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Abstract

While transformer-based systems have enabled
greater accuracies with fewer training exam-
ples, data acquisition obstacles still persist for
rare-class tasks – when the class label is very
infrequent (e.g., < 5% of samples). Active
learning has in general been proposed to al-
leviate such challenges, but choice of selec-
tion strategy, the criteria by which rare-class
examples are chosen, has not been system-
atically evaluated. Further, transformers en-
able iterative transfer-learning approaches. We
propose and investigate transfer- and active
learning solutions to the rare class problem of
dissonance detection through utilizing models
trained on closely related tasks and the eval-
uation of acquisition strategies, including a
proposed probability-of-rare-class (PRC) ap-
proach. We perform these experiments for a
specific rare class problem: collecting language
samples of cognitive dissonance from social
media. We find that PRC is a simple and effec-
tive strategy to guide annotations and ultimately
improve model accuracy, and while transfer-
learning in a specific order can improve the
cold-start performance of the learner but does
not benefit iterations of active learning.

1 Introduction

Cognitive dissonance occurs during everyday think-
ing when one experiences two or more beliefs that
are inconsistent in some way (Harmon-Jones and
Harmon-Jones, 2007). Often expressed in lan-
guage, dissonance plays a role in many aspects
of life, for example affecting health-related behav-
ior such as smoking (Chapman et al., 1993) and
contributing to the development of (and exit from)
extremism (Dalgaard-Nielsen, 2013). However,
while the phenomenon is common enough to occur
on a daily basis, dissonance is still relatively rare
among the myriad of other relationships between
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Figure 1: Demonstration of the active learning (AL)
loop in general. Our paper examines the three high-
lighted steps: (i) Bootstrapping with TL model, (ii)
Acquisition strategy, and (iii) Model update.

beliefs that occur across random selections of lin-
guistic expressions and thus makes the automatic
detection of it a rare-class problem.

Despite recent advances in modeling sequences
of words, rare-class tasks – when the class label
is very infrequent (e.g., < 5% of samples) – re-
main challenging due to the low rate of positive
examples. Not only are more random examples
necessary to reach a substantial amount of the rare
class (e.g., 1,000 examples to reach just 50 exam-
ples), but also it is easy for human annotators to
miss the rare instances where dissonance is present.
Here, we develop and address the challenges of
creating a resource for language-based assessment
of dissonance.

Active learning using large language models
presents both new opportunities and challenges. On
the one hand, large language models (LLMs) offer
unmatched representations of documentations, able
to achieve state-of-the-art language understand-
ing task performance with transfer learning, often
only with a few iterations of fine-tuning (Liu et al.,
2019). On the other hand, representations are high-
dimensional, and models trained or fine-tuned with
only a small number of examples are prone to over-

11923



fitting, especially when there is a large class imbal-
ance as in rare-class problems. While LLMs have
enabled attempts to tackle increasingly complex
semantic challenges across a growing list of tasks,
getting annotated examples for such problems can
become a bottleneck due to its time- and labor-
intensiveness (Wu et al., 2022). Since data-centric
improvements for more novel tasks can provide a
faster path than model-centric improvements (Ng,
2021), active learning can be a way forward to be
both data-centric and address bottlenecks in label
acquisition – it aims to reduce annotation costs as
well as alleviate the training data deficiency that
large language models face.

However, while active learning has been stud-
ied for multiple natural language tasks (Shen et al.,
2017; Liang et al., 2019), little is known about ac-
tive learning acquisition strategies for LM-based
approaches, especially for rare-class problems.
High data imbalance coupled with very less train-
ing data poses the challenge of “absolute rarity”
(Al-Stouhi and Reddy, 2016), as in our task of dis-
sonance detection. We address this problem by us-
ing a novel combination of evaluating the ordering
of transfer learning from similar tasks to cold-start
the active learning loop, and by acquiring with a
relatively simple acquisition strategy focused on
probability-of-rare-class (PRC) to increase the rare
class samples.

Our contributions include: (1) finding that boot-
strapping AL models with transfer learning on
closely related tasks significantly improves rare
class detection; (2) a novel systematic comparison
of five common acquisition strategies for active
learning for a rare class problem1; (3) a systematic
comparison of two different approaches to handling
AL iterations for LLMs – cumulative and iterative
fine-tuned model updates – finding the cumula-
tive approach works best; (4) evaluating annotation
costs of a rare-class task, finding that minimum
annotation cost does not necessarily lead to better
models, especially in realistic scenarios such as
absolute rarity; and (5) release of a novel dataset2

for the task of identifying cognitive dissonance in
social media documents.

1Code: https://github.com/humanlab/rare-class-AL
2Dataset: https://github.com/humanlab/dissonance-twitter-

dataset

2 Related Work

Active learning in NLP has been largely studied
as a theoretical improvement over traditional ML
for scarce data. In this work, we specifically inves-
tigate pool-based active learning, or picking out
samples to annotate from a larger pool of unlabeled
data, and particularly data for a rare-class problem
where LMs are not well-understood yet.

Acquisition strategies Sampling strategies for
active learning can be broadly classified into three:
uncertainty sampling (Shannon, 1948; Wang and
Shang, 2014; Netzer et al., 2011), representative (or
diversity) sampling (Citovsky et al., 2021; Sener
and Savarese, 2018; Gissin and Shalev-Shwartz,
2019), and the combination of the two (Zhan et al.,
2022). The uncertainty sampling strategies that
employ classification probabilities, Bayesian meth-
ods such as variational ratios (Freeman, 1965),
and deep-learning specific methods (Houlsby et al.,
2011) often use epistemic (or model) uncertainty.
We choose maximum entropy to represent the un-
certainty sampling, since it is usually on par with
more elaborated counterparts (Tsvigun et al., 2022).
As a popular diversity sampling baseline to com-
pare against, we pick select CoreSet (Sener and
Savarese, 2018). The state-of-the-art methods com-
bine these two strategies in novel ways, such as
using statistical uncertainty in combination with
some form of data clustering for diversity sampling
(Zhang and Plank, 2021; Ash et al., 2019). Our
work uses Contrastive Active Learning (Margatina
et al., 2021) to represent this strategy.

On the other hand, Karamcheti et al. (2021) and
Munjal et al. (2022) claim there is rather small to
no advantage in using active learning strategies,
because a number of samples might be collectively
outliers, and existing strategies contribute little to
discover them and instead harm the performance
of subsequent models. Researchers recently have
also focused on the futility of complex acquisition
functions applied to difficult problems and argued
that random acquisition performs competitive to
more sophisticated strategies, especially when the
labeled pool has grown larger (Sener and Savarese,
2018; Ducoffe and Precioso, 2018). Furthermore,
a large-scale annotation of randomly sampled data
could be less expensive than ranking data to an-
notate in each round of active learning, if there is
not much advantage (i.e., such as capturing rare
classes) in using a specific strategy.
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Cold-Start AL While the problem of cold-start
exists in acquiring samples through active learning,
some work has been done to combat this by leverag-
ing the learned weights in pretrained models (Yuan
et al., 2020). However, there is much to gain from
the field of transfer learning especially for rare class
problems, as seen in Al-Stouhi and Reddy (2016).
We borrow the concept of heterogeneous transfer
learning (Day and Khoshgoftaar, 2017; Zhuang
et al., 2021) and transfer the model weights directly
obtained from pretraining on closely related (but
different) tasks on completely different domains.
This helps models to improve the zero-shot ability
for rare class detection. Such methods have been
explored in traditional machine learning (Kale and
Liu, 2013) but not in the era of large language mod-
els to the best of our knowledge.

Rare class AL There has been a growing num-
ber of applications of active learning in data im-
balance and rare class problems. Such works in-
clude (Kothawade et al., 2021; Choi et al., 2021;
Ein-Dor et al., 2020) which proposed frameworks
to improve model performance with data imbal-
ance but failed to check the feasibility and costs
in a real-world, active annotation setting where
not only is rare class very infrequent ( 4%) but
very few (< 70) examples of the rare class exist
due to small dataset size (“absolute rarity”). They
also fail to compare against a simple, rare class
probability of the model. While some work in the
pre-LLM era use probability outputs of a classifier
(certainty-based sampling) which is similar to the
proposed PRC, they claim to work better in con-
junction with co-selection using other uncertainty
sampling strategies, and that certainty-based sam-
pling alone performs poorly in terms of increasing
rare-class samples (Li et al., 2012). Many studies
also focus on rare class discovery, or finding out-
lying samples that do not fall under the existing
categories (Hospedales et al., 2013; Haines and Xi-
ang, 2014; Hartford et al., 2020). This is different
from our task which focuses on the detection of a
rare class.

3 Task

Cognitive dissonance is a phenomenon that hap-
pens when two elements of cognition (i.e., thoughts,
experiences, actions, beliefs) within a person do not
follow one another or are contradictory, and con-
sonance is when one belief follows from the other
(Harmon-Jones and Mills, 2019). Cognitive dis-

Figure 2: Above: Flowchart describing the steps for the
annotators to label tweets as DISSONANCE, CONSO-
NANCE, or NEITHER.
Below: An example of a pair of THOUGHT segments in
a tweet annotated as dissonance.

sonance raises psychological discomfort, encour-
aging a person to resolve the dissonance. As the
magnitude of dissonance increases, the pressure
to resolve it grows as well (Harmon-Jones et al.,
2008; McGrath, 2017).

Social psychology has used this human tendency
to resolve dissonance to understand important psy-
chological processes such as determinants of atti-
tudes and beliefs, consequences of decisions, inter-
nalization of values, and the effects of disagree-
ment among persons (Harmon-Jones and Mills,
2019). Dissonance is also related to anxiety disor-
ders (Juhng et al., 2023), relevant to understanding
extremism and predicting cognitive styles of users.
Our approach to annotating cognitive dissonance
on social media is motivated by the two-stage an-
notation approach described in (Varadarajan et al.,
2022). To the best of our knowledge this is the first
social media dataset for cognitive dissonance.

4 Methods

4.1 Annotation and Dataset

Following the definition of cognitive dissonance in
§3, we treat discourse units as semantic elements
that can represent beliefs. A discourse unit consists
of words or phrases that have a meaning (Polanyi,
1988)– and then cognitive dissonance is analogous
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to a discourse relation between two discourse units.
Recent work (Son et al., 2022) represents discourse
relations in a continuous vector space, motivating
us to look at cognitive dissonance, too, as a rela-
tionship between two “thought” discourse units.

We build a dissonance dataset by first sampling
posts between 2011 and 2020 on Twitter. The
tweets were parsed into discourse units using the
parser by Wang et al. (2018) which uses the PDTB
framework. 3

Each discourse unit in a document is initially an-
notated into THOUGHT or OTHER. 4 A THOUGHT

is a discourse unit describing the author’s own be-
liefs, experiences and actions and are potential el-
ements to be in dissonance. OTHER comprises of
anything else, from meaningless phrases to coher-
ent beliefs that belong to someone other than the
author. For the annotation of dissonance, pairs of
THOUGHT units from each tweet are extracted, and
then annotated to compose CONSONANCE, DIS-
SONANCE or NEITHER according to the frame-
work described in Figure 2 – a three-class anno-
tation. This framework was developed from an-
notator training to spot examples of dissonance,
followed by discussion with a cognitive scientist.

Among a random selection of tweets, the natu-
ral frequency of the DISSONANCE class is around
3.5%. The annotations were carried out by a
team of three annotators, with the third annotator
tiebreaking the samples disagreed by the first two
annotators.

Initial set (iter0) This dataset is used to select
the best transfer model to effectively cold-start the
AL loop. We start with a total of 1,901 examples
of dissonance task annotations, which we split into
a training set of 901 examples (henceforth, iter0)
with 43 examples of dissonance (4.77%) picked
randomly from discourse-parsed tweets. We cre-
ate initial development and test sets with 500 ex-
amples each. They were created such that all the

3PDTB (Prasad et al., 2008) and RST (Mann and Thomp-
son, 1987) are the two major frameworks for discourse pars-
ing; we use the former for this work since PDTB is lexically
grounded and identifies discourse relations using lexical cues.
While the RST framework could be helpful since rhetorical
relations are viewed as cognitive entities (Taboada and Mann,
2006), the complex relationships defined with RST’s nested
structures can complicate our search for cognitive dissonance
samples at the preliminary stage of data collection.

4This was a simpler, large-scale annotation to pick out
discourse units describing author’s own beliefs. We do not
go into the details of this specific annotation since it is not
pertinent to this work.

THOUGHT pairs that were a part of a single tweet
belong to the same set.

Final development and test datasets We gather
additional 984 annotations for development set and
956 annotations for test set in addition to the pre-
viously mentioned 500 for each, summing up to
1,484 development examples (dev) and 1,456 test
examples (test) with around 10% dissonance ex-
amples in each, to account for increased frequency
of occurrence of the rare class after incorporating
novel acquisition strategies.

4.2 Modeling
4.2.1 Architecture
A RoBERTa-based dissonance classifier is used
consistently across all the experiments in this pa-
per: for any two THOUGHT segments belong-
ing to a single post, the input is in the form of
“[CLS] segment1 [SEP] segment2 [SEP]”. We
take the contextualized word embedding x ∈ Rd

of [CLS] in the final layer and feed it into the
linear classifier: y = softmax(Wx + b), where
W ∈ Rd×2

,b ∈ R2 is a learned parameter. We
trained the model parameters with cross entropy
loss for 10 epochs, using AdamW optimizer with
the learning rate of 3 × 10-5, batch size of 16, and
warm up ratio of 0.1. To avoid overfitting, we use
early stopping (patience of 4) with the AUC score.
We run the AL experiments on the datasets delin-
eated in §4.1.

While the annotations are for three classes (Fig-
ure 2), the models used for AL across all strategies
classify labels to binary level (dissonance or not
dissonance), as we are focused specifically on the
dissonance class – while dissonance is rare, it is
also essential to perform well in detecting this class.

4.2.2 Bootstrap with Transfer Learning
We explore cold-starting the active annotation pro-
cess using a transfer of model weights trained on
similar tasks.

PDTB-Comparison/Expansion (CE) The
PDTB framework defines discourse relations at
three hierarchies: Classes, Types and Subtypes.
Of the four classes viz. Temporal, Contingency,
Comparison, and Expansion, the Comparison class
“indicates that a discourse relation is established
between two discourse units in order to highlight
prominent differences between the two situations”
(Prasad et al., 2008). While this class is different
from DISSONANCE, it is useful in capturing
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discord between the semantics of two discourse
units. The Expansion class is defined to “cover
those relations which expand the discourse and
move its narrative or exposition forward,” which
is closer to our conception of CONSONANCE.
We thus identify a similar task to be classifying
discourse relations as Comparison or Expansion
(CE). The CE dataset consists of 8,394 (35.12%)
in Comparison class and 15,506 (64.88%) in
Expansion class. The model was trained on the
architecture as explained in §4.2.1 with segment1
as the first discourse unit (Arg1) and segment2 as
the second discourse unit (Arg2) and the output
indicating Comparison or Expansion class. For the
training, 10% was set aside as the development set
to pick the best performing model on the CE task.

F1-
macro

F1-
Dis

Prec-
Dis

Rec-
Dis

AUC

Diss alone 0.478 0.000 0.000 0.000 0.500

Debate 0.595 0.319 0.349 0.278 0.620
CE 0.487 0.210 0.558 0.129 0.602
Deb; CE 0.540 0.211 0.349 0.152 0.583

Table 1: Performance of models pretrained on two sim-
ilar tasks, separately and combined, based on devel-
opment and test set from iter0. Precision and Recall
reported for Dissonance class. “;” refers to combin-
ing the two datasets. Bold represents best in column.
Training with dissonance dataset alone doesn’t help the
model– this shows the usefulness of transfer learning
to cold-start active learning, especially on transfer from
Debate.

Dissonant Stance Detection (Debate) The dis-
sonant stance detection task classifies two state-
ments in a debate to be in agreement (consonant
stance) or disagreement (dissonant stance) inde-
pendent of the topic that is being debated upon as
described in Varadarajan et al. (2022). Dissonant
stance is different from DISSONANCE in two ways:
(a) each input segment is a complete post consist-
ing of multiple sentences arguing for a stance/topic
whereas in our task, they are discourse units; and
(b) while both are social media domains, our task
uses a more personal, informal language while de-
bate forums use impersonal language citing facts,
not author’s subjective beliefs. But the tasks are
similar in the detection of dissonance between two
segments, and we identify it as a potential task to
transfer learn from. The statements were extracted
from a debate forum consisting of 34 topics with
700 examples each (total 23,800 samples). There

were 8,289 dissonant stance examples (34.82%)
in the dataset. While the dataset has three labels –
consonant stance, dissonant stance and neither –,
we train a binary classifier on top of the RoBERTa
layers to detect dissonant stance or not dissonant
stance, keeping the task similar to the model we
use in the AL iterations.

F1-
macro

F1-
Dis

Prec-
Dis

Rec-
Dis

AUC

Transfer-Learning Alone

Deb; CE 0.520 0.212 0.442 0.140 0.593
Deb→CE 0.495 0.170 0.349 0.112 0.544
CE→Deb 0.487 0.243 0.744 0.146 0.666

Transfer and Continue Training

Deb;CE;iter0 0.458 0.033 0.100 0.020 0.507
Deb→iter0 0.564 0.296 0.236 0.400 0.554
Deb→CE→iter0 0.532 0.143 0.146 0.140 0.531
CE→Deb→iter0 0.585 0.229 0.296 0.186 0.572

Table 2: The zero-shot performance of models further
fine-tuned from those in Table 1. “;” refers to combining
the two datasets, “→” indicates iteratively fine-tuning
on each task, and bold represents the best in column.
Scores based on development and test set from iter0.
The order matters for fine-tuning: we find the CE→Deb
performs the best in zero-shot setting.

Both of these tasks involve two statements/phrases
as inputs, and the output is Comparison/Expansion
in the first case, and Dissonant/Not Dissonant
stance in the second case. We transfer all the
weights of the RoBERTa-base model, leaving out
the binary classifier layer when fine-tuning to the
cognitive dissonance task. The results of fine-
tuning on one or both best transfer model was
picked as the model having trained on PDTB and
then further fine-tuned on the Debate task as well,
as shown in Table 1.

4.2.3 AL strategies
Since our annotation process brought about only
a small incremental improvement for performance
on the rare class, yet contributed much to modeling
the dominant classes, we hypothesized that using
probability of the rare class as an acquisition strat-
egy in active learning could work just as well as
other strategies that are based on diversity and un-
certainty sampling. We ran our analyses over four
other common acquisition strategies by picking out
the top 10% (300 out of an unannotated data pool
containing 3,000 examples). We limit to only four
other strategies because of the annotation costs and
limited time.
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PRC For a rare, hard class, we use a binary classi-
fier that outputs the probability of rare class learned
from the samples encountered so far. This is a com-
putationally inexpensive and simple method that
could be easily surpassed by other complex AL
strategies but was surprisingly found to be the most
effective in this study. The examples from the data
pool that are predicted to have the highest proba-
bility of the rare class by the classification model
from previous iteration are selected.

RANDOM As a baseline, we randomly sample
examples from the data pool, which reflects the
natural distribution of classes. Random method has
been considered to be a solid baseline to compare
against, as many AL strategies do not merit when
the annotation pool scales up and collective outliers
are missed, as explained in §2.

ENTROPY We use predictive entropy as the
uncertainty-based sampling baseline to compare
against. While Least Confident Class (LCC) is a
popular strategy to capture samples based on un-
certainty, it is calculated based on only one class,
working best for binary classification and provides
merit within balanced classes, whereas predictive
entropy is a generalized form of LCC, and a more
popular variant (Freeman, 1965).

CAL Contrastive Active Learning (Margatina
et al., 2021) is a state-of-the-art approach that
chooses data points that are closely located in the
model feature space yet predicted by models to
have maximally different likelihoods from each
other. This method is relevant to the task at hand
because in rare class problems, it is often difficult
for a model to learn the decision boundary around
the rare class due to the low number of such sam-
ples. Thus we focus on a method that tries to pick
out samples at the decision boundary of the rare
class.

CORESET An acquisition method that has
worked well as a diversity sampling method is Core-
Set (Sener and Savarese, 2018). This method uses
a greedy strategy to sample a subset of data that
is most representative of the real dataset, i.e., the
larger data pool that we sample from.

4.2.4 Model Update
To the best of our knowledge, the question of model
update in an AL loop has not been explored. We
explore two fine-tuning approaches to update the
model following annotation of new samples in each

Random Entropy CoreSet CAL PRC

Random
×

12.15% 11.52% 10.83% 11.02%

Entropy
×

64.68% 76.33% 87.98%

CoreSet
×

58.67% 61.65%

CAL
×

82.98%

Table 3: % overlap in the samples picked out by the base
model for the five strategies described in 4.2.3. Proba-
bility of rare class (PRC) has a significant overlap with
a state-of-the-art approaches, implying that for the rare
class problem, PRC is a computationally inexpensive,
alternative acquisition approach.

Figure 3: AUC for the five strategies for IT and CM
model updates. This shows that the CM model update
always performs equally with or better than the IT up-
date.

round of the active learning loop – cumulative (CM)
and iterative (IT). Figure 1 provides a visual expla-
nation of the two approaches.

Cumulative (CM) At each round of the AL loop,
the 300 newly annotated samples are combined
with the previous ones as the input to fine-tune
the classification model from a base pretrained lan-
guage model.

Iterative (IT) At each round of the AL loop, the
300 newly annotated samples are used to further
fine-tune the model trained during the previous
loop.

5 Results

5.1 Transfer Learning Models for Cognitive
Dissonance

Table 1 displays the evaluation of the transfer learn-
ing models on bootstrapping the active annotation,
revealing that pretraining the large language mod-
els on relevant tasks that are specifically designed
to mimic the task at hand can lead to better perfor-
mance. In addition, the transfer from both Debate
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IT CM

Strategy F1-macro F1-Dis Prec-Dis Rec-Dis AUC F1-macro F1-Dis Prec-Dis Rec-Dis AUC

RANDOM 0.556 0.175 0.119 0.336 0.546 0.640 0.362 0.397 0.334 0.652

ENTROPY 0.632 0.351 0.401 0.318 0.650 0.649 0.398 0.540 0.315 0.702

CORESET 0.652 0.397 0.513 0.329 0.694 0.635 0.375 0.523 0.292 0.688

CAL 0.612 0.306 0.331 0.321 0.623 0.644 0.383 0.497 0.313 0.685

PRC 0.616 0.322 0.371 0.309 0.633 0.633 0.382 0.580 0.285 0.706

Table 4: Comparison of five annotation strategies for iterative (IT) and cumulative (CM) approaches for 2 class
classification. The metrics are averaged over two iterations of active learning, with 300 new examples annotated
in each iteration (adds between 3-10% samples of dissonance in each round, depending on the strategy). Bold
represents the best for each reported metric. The performance of CM approach exceeds that of IT across most
acquisition functions, which contrasts with the case of transfer learning step where combining the datasets into one
did not help the model as much. While the performance on adding 10 to 30 samples of dissonance is not expected
to cause large jumps in performance, note that using the PRC strategy leads to significant gain in performance in
detecting the dissonance class compared to the transfer models from Table 2.

and CE tasks leads to better results than training the
RoBERTa-base model on the Dissonance dataset
directly. We also combine the two datasets used in
Debate and CE and train them at the same time –
similar to the CM approach – to find that Deb;CE

model still performs better than the model directly
trained on the Dissonance dataset. This shows the
incredible zero-shot abilities of transfer models for
this task.

Furthermore, we explore if continuing to pretrain
on a different task after already having pretrained
on Debate or CE makes a difference. In such case,
order of pretraining tasks matters, and there is a
much larger gain in the zero-shot performance for
CE→Debate compared to Debate→CE as seen in
Table 2. When any of these transfer models is fur-
ther fine-tuned on the dissonance dataset, we find
an initial drop in performance. This is explained
with the effect of the heterogeneous domain trans-
fer and the small dataset in the iter0 train set. As
later shown in Table 4, the performance improves
when more samples are collected in the AL itera-
tions. The domain transfer from both tasks (or a
combination of them) gives the active annotation a
head-start for initial sample selection.

5.2 Acquisition Strategies

Table 3 shows the overlap of samples picked out
in each iteration from the same larger data pool
for the model at iteration 0 (base model). RAN-
DOM has the lowest overlaps with all the other
strategies. We also find that there is a significant
overlap (> 80%) in the samples between ENTROPY

or CAL, the state-of-the-art approach, and PRC.
CAL has a higher overlap with ENTROPY rather

than CORESET, showing that samples deemed to
be both highly informative and contrastive by the
model are also usually likely to be dissonant. This
is contrastive to the prior literature revealing that
poor calibration of large language models often
renders the models to rarely be uncertain of their
outcomes (Guo et al., 2017). All strategies ex-
cept RANDOM have > 55% overlap with each other.
This implies that diversity- and uncertainty-based
methods are not as different from each other as they
theoretically are and inclined to pick similar sam-
ples – hinting that a lot of diversity-based sampling
measures mostly pick highly informative samples
as well. Furthermore, PRC tends to choose sam-
ples that the “state-of-the-art” model also picks in
rare-case scenarios, indicating that it could be a
computationally inexpensive alternative.

Table 4 shows the results averaged over two
rounds of active annotation and learning for five
strategies with two types of model updates. While
the performance for dissonance class across all
strategies do not seem to boost much in a single
round of active learning (since adding 300 new
annotations adds only between 10-30 dissonance
examples in each round), Figure 3 shows that the
CM approach always performs better than IT. IT

could help models generalize to new domains dur-
ing transfer learning, but it may not add a lot of
value when data is collected in the same domain
in each iteration of the AL loop. This could be be-
cause IT biases the model towards the distribution
of the latest sample set due to the effects of catas-
trophic forgetting (Yogatama et al., 2019) while
CM implicitly balances all batches of data.
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The performance of RANDOM-CM strategy lags
behind the rest of the CM strategies. The other
strategies perform better than RANDOM but one
strategy does not offer significant advantages over
another, further confirming the observation from
Table 3 that the AL strategies have a significant
overlap and could be choosing very similar sam-
ples.

5.3 Qualitative Evaluation of Annotation
Costs

Table 5 displays the results of a study on the qual-
ity of annotation, measuring subjective difficulty
and time taken. We sampled 300 examples from a
data pool of 3,000 unannotated examples for each
strategy so that the experiment is consistent with
the unlabeled pool size used across other experi-
ments for each of the strategies. Of these 300, we
picked 125 (from each strategy) to get annotated
for their difficulty on a scale of 0-5. This number
was chosen based on balancing having enough ex-
amples per strategy for meaningful statistics while
not taking too much of annotator’s time and effort.
The annotations were conducted on a simple anno-
tation app that records the time taken to produce
the first label an annotator decides on (i.e., any cor-
rections to the label wouldn’t count towards the
time calculation). The Pearson correlation between
the average time taken and the average difficulty
value was 0.41.

Rare % Time (s) Subj. diff.

RANDOM 3.20 11.96 -0.065
ENTROPY 6.80 12.78 0.035
CORESET 6.00 11.89 0.039

CAL 4.80 11.88 -0.045
PRC 7.60 13.55 0.071

Table 5: Evaluation of annotation difficulty by selection
strategy. Rare % is how much the rare class (dissonance)
was selected; Time is per instance and subj diff is z-
scored subjective rating of difficulty. Our PRC approach
selects the most rare class instances but also results in
more costly annotations in terms of time and subjective
ratings.

Annotation cost (in terms of time taken to anno-
tate) is known to increase when employing active
learning strategies compared to that of a random
baseline (Settles et al., 2008). We find that PRC

picks out the “most difficult” samples, and takes
almost a second longer to annotate than average (av-

erage time taken: 12.59s), followed by ENTROPY

and CORESET strategies – this complies with EN-
TROPY picking the most uncertain samples and
CORESET executing diversity sampling and repre-
senting the data better, thus increasing the number
of dissonance samples. The subjective difficulty
reported is the average z-score of difficulty scores
picked by the annotators. This is done to normalize
the variability of subjective ratings. The inter-rater
reliability for the entire exercise was measured us-
ing the Cohen’s κ for two annotators, which was
calculated to be 0.37 (fair agreement), with an over-
lap of 66%.

F1-
macro

F1-
Dis

Prec-
Dis

Rec-
Dis

AUC

modeliter0 0.623 0.332 0.364 0.306 0.634

Deb→Sm 0.667 0.419 0.510 0.355 0.702

CE→Deb→Sm 0.658 0.389 0.483 0.327 0.707

Deb→Big 0.647 0.417 0.695 0.298 0.753
CE→Deb→Big 0.669 0.425 0.536 0.352 0.711

Table 6: The final dataset tested on the best transfer
models from Tables 1 and 2 with CM approach. These
models could subsequently be used to obtain newer
samples more efficiently. modeliter0 refers to the best
model from continued training on Table 2, with scores
reported on the final test and dev sets.

In general, we found that PRC addresses the rare-
class challenge better than the other AL strategies.
On transferring from CE/Debate corpora, the model
is able to pick up on cues that indicate "Contrast"
or "Disagreement" between two inputs, so PRC ini-
tially might pick samples with dissonant language
(including cognitive and non-cognitive dissonance)
with a high false positive rate, and improve over
iterations. We also found that both the ENTROPY

and CORESET strategies substantially increase the
number of dissonant examples, thus partially ad-
dressing the needle-in-haystack problem.

5.4 A final dataset: Putting it all together.
We release two versions of train data: small and big;
along with the development and test data (see §4.1)
The small set comprises the 2,924 examples which
were use for the active learning experiments dis-
cussed previously. Building on our learnings from
the active learning experiments, we created a sec-
ond (big) data set with 6,649 examples that includes
the small plus an additional 3,725 examples derived
over more rounds of active learning restricted to
the PRC or ENTROPY strategies. It contains 692
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dissonant samples, comprising 10.40% among all.
Table 6 reports the performance improvement from
using this final larger dataset, yielding the best per-
formance so far with AUC > 0.75.

6 Conclusion

In this work, we have systematically studied ap-
proaches to key steps of active learning for tack-
ling a rare-class modeling using a modern large
language-modeling approach. While transformer-
based systems have enabled greater accuracies with
fewer training examples, data acquisition obstacles
still persist for rare-class tasks – when the class la-
bel is very infrequent (e.g., < 5% of samples). We
examined pool-based active annotation and learn-
ing in a real-world, rare class, natural language
setting by exploring five common acquisition strate-
gies with two different model update approaches.
We found that a relatively simple acquisition using
the probability of rare class for a model could lead
to significant improvement in the rare class samples.
We also qualitatively analyzed the data samples ex-
tracted from each data acquisition strategy by using
subjective scoring and timing the annotators, find-
ing PRC to be the most difficult to annotate, while
also remaining the best method to improve rare
class samples and model performance. Our final
dataset of 9,589 examples (Big train + dev + test)
is made available along with an implementation of
the PRC method and our state-of-the-art model for
cognitive dissonance detection.

7 Limitations

We use RoBERTa-base models trained on a single
12GB memory GPU (we used a NVIDIA Titan
XP graphics card) for our experiments. Obtaining
annotations for cognitive dissonance are limited
by the availability of annotators and is not easily
scalable in crowdsourcing platforms due to the re-
quired training and expertise in identifying disso-
nance. Due to this limitation, only two iterations
of the AL loop for each setting were feasible for
experiments. The transfer learning experiments in
this paper were limited to two similar tasks, but
there might be other tasks that could further im-
prove or exceed the zero-shot performance of the
models to cold start the active learning.

We focus on fine-tuning and active learning se-
lection strategies to improve performance of rare-
class classification for a specific task: dissonance
detection across discourse units. Therefore, fur-

ther work would be necessary to determine if the
findings extend to other tasks. Additionally, the
results may be different for other languages or time
intervals of data collection. The performance of
the neural parser on splitting tweets into discourse
units can produce parses that are imperfect but the
annotators and our systems worked off its output
regardless to keep the process consistent. An im-
proved discourse parser may also lead to improved
annotator agreement and/or classifier accuracy. The
dataset that we release from this paper, which con-
tains labels of expressions of some cognitive states,
was constructed using criteria that may not be fully
objective.

8 Ethics Statement

The dataset for annotation was created from pub-
lic social media posts with all usernames, phone
numbers, addresses, and URLs removed. The re-
search was approved by an academic institutional
ethics review board. All of our work was restricted
to document-level information; no user-level in-
formation was used. According to Twitter User
Agreement, no further user content is required to
use the publicly available data.

The detection of dissonance has many beneficial
applications such as understanding belief trends
and study of mental health from consenting indi-
viduals. However, it also could be used toward
manipulative goals via targeted messaging to in-
fluence beliefs potential without users’ awareness
of such goals, a use-case that this work does not
intend. Further, while we hope such models could
be used to help better understand and assess mental
health, clinical evaluations would need to be con-
ducted before our models are integrated into any
mental health practice.
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