPU, while hav-
ing a 25% higher MRR@10 score. CITADEL also
maintains acceptable index sizes on disk, which
can be further reduced using product quantization
(Section 5.3). Although not able to outperform
several baselines on TREC DL 2019/2020, we per-
form t-test (p < 0.05) on CITADEL and CITADEL+

against other baselines in their sub-categories and
1https://huggingface.co/cross-encoder/
ms-marco-MiniLM-L-6-v2
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Models MARCO Dev TREC DL19 TREC DL20 Index Storage Latency (ms/query)
MRR@10 R@1k nDCG@10 R@1k nDCG@10 R@1k Disk (GB) Factor1 Encode (GPU) Search (GPU) Search (CPU)

Models trained with only BM25 hard negatives

BM25 0.188 0.858 0.506 0.739 0.488 0.733 0.67 ×0.22 × × 40.1
DPR-128 0.285 0.937 0.576 0.702 0.603 0.757 4.33 ×1.42 7.09 0.63 430
DPR-768 0.319 0.941 0.611 0.742 0.591 0.796 26.0 ×8.52 7.01 1.28 2015
SPLADE 0.340 0.965 0.683 0.813 0.671 0.823 2.60 ×0.85 7.13 × 475
COIL-tok 0.350 0.964 0.660 0.809 0.679 0.825 52.5 ×17.2 10.7 46.8 1295
COIL-full 0.353 0.967 0.704 0.835 0.688 0.841 78.5 ×25.7 10.8 47.9 3258
ColBERT 0.360 0.968 0.694 0.830 0.676 0.837 154 ×50.5 10.9 178 -
CITADEL 0.362 0.975 0.687 0.829 0.661 0.830 78.3 ×25.7 10.8 3.95 520

Models trained with further pre-training/hard-negative mining/distillation

coCondenser 0.382 0.984 0.674 0.820 0.684 0.839 26.0 ×8.52 7.01 1.28 2015
SPLADE-v2 0.368 0.979 0.729 0.865 0.718 0.890 4.12 ×1.35 7.13 × 2710
ColBERT-v2 0.397 0.985 0.744 0.882 0.750 0.894 29.0 ×9.51 10.9 122 3275
ColBERT-PLAID2 0.397 0.984 0.744 0.882 0.749 0.894 22.1 ×7.25 10.9 55.0 370
CITADEL+ 0.399 0.981 0.703 0.830 0.702 0.859 81.3 ×26.7 10.8 3.21 635
1 Factor: Ratio of index size to plain text size.
2 The PLAID implementation of ColBERT contains complex engineering schemes and low-level optimization such as centroid interaction and fast kernels.

Table 1: In-domain evaluation on MS MARCO passages and TREC DL 2019/2020. CITADEL+ is trained with
cross-encoder distillation and hard-negative mining. The red region means CITADEL/CITADEL+ is better than the
method while the green region means that there’s no statistical significance (p > 0.05). “×” means not implemented
and “-” means not practical to evaluate on a single CPU.

Methods AA CF DB Fe FQ HQ NF NQ Qu SF SD TC T2 Avg.

Models trained with only BM25 hard negatives

BM25 0.315 0.213 0.313 0.753 0.236 0.603 0.325 0.329 0.789 0.665 0.158 0.656 0.367 0.440
DPR-768 0.323 0.167 0.295 0.651 0.224 0.441 0.244 0.410 0.750 0.479 0.103 0.604 0.185 0.375
SPLADE 0.445 0.201 0.370 0.740 0.289 0.640 0.322 0.469 0.834 0.633 0.149 0.661 0.201 0.453
COIL-full 0.295 0.216 0.398 0.840 0.313 0.713 0.331 0.519 0.838 0.707 0.155 0.668 0.281 0.483
ColBERT 0.233 0.184 0.392 0.771 0.317 0.593 0.305 0.524 0.854 0.671 0.165 0.677 0.202 0.453
CITADEL 0.503 0.191 0.406 0.784 0.298 0.653 0.324 0.510 0.844 0.674 0.152 0.687 0.294 0.486

Models with further pre-training/hard-negative mining/distillation

coCondenser 0.440 0.133 0.347 0.511 0.281 0.533 0.319 0.467 0.863 0.591 0.130 0.708 0.143 0.420
SPLADE-v2 0.479 0.235 0.435 0.786 0.336 0.684 0.334 0.521 0.838 0.693 0.158 0.710 0.272 0.499
ColBERT-v2 0.463 0.176 0.446 0.785 0.356 0.667 0.338 0.562 0.854 0.693 0.165 0.738 0.263 0.500
CITADEL+ 0.490 0.181 0.420 0.747 0.332 0.652 0.337 0.539 0.852 0.695 0.147 0.680 0.340 0.493
CITADEL+ (w/o reg.) 0.511 0.182 0.422 0.765 0.330 0.664 0.337 0.540 0.853 0.690 0.159 0.715 0.342 0.501

Table 2: Out-of-domain evaluation on BEIR benchmark. nDCG@10 score is reported. Dataset Legend (Chen et al.,
2022): TC=TREC-COVID, NF=NFCorpus, NQ=NaturalQuestions, HQ=HotpotQA, FQ=FiQA, AA=ArguAna,
T2=Touché-2020 (v2), Qu=Quora, DB=DBPedia, SD=SCIDOCS, Fe=FEVER, CF=Climate-FEVER, SF=SciFact.

show there is no statistical significance. The incon-
sistency is probably due to that we use the train-
ing data from Tevatron (Gao et al., 2022) where
each passage is paired with a title. Lassance and
Clinchant (2023) points out that neural retrievers
trained on such data will result in slightly higher
scores on MS MARCO dev small while lower
scores on TREC DL 2019 and 2020.

4.2 BEIR: Out-of-Domain Evaluation

We evaluate on BEIR benchmark (Thakur et al.,
2021) which consists of a diverse set of 18 re-
trieval tasks across 9 domains. We evaluate on
13 datasets following previous works (Santhanam
et al., 2022b; Formal et al., 2021a). Table 2 shows
the zero-shot evaluation results on BEIR. Without

any pre-training or distillation, CITADEL manages
to outperform all baselines in their sub-categories
in terms of the average score. Compared with
the distilled/pre-trained models, CITADEL+ still
manages to achieve comparable performance. In-
terestingly, we find that if no regularization like
load balancing and L1 is applied during training,
CITADEL+ can reach a much higher average score
that even outperforms ColBERT-v2. Our conjec-
ture is that the regularization reduces the number of
token interactions and the importance of such token
interaction is learned from training data. It is hence
not surprising that the more aggressively we prune
token interaction, the more likely that it would hurt
out-of-domain accuracy that’s not covered by the
training data.
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Models MRR@10 #DP ×106

ColBERT 0.360 4213
COIL-full 0.353 45.6
CITADEL 0.362 10.5
DPR-128 0.285 8.84

Table 3: Maximal number of dot products per query on
MS MARCO passages. # DP: number of dot products.
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Figure 3: Normalized disk storage over token indices in
an inverted list of CITADEL and COIL.

5 Performance Analysis

5.1 Number of Token Interactions

The actual latency is often impacted by engineering
details and therefore FLOPS is often considered
for comparing efficiency agnostic to the actual im-
plementation. In our case, however, FLOPS is
impacted by the vector dimension in the nearest
neighbour search which is different across models.
Therefore, we only compare the maximal number
of dot products needed as a proxy for token in-
teraction per query during retrieval as shown in
Table 3. The number of dot products per query in
CITADEL with pruning threshold τ = 0.9 is compa-
rable to DPR-128 and much lower than ColBERT
and COIL, which is consistent with the latency
numbers in Table 1. The reason is that CITADEL

has a balanced inverted index credited to the ℓ1 reg-
ularization and the load balancing loss as shown in
Figure 3. By applying the load balancing loss on
the router prediction, CITADEL yields a more bal-
anced and even index distribution where its largest
index fraction is 8 × smaller than COIL’s as shown
in Figure 3. We also provide a detailed latency
breakdown in Appendix A.4.
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Figure 4: Latency-memory-accuracy tradeoff on MS
MARCO passages using post-hoc pruning. τ is the
pruning threshold.

Condition MRR@10 Storage (GB) Latency (ms)

original 0.362 78.3 3.95
nbits=2 0.361 13.3 0.90
nbits=1 0.356 11.0 0.92

Table 4: Product Quantization. Pruning threshold is set
to 0.9. nbits: ratio of total bytes to the vector dimension.

5.2 Latency-Memory-Accuracy Tradeoff

Figure 4 shows the tradeoff among latency, mem-
ory, and MRR@10 on MS MARCO passages with
post-hoc pruning. We try the pruning thresholds
[0.5, 0.7, 0.9, 1.1, 1.3, 1.5]. We could see that
the MRR@10 score barely decreases when we in-
crease the threshold to from 0.5 to 1.1, but the
latency decreases by a large margin, from about 18
ms/query to 0.61 ms/query. The sweet spots are
around (0.359 MRR@10, 49.3GB, 0.61 ms/query)
and (0.362 MRR@10, 78.5GB, 3.95 ms/query).
This simple pruning strategy is extremely effective
and readers can see in Section 6 that it also yields
interpretable document representations.

5.3 Combination with Product Quantization

We could further reduce the latency and storage
with product quantization (Jégou et al., 2011) (PQ)
as shown in Table 4. For nbits=2, we divide the
vectors into sets of 4-dimensional sub-vectors and
use 256 centroids for clustering the sub-vectors,
while for nbits=1 we set the sub-vector dim to 8
and the same for the rest. With only 2 bits per
dimension, the MRR@10 score on MS MARCO
Dev only drops 4% but the storage is reduced by
83% and latency is reduced by 76%.
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Threshold 𝜏 Sample documents from MS MARCO Passages

0.0 All medications have side effects, including drugs to treat arrhythmias. Most of the side effects aren't serious and disappear 

when the dose is changed or the medication is stopped. But some side effects are very serious. That's why some children are

admitted to the hospital to begin the medication. Medications for Arrhythmia

0.9 All medications have side effects, including drugs to treat arrhythmias. Most of the side effects aren't serious and disappear 

when the dose is changed or the medication is stopped. But some side effects are very serious. That's why some children are 

admitted to the hospital to begin the medication. Medications for Arrhythmia

1.3 All medications have side effects, including drugs to treat arrhythmias. Most of the side effects aren't serious and disappear when 

the dose is changed or the medication is stopped. But some side effects are very serious. That's why some children are admitted to 

the hospital to begin the medication. Medications for Arrhythmia

Figure 5: Tokens in grey (pruned) have zero activated keys while bold tokens have at least one activated key. We
leave out the expanded terms and routing weights due to space limit.

Models Dev DL19 Latency (ms)

COIL-full 0.353 0.704 47.9
COIL-tok 0.350 0.660 46.8
CITADEL 0.362 0.687 3.95
CITADEL-tok 0.360 0.665 1.64

Table 5: [CLS] ablation on MS MARCO passage. Dev:
MRR@10. DL19: nDCG@10.

6 Token Routing Analysis of CITADEL

Qualitative Analysis. We visualize CITADEL

representations and the effect of posthoc pruning
in Figure 5. By increasing the pruning threshold,
more keywords are pruned and finally leaving the
most central word “arrhythmia” activated. We pro-
vide another example in Figure 6. We can see that a
lot of redundant words that do not contribute to the
final semantics are deactivated, meaning all their
routing weights are 0. For the activated tokens,
we could see the routed keys are contextualized
as many of them are related to emoji which is the
theme of the document.

Quantitative Analysis. We analyze CITADEL’s
token distribution over the number of activated rout-
ing keys for the whole corpus as shown in Figure 7.
With ℓ1 loss, around 50 tokens per passage are de-
activated (i.e., all the routing weights of these 50
tokens are 0). As the pruning threshold increases,
more tokens are deactivated, yielding a sparse rep-
resentation for interpreting CITADEL’s behaviours.

7 Ablation Studies

Impact of [CLS] Table 5 shows the influence of
removing the [CLS] vector for CITADEL on MS
MARCO passage. Although removing [CLS] im-
proves the latency by a large margin, the in-domain
effectiveness is also adversely affected, especially

#Keys MRR@10 Storage (GB) Latency (ms)

1 0.347 53.6 1.28
3 0.360 136 14.7
5 0.364 185 18.6
7 0.370 196 20.4
9 0.367 221 19.6

Table 6: Number of routing keys for documents during
training. No post-hoc pruning is applied.

on TREC DL 2019. Nevertheless, CITADEL-
tok (w/o [CLS]) still outperforms its counterpart
COIL-tok in both precision and latency.

Number of Routed Experts. Table 6 shows the
influence of changing the maximum number of
keys that each document token can be routed to
during training and inference on MS MARCO pas-
sage. As the number of routing keys increases, the
index storage also increases rapidly but so does the
MRR@10 score which plateaus after reaching 7
keys. The latency does not increase as much after
3 routing keys due to the load balancing loss.

8 Related Works

Dense Retrieval. Supported by multiple approx-
imate nearest neighbour search libraries (John-
son et al., 2021; Guo et al., 2020), dense re-
trieval (Karpukhin et al., 2020) gained much pop-
ularity due to its efficiency and flexibility. To im-
prove effectiveness, techniques such as hard nega-
tive mining (Xiong et al., 2021; Zhan et al., 2021)
and knowledge distillation (Lin et al., 2021b; Hof-
stätter et al., 2021) are often deployed. Recently,
retrieval-oriented pre-training(Gao et al., 2021b;
Lu et al., 2021; Gao and Callan, 2021; Izacard
et al., 2022; Gao and Callan, 2022) also draws
much attention as they could substantially improve
the fine-tuning performance of downstream tasks.
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Sample Document from MS MARCO Passages

It may be a little hard to remember (remember, forget) all of

the 25 (barney, many, 25, 1625) codes (code, codes), which 

is why we've created (invented, stumbled, created, swirled)

this dictionary (dictionary, spiked). You can find the 

complete facebook (facebook) emoticons (emoticon, emoji, 

combinations, asher, grins) list for chats (chat, chatting)

and status (winked, logo, status, glided) in the table above. 

This list (list, kingsley, include)ing includes all the new ones 

which have been recently added, such as the penguin 

(penguin, mccann, uefa) or shark (shark, chao) emoticon 

(emoticon, emoji, assassins). Facebook (facebook)

Emoticons (emoticon, emoji, spp, programs)

Figure 6: Token routing analysis of CITADEL. Grey
tokens are deactivated, while bold tokens are routed to
at least one activated key (in blue).

Sparse Retrieval. Traditional sparse retrieval
systems such as BM25 (Robertson and Zaragoza,
2009) and tf–idf (Salton and Buckley, 1988) rep-
resent the documents as a bag of words with static
term weights. Recently, many works leverage pre-
trained language models to learn contextualized
term importance (Bai et al., 2020; Mallia et al.,
2021; Formal et al., 2021b; Lin and Ma, 2021).
These models could utilize existing inverted index
libraries such as Pyserini (Lin et al., 2021a) to per-
form efficient sparse retrieval or even hybrid with
dense retrieval (Hofstätter et al., 2022; Shen et al.,
2022; Lin and Lin, 2022; Zhang et al., 2023).

Multi-Vector Retrieval. ColBERT (Khattab and
Zaharia, 2020; Santhanam et al., 2022b,a; Hof-
stätter et al., 2022) probably has the most opti-
mized library in multi-vector retrieval. COIL (Gao
et al., 2021a) accelerates retrieval by combining
with exact match and inverted vector search. ME-
BERT (Luan et al., 2021) and MVR (Zhang et al.,
2022) propose to use a fixed number of token
embeddings for late interaction (e.g., top-k posi-
tions or special tokens). Concurrently to this work,
ALIGNER (Qian et al., 2022) proposes to frame
multi-vector retrieval as a sparse alignment prob-
lem between query tokens and document tokens us-
ing entropy-regularized linear programming. Our
110M model achieves higher in-domain and out-of-
domain accuracy than their large variants.

9 Conclusion

This paper proposes a novel multi-vector retrieval
method that achieves state-of-the-art performance
on several benchmark datasets while being 40×
faster than ColBERT-v2 and 17× faster than the
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Figure 7: Token distribution over number of activated
experts per passage. τ is the pruning threshold.

most efficient multi-vector retrieval library to date,
PLAID, on GPUs. By jointly optimizing for the
token index size and load balancing, our new dy-
namic lexical routing scheme greatly reduces the
redundancy in the all-to-all token interaction of Col-
BERT while bridging the word-mismatch problem
in COIL. Experiments on both in-domain and out-
of-domain datasets demonstrate the effectiveness
and efficiency of our model.

10 Limitations

The limitation of CITADEL mainly shows in two as-
pects. First, at the beginning of training, the model
needs to route each token vector to multiple acti-
vated keys for token interaction, which increases
the computation cost compared to COIL and Col-
BERT. This results in slower training speed but it
gets better when training approaches the end as
more tokens are pruned by the ℓ1 regularization.
Another drawback lies in the implementation of
CITADEL, or more generally speaking, most multi-
vector retrieval methods. The token-level retrieval
and aggregation make them not compatible with
established search libraries such as FAISS or Py-
serini. Moreover, for time and space efficiency,
multi-vector retrieval also requires more engineer-
ing efforts and low-level optimization. Recently,
XTR (Lee et al., 2023) provides a solution that con-
strains the document-level retrieval to be consistent
with the token-level retrieval during training, which
can be used for streamlining CITADEL.
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A Implementations

A.1 Datasets

The MS MARCO passages corpus has around 8.8
million passages with an average length of 60
words. TREC DL 2019 and 2020 contain 43 and
54 test queries whose relevance sets are densely
labelled with scores from 0 to 4.

For out-of-domain evaluation, we use 13
datasets from BEIR, which includes TREC-
COVID (Voorhees et al., 2020), NFCorpus (Boteva
et al., 2016), Natural Questions (Kwiatkowski
et al., 2019), HotpotQA (Yang et al., 2018),
FiQA-2018 (Maia et al., 2018), ArguAna Coun-
terargs Corpus (Wachsmuth et al., 2018), Touché-
2020 (Bondarenko et al., 2020), Quora2, DBPedia-
Entity-v2 (Hasibi et al., 2017), SCIDOCS (Cohan
et al., 2020), FEVER (Thorne et al., 2018), Climate-
FEVER (Diggelmann et al., 2021), SciFact (Wad-
den et al., 2020).

A.2 Baselines for Section 4

All the baseline models below are trained and eval-
uated under the same setting of CITADEL (e.g.,
datasets, hyperparameters, and hardwares).

Sparse Retrievers. BM25 (Robertson and
Zaragoza, 2009) uses the term frequency and in-
verted document frequency as features to compute
the similarity between documents. SPLADE (For-
mal et al., 2021b,a) leverages the pre-trained lan-
guage model’s MLM layer and ReLU activation to
yield sparse term importance.

Dense Retrievers. DPR (Karpukhin et al., 2020)
encodes the input text into a single vector. coCon-
denser (Gao and Callan, 2022) pre-trains DPR in
an unsupervised fashion before fine-tuning.

Multi-Vector Retrievers. ColBERT (Khattab
and Zaharia, 2020; Santhanam et al., 2022b) en-
codes each token into dense vectors and performs
late interaction between query token vectors and
document token vectors. COIL (Gao et al., 2021a)
applies an exact match constraint on late interaction
to improve efficiency and robustness.

A.3 Training

For CITADEL, we use bert-base-uncased as the
initial checkpoint for fine-tuning. Following COIL,

2https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs
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Figure 8: Latency breakdown of inverted vector retrieval
for CITADEL and COIL.

we set the [CLS] vector dimension to 128, to-
ken vector dimension to 32, maximal routing keys
to 5 for document and 1 for query, α and β in
Equation (14) are set to be 1e-2 and 1e-5, respec-
tively. We add the dot product of [CLS] vectors
in Equation (1) to the final similarity score in Equa-
tion (5). All models are trained for 10 epochs
with AdamW (Loshchilov and Hutter, 2019) op-
timizer, a learning rate of 2e-5 with 3000 warm-up
steps and linear decay. Hard negatives are sampled
from top-100 BM25 retrieval results. Each query
is paired with 1 positive and 7 hard negatives for
faster convergence. We use a batch size of 128 on
MS MARCO passages with 32 A100 GPUs.

For a fair comparison with recent state-of-the-
art models, we further train CITADEL using cross-
encoder distillation and hard negative mining. First,
we use the trained CITADEL model under the set-
ting in the last paragraph to retrieve top-100 candi-
dates from the corpus for the training queries. We
then use the cross-encoder3 to rerank the top-100
candidates and score each query-document pair.
Finally, we re-initialize CITADEL with bert-base-
uncased using the positives and negatives sample
from the top-100 candidates scored by the cross-
encoder, with a 1:1 ratio for the soft-label and hard-
label loss mixing (Hinton et al., 2015). We also
repeat another round of hard negative mining and
distillation but it does not seem to improve the per-
formance any further.

3https://huggingface.co/cross-encoder/
ms-marco-MiniLM-L-6-v2
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A.4 Inference and Latency Breakdown
Pipeline. We implemented the retrieval pipeline
with PyTorch (GPU) and Numpy (CPU), with a
small Cython extension module for scatter opera-
tions similar to COIL’s4. As shown in Fig 8, our
pipeline could be roughly decomposed into four
independent parts: query encoding, token-level re-
trieval, scatter operations, and sorting. We use the
same pipeline for COIL’s retrieval process. For
ColBERT’s latency breakdown please refer to San-
thanam et al. (2022a). The cost of query encod-
ing comes from the forward pass of the query en-
coder, which could be independently optimized
using quantization or weight pruning for neural net-
works. Besides that, the most expensive operation
is the token-level retrieval, which is directly influ-
enced by the token index size. We could see that
a more balanced index size distribution as shown
in Figure 3 has a much smaller token vector re-
trieval latency. The scatter operations are used to
gather the token vectors from the same passage ids
from different token indices, which is also related
to the token index size distribution. Finally, we
sort the aggregated ranking results and return the
candidates.

Hardwares and Latency Measurement. We
measure all the retrieval models in Table 1 on a
single A100 GPU for GPU search and a single In-
tel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz
for CPU search. All indices are stored in fp32 (to-
ken vectors) and int64 (corpus ids if necessary) on
disk. We use a query batch size of 1 and return the
top-1000 candidates by default to simulate stream-
ing queries. We compute the average latency of
all queries on MS MARCO passages’ Dev set and
then report the minimum average latency across 3
trials following PLAID (Santhanam et al., 2022a).
I/O time is excluded from the latency but the time
of moving tensors from CPU to GPU during GPU
retrieval is included.

4https://github.com/luyug/COIL/tree/main/
retriever
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