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Abstract

Intelligent systems that aim at mastering lan-
guage as humans do must deal with its seman-
tic underspecification, namely, the possibility
for a linguistic signal to convey only part of
the information needed for communication to
succeed. Consider the usages of the pronoun
they, which can leave the gender and number
of its referent(s) underspecified. Semantic un-
derspecification is not a bug but a crucial lan-
guage feature that boosts its storage and pro-
cessing efficiency. Indeed, human speakers can
quickly and effortlessly integrate semantically-
underspecified linguistic signals with a wide
range of non-linguistic information, e.g., the
multimodal context, social or cultural conven-
tions, and shared knowledge. Standard NLP
models have, in principle, no or limited access
to such extra information, while multimodal
systems grounding language into other modal-
ities, such as vision, are naturally equipped to
account for this phenomenon. However, we
show that they struggle with it, which could
negatively affect their performance and lead to
harmful consequences when used for applica-
tions. In this position paper, we argue that our
community should be aware of semantic un-
derspecification if it aims to develop language
technology that can successfully interact with
human users. We discuss some applications
where mastering it is crucial and outline a few
directions toward achieving this goal.

1 Introduction

They put the flowers there. Speakers of a language
hear sentences like this every day and have no trou-
ble understanding what they mean—and what mes-
sage they convey. This is because, in a normal state
of affairs, they can count on a wide range of in-
formation from the surrounding context, personal
knowledge and experience, social or cultural con-
ventions, and so on. Upon hearing this sentence,
for example, they would know that flowers go into
vases, look in the direction where their interlocutor

nodded their chin, see a vase with tulips on the win-
dowsill, and infer that this is where someone put the
flowers. Every time listeners need to count on extra,
non-linguistic information to understand a linguis-
tic signal, like in this example, it is because the
language used is semantically underspecified (Fer-
reira, 2008; Frisson, 2009; Harris, 2020b). In the
example above, the locative adverb there leaves
underspecified a location—where the flowers were
put—which would instead be explicitly provided
in the semantically more specified sentence They
put the flowers in the light blue vase on the win-
dowsill at the end of the hallway. According to
linguists, indeed, adverbs of place (here, there) are
typical examples of semantically underspecified
words, as well as adverbs of time (now, today),
demonstratives (this, that), quantifiers (few, many),
tensed expressions, and some usages of personal
pronouns (Lappin, 2000; Harris, 2020b).

The reason why semantic underspecification is
so widespread has to do with language efficiency,
which is a trade-off between informativeness and
conciseness (Zipf, 1949; Goldberg and Ferreira,
2022). Underspecified words can be used in many
communicative occasions with varying meanings
and intentions (Harris, 2020b), which prevents
speakers from fully articulating every nuance of
meaning every time they talk (Piantadosi et al.,
2012). Indeed, planning and producing utterances—
but also speech (see Levinson, 2000)—is cogni-
tively expensive (Trott and Bergen, 2022). The use
of underspecified language, at a first sight, seems to
go against the view that language is a cooperative
system (Grice, 1975; Tomasello, 2005) and can in-
deed explain cases where communication appears
to be egocentric rather than cooperative (Keysar,
2007). However, a wealth of studies has shown
that humans are extremely good at making infer-
ences (Grice, 1969; Sedivy et al., 1999) and that
this ability is cognitively cheaper than speaker ar-
ticulation, which is rather demanding and time-
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consuming (Levinson, 2000). Upon hearing a se-
mantically underspecified sentence, human speak-
ers can quickly and effortlessly integrate linguistic
and non-linguistic information (Harris, 2020b). In
this light, Levinson (2000) proposed that seman-
tic underspecification gives rise to processing effi-
ciency besides boosting storage efficiency.

Semantic underspecification allows our limited
repertoire of symbols to be used in many contexts
and with different intentions without compromis-
ing its communicative effectiveness. For example,
we can use the pronoun they to omit a person’s gen-
der or refer to a group of friends; the locative here
to refer to a free table at a café or the institution you
work for. Semantic underspecification is not a bug
but a crucial feature of language that is ubiquitous
in human communication (Harris, 2020a). As such,
any intelligent system that aims at mastering lan-
guage as humans do must be able to properly deal
with it. This is particularly the case for models of
natural language understanding and generation that
have access to non-linguistic information (Bender
and Koller, 2020; Bisk et al., 2020), e.g., models
integrating language and vision that account for the
multimodality of language (Harnad, 1990). These
models must be able to understand and generate
sentences like They put the flowers there, provided
that a relevant visual context is present and there
is a clear communicative goal. This is a manda-
tory requirement if we want to use these systems
to model real communicative scenarios or embed
them in applications that interact with human users.

In this position paper, we argue that semantic un-
derspecification should be high on the NLP commu-
nity agenda, particularly within approaches com-
bining language and vision. We report that SotA
multimodal NLP models struggle with it, and ad-
vocate a comprehensive, thorough investigation of
the phenomenon along several research directions
and concrete steps. Mastering semantic underspec-
ification is a long-term goal that implies shifting
the paradigm to a scenario where models use lan-
guage as humans do, that is, with a communicative
goal. In line with what was argued elsewhere (Bisk
et al., 2020; Giulianelli, 2022; Fried et al., 2022),
we believe the time is ripe for such a change.

2 How Do Multimodal Models Deal with
Semantic Underspecification?

The field of multimodal or visually grounded NLP
is currently dominated by pre-trained multimodal

Transformers. Since their introduction, models like
CLIP (Radford et al., 2021), LXMERT (Tan and
Bansal, 2019), VisualBERT (Li et al., 2019), ViL-
BERT (Lu et al., 2019), VL-BERT (Su et al., 2019),
UniT (Hu and Singh, 2021), VILLA (Gan et al.,
2020), UNITER (Chen et al., 2020), VinVL (Zhang
et al., 2021), ViLT (Kim et al., 2021), and
mPLUG (Li et al., 2022), inter alia, have rapidly
become the new state-of-the-art in virtually ev-
ery language and vision task. Among other tasks,
these models achieve unprecedented performance
in describing an image in natural language (Lin
et al., 2014), finding the best image for a given
language query (Plummer et al., 2015), answer-
ing fine-grained questions about the content of an
image (Antol et al., 2015; Krishna et al., 2017;
Hudson and Manning, 2019), reasoning over ob-
jects and object relations (Johnson et al., 2017;
Suhr et al., 2019), and entertaining a visually-
grounded dialogue by asking and answering ques-
tions (De Vries et al., 2017; Das et al., 2017).

These models differ from each other in sev-
eral dimensions. For example, they either con-
catenate and jointly process the visual and tex-
tual embeddings (single-stream models), or pro-
cess the two modalities by means of separate en-
coders with an optional cross-modal fusion (dual-
stream models); or, they use visual features ex-
tracted with either CNN-based (e.g., region fea-
tures from Faster R-CNN; Ren et al., 2015) or
Transformer-based (e.g., image features from Vi-
sion Transformer, ViT; Dosovitskiy et al., 2020) im-
age encoders. However, they share both the same
underlying architecture, which is based on Trans-
formers, and training regime, which leverages a
massive amount of multimodal data and a few com-
mon learning objectives. One of the most popular
learning objectives is Image-Text Matching (ITM),
which maximizes the similarity between an image
and a language fragment that is well aligned with it.
As a result of this training regime, these models are
impressively good at judging whether a sentence is
a good/bad (true/false) description of the content
of an image. This is particularly the case for CLIP,
which is optimized for the task and can almost
perfectly spot word-level inconsistencies between
an image and a sentence, as the ones included in
the FOIL dataset by Shekhar et al. (2017) (results
reported in Parcalabescu et al., 2022).

Given this impressive performance, it is reason-
able to expect that these models are robust to se-
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mantically underspecified language. Describing an
image, asking a question, or entertaining a conver-
sation about it are all communicative scenarios that
admit a varying degree of semantic underspecifi-
cation. For example, the question What are they
doing? referred to a visual context with people
playing an unusual sport is perfectly acceptable—
and indeed likely to be asked; or, the sentence A
person is typing on their laptop to describe an office
environment is not only a very good description
of that context but perhaps even a desirable one.
Therefore, mastering semantically underspecified
language is a requisite for any multimodal NLP
model which aims at both genuinely solving these
tasks and being used for user-facing applications.

2.1 Proofs of Concept

To scratch the surface of the problem, we carry out
two Proofs of Concept (hence, PoCs) using image
descriptions and the CLIP model. When talking
about a visual context, speakers of a language can
convey the same message with varying levels of
semantic specification. For example, they can de-
scribe someone waiting for the bus by referring to
them as an elderly lady, a woman, a person, or
they. Similarly, they can mention a location, i.e.,
the bus stop, or use the locatives here or there; an
object, i.e., the bus, or use the demonstratives this
or that; and so on. This is possible because the
visual context provides enough information for the
addressee to understand the message, even when it
is extremely semantically underspecified.

Almost by definition, standard image descrip-
tions as those in COCO (Lin et al., 2014) are se-
mantically overspecified. Indeed, they are meant to
serve as a natural language ‘translation’ of the con-
tent of an image, to make it available to someone
who does not have access to the image (for a dis-
cussion on this point, see, e.g., Kreiss et al., 2022b).
As such, these descriptions fully specify a wide
range of semantic aspects that would be reasonably
left underspecified if the visual context was avail-
able to both interlocutors. As mentioned above,
CLIP is extremely good at assessing whether a
description is good for an image. As such, it is
reasonable to expect that the model should not be
affected by the degree of semantic specification
of the description, provided that it is valid for the
image. To illustrate, a model should similarly score
the descriptions A woman waiting for the bus and A
person waiting for the bus in relation to the visual

context described above. Moreover, a semantically
valid underspecified description must always be
better than an unrelated, overspecified description.

In the two PoCs below, we explore these two
hypotheses. Note that we do so for illustrative
purposes, highlighting general trends that can be
useful for further, more thorough research. More-
over, it is worth stressing that, while we employ
CLIP due to its effectiveness and accessibility, the
point we make is more general in scope than fo-
cused on this specific model. The point is that
models should not be affected by semantic under-
specification when assessing the validity or ap-
plicability of an image description. Concretely,
we use 100 images and corresponding descrip-
tions (495 in total) from the 2014 train partition
of COCO. Data and code available at: https:
//github.com/sandropezzelle/sunglass

Are Underspecified Descriptions as Good as
Overspecified Ones? In this PoC, we are inter-
ested to check whether CLIP is robust to seman-
tic underspecification. The expectation is that the
model should assign the same or a similar align-
ment score to image descriptions with a varying
level of semantic specification, provided that these
descriptions are semantically correct for the image.

We compute CLIPScore for each of the 495
⟨image, description⟩ pairs in our sample and se-
lect the 100 with the highest score. We refer to
these 100 descriptions as Original. We then cre-
ate up to 6 underspecified versions of each descrip-
tion in Original by manually perturbing their text
to account for various underspecification phenom-
ena. Such an annotation task was performed by a
single annotator, the author of this paper, with a
background in formal and computational linguis-
tics. Perturbations are carried out only where pos-
sible (thus, not all descriptions have all 6 versions),
without altering the grammatical structure of the
sentence. The semantic underspecification phenom-
ena we consider are illustrated in the example in
Figure 1 and described below:

• Quantity: We replace numbers (e.g., two)
and quantity expressions (e.g., a couple) with
the quantifier some

• Gender: We replace gender-marked (e.g.,
woman) and age-marked (e.g., children)
nouns with the hypernyms person or people

• Gender+Number: We replace any NPs in sub-
ject position, either singular or plural, with the
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TTT TYPE

Original

Quantity
Gender
Gender+Number
Location
Object
Full

DESCRIPTION

The woman is standing above the two packed suitcases.

The woman is standing above some packed suitcases.
The person is standing above the two packed suitcases.
They are standing above the two packed suitcases.
The woman is standing here.
The woman is standing above this.
They are doing something here.

SCORE

0.8565

0.8275
0.7608
0.7435
0.5537
0.4931
0.4646

Figure 1: For one image, COCO_train2014_000000394151.jpg, we report one original description from COCO
and the six corresponding semantically underspecified descriptions, along with their CLIPScore.

pronoun they, and harmonize verb agreement

• Location: We replace PPs introduced by a
preposition of place (e.g., at) with the loca-
tives here or there

• Object: We replace NPs, typically in object
position, with the demonstratives this or that

• Full: We replace the entire sentence with
the fully underspecified one They are doing
something here.

We compute CLIPScore for each underspecified
description. In Figure 2, we report the distribu-
tion of these scores against each phenomenon. As
can be seen, underspecified descriptions achieve
(much) lower scores compared to Original ones.
For example, a perturbation as harmless as replac-
ing the subject with the pronoun they leads to a
∼16-point average decrease in CLIPScore, while
the gap increases to ∼40 points when considering
Original against the fully underspecified descrip-
tion They are doing something here. All the scores
for one specific example are reported in Figure 1.

These observations are surprising and go against
our expectations that underspecified descriptions, if
semantically valid, should be considered as good as
overspecified ones. Indeed, why should a sentence
containing a quantifier, a pronoun, or a locative be
considered a poor description of a visual context?
One possible explanation is that models like CLIP
are sensitive to the amount of detail provided by
an image description. More specifically, the more
words there are in the sentence with a clear and
unique visual referent, the more the description is
deemed ‘aligned’ to an image. Using the terminol-
ogy introduced by Kasai et al. (2022) to evaluate
image captioning metrics, the model would be good
at capturing an image description’s recall, i.e., the
extent to which the salient objects in an image are
covered in it; on the other hand, it would poorly
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Figure 2: Violin plot reporting the distribution of CLIP-
Score values per image description type. The dot and
bars in each violin stand for the mean and standard de-
viation, respectively. The mean of each violin is also
given at the bottom of the plot, while the integer at the
top reports the sample size. Best viewed in color.

capture a description’s precision, i.e., the degree
to which it is precise or valid for a given image.1

If this was the case, models like CLIP would end
up always considering underspecified descriptions
as worse than overspecified ones, which naturally
raises questions about their robustness and applica-
bility to a possibly wide range of scenarios.

Are Underspecified Descriptions Better than Un-
related Ones? Even if CLIP was sensitive to the
amount of detail provided by an image description
(the more, the better), a valid underspecified de-
scription should always be deemed more aligned
than an unrelated, overspecified one. That is, even
a highly underspecified sentence like They are do-
ing something here—if semantically valid for the
image, which is the case in our small sample—
should always be preferred over a description that
is fully unrelated to the image. To test this hy-
pothesis, we experiment with this Full description,

1We thank the anonymous reviewer who referred us to this
work.
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Full They are doing something here.

r1 A woman in a white dress is sitting with her cell phone.
r2 A girl with long brown hair with streaks of red lays

on a bed and looks at an open laptop computer.
r3 A lady holding a bottle of ketchup and a dog in a hot

dog bun costume.
r4 An infant sits next to a stuffed teddy bear toy.
r5 Woman sitting on a bench holding a hotdog in her hand
r6 Two small children playing with their refrigerator

magnets.

Figure 3: For COCO_train2014_000000205931.jpg,
our fully underspecified image description achieves a
lower CLIPScore than six randomly picked overspeci-
fied descriptions, although these are clearly wrong.

and, for each image, we test it against 10 randomly
sampled Original descriptions of other images.
Surprisingly, for 82 images out of 100, at least one
random caption achieves a higher CLIPScore than
Full. While the actual numbers may depend on the
number and the type of random descriptions being
sampled, some qualitative observations are helpful
to highlight the behavior of the model. Consider, as
an example, the case reported in Figure 3, where 6
out of 10 unrelated descriptions are deemed better
than our fully underspecified one. By looking at
these randomly picked sentences, it is apparent that
none of them is a valid description of the image. At
the same time, the model prefers them over a valid,
though highly underspecified, description.

There are various possible explanations for this
behavior. For example, the model could be ‘daz-
zled’ by the presence of words that have a grounded
referent in the image (e.g., woman, girl, or lady in
some of the unrelated descriptions), that could lead
it to assign some similarity even when the sen-
tence is completely out of place. Conversely, the
absence of words, and particularly nouns, with a
clear grounded referent in the FULL description
would be considered by the model as an indica-
tor of misalignment. This could be a result of the
model training data and learning objective. On

the one hand, the ⟨image, text⟩ pairs scraped from
the web may be poorly representative of language
uses in real communicative contexts, where seman-
tic underspecification is ubiquitous. On the other
hand, the contrastive learning objective being em-
ployed may be too aggressive with texts that do
not conform to those typically seen in training. In
both cases, the similarity assigned to an underspec-
ified description would be lower than the (possibly
small) similarity assigned to an unrelated sentence
with one or a few matching elements.

Moving forward Taken together, the results of
the two PoCs show that CLIP struggles with se-
mantically underspecified language. This limita-
tion must be taken into consideration if we want to
use this and similar systems to model real commu-
nicative scenarios or use them in applications that
interact with human users—which is not the case
for most of the tasks these models are trained and
tested on. Indeed, these models may fail to retrieve
an image if the language query used does not con-
form to the standard type of descriptions seen in
training. Or, they could misunderstand inclusive
uses of certain pronouns (e.g., they), and exhibit
unwanted overspecification biases when producing
an image description or referring utterance. We
argue that our community, if it aims at developing
language technology that can successfully and ef-
ficiently communicate with human users, should
be aware of semantic underspecification and take
steps toward making our models master it properly.

In the next section, we discuss how this is rel-
evant to a range of studies exploring multimodal
tasks in communicative settings.

3 Communicative Approaches to
Multimodal Tasks

Mastering semantic underspecification is relevant
to a wide range of studies that take a communicative
or pragmatic approach to multimodal tasks. Below,
we focus on a select sample of them2 and discuss
how they might benefit from a full mastery of the
phenomenon investigated in the paper.

Image captioning with a communicative goal
Standard image captioning3 consists in generating

2For a recent and exhaustive survey of pragmatic work in
multimodal NLP, see Fried et al. (2022).

3Note that, throughout this paper, we consistently avoid
the term captions and instead use descriptions. We believe this
terminology better reflects the fact that IC aims at generating
faithful descriptions—and not captions—of images (see also
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a description that is as close as possible to the con-
tent of the image. Typically, the task is not tied to
a real communicative goal: image descriptions are
provided by crowdworkers who are asked to men-
tion all the important aspects of an image (Hodosh
et al., 2013; Lin et al., 2014; Young et al., 2014),4

and models are trained and evaluated to closely ap-
proximate those descriptions (Bernardi et al., 2016).
To make the task more pragmatically valid, some
work proposed a discriminative version of it where
models need to generate a description for an im-
age that is pragmatically informative, i.e., that is
good for the image in the context of other distrac-
tor images (Andreas and Klein, 2016; Vedantam
et al., 2017; Cohn-Gordon et al., 2018; Nie et al.,
2020). The recent Concadia dataset (Kreiss et al.,
2022b), in contrast, considers images in isolation
and focuses on the communication needs of image
captioning. In particular, it distinguishes between
descriptions, useful to describe an image to some-
one who does not have access to the image, and
captions, that instead complement the information
of an image that is available to both interlocutors.5

Within both lines of research, it is to be expected
that underspecified language comes into play. For
example, neither the gender nor the number of peo-
ple in an image may be needed to pragmatically
distinguish it from other images; or, a caption com-
plementing an image (and an accompanying text)
may leave underspecified much of the information
that one can get from elsewhere.6 As such, these
tasks would greatly benefit from having models op-
portunely dealing with this language phenomenon.
In support of this—and in line with the results of
our PoCs above—recent work (Kreiss et al., 2022a)
showed that SotA models like CLIP are unable
to account for the degree of usefulness of an im-
age description, but only for its alignment. More
generally, focusing on semantic underspecification
of visually grounded language would be relevant
to studies investigating the range of relations that
texts entertain with images, including communica-
tive goals and information needs (Kruk et al., 2019;
Alikhani et al., 2020). Moreover, it would inform

a similar argument in Kreiss et al., 2022b).
4One exception is represented by VizWizCap (Gurari et al.,

2020), a dataset of image descriptions collected with the ex-
plicit aim to be informative to visually impaired people.

5Captions of images in the context of news articles are a
prototypical example (Hollink et al., 2016; Biten et al., 2019).

6It is worth mentioning that also the visual features of the
scene to be described could play a non-negligible role in this
sense, as recently shown by Berger et al. (2023).

the specular task of image-to-text generation, as
recently claimed by Hutchinson et al. (2022).

Goal-oriented visual question answering Stan-
dard visual question answering datasets (An-
tol et al., 2015) have been collected by asking
crowdworkers to provide questions and answers
for research purposes. In contrast, the VizWiz
dataset (Gurari et al., 2018) includes questions that
were asked by visually-impaired people to obtain
information about visual scenes. As such, these
questions are motivated by a real communicative
goal and exhibit very different linguistic features
compared to the questions and answers in standard
datasets. For example, the questions are more am-
biguous or underspecified, and the answers by the
respondents are more diverse and subjective (Yang
et al., 2018; Bhattacharya et al., 2019; Jolly et al.,
2021). We propose that models that are equipped
for semantically underspecified language should
both better understand the question in relation to an
image (something that current SotA models strug-
gle with, see Chen et al., 2022) and better leverage
the diversity and sparseness of the answers.

Similarly, these models may better integrate the
complementary information conveyed by language
and vision in, e.g., BD2BB (Pezzelle et al., 2020),
a version of the visual question answering task
where the correct answer (an action) results from
the combination of a context (an image) and a
fully ungrounded intention (a text); or, in other
datasets that require abductive reasoning (Hessel
et al., 2022). Finally, models that master semantic
underspecification are expected to also deal better
with related phenomena found in visual question
answering, such as ambiguity and vagueness, high-
lighted in Bernardi and Pezzelle (2021).

Object naming and referring expressions Mul-
timodal models should be robust to variation in
object naming. For example, they should not con-
sider as an error the use of the noun artisan to refer
to the person in Figure 3, even if another noun, e.g.,
person, was perhaps used more frequently. At the
same time, the degree of semantic specification of a
naming expression should be accounted for, which
would be needed to replicate patterns on human
naming variation, as the ones reported by Silberer
et al. (2020) and Gualdoni et al. (2022).

Naming variation is also observed in more com-
plex visually grounded reference games, where the
task is to produce a referring expression that is
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pragmatically informative, i.e., that allows a lis-
tener to pick the target object (image). This task is
the ideal benchmark for testing how various prag-
matic frameworks, such as the Rational Speech
Acts (RSA; Frank and Goodman, 2012; Goodman
and Frank, 2016), can model the reference to, e.g.,
colors (Monroe et al., 2017) in artificial settings.

Turning to naturalistic scenarios, recent work
used CLIP to quantify the properties of human
referring expressions. The model was shown to
capture the degree of discriminativeness of a re-
ferring expression over a set of images, though it
assigned lower alignment scores (computed with-
out taking into account the broader visual context)
to progressively more compact utterances (Takmaz
et al., 2022). Our PoCs above showed that this
model conflates the semantic validity of a descrip-
tion with its degree of over or underspecification.
However, distinguishing between the two is crucial,
e.g., to assess that the expressions the guy with the
tattoos and the tattoo guy are semantically equally
valid, with the latter being just more underspecified
(the semantic relation tying the constituents of the
compound has to be inferred from the image). This
can lead to models that are capable of reproducing
human language patterns in certain communicative
scenarios (e.g., the shortening and compression of
referring utterances over an interaction, see Takmaz
et al., 2020) without explicit supervision.

Visually-grounded goal-oriented dialogue All
the abilities mentioned above are relevant to the
development of dialogue systems that can enter-
tain a goal-oriented conversation with human users.
Examples of visually grounded goal-oriented di-
alogue encompass reference tasks where either
yes/no questions (De Vries et al., 2017) or free-
form, open-ended dialogue utterances (Udagawa
and Aizawa, 2019; Ilinykh et al., 2019; Haber et al.,
2019) are allowed to achieve a common goal, e.g.,
figuring out what object is being talked about or
is in common between the two players. Most of
these studies use datasets of interactions between
human speakers to train systems that can learn to
have a successful dialogue while reproducing sim-
ilar linguistic and pragmatic patterns. In a few
notable exceptions (Liu et al., 2018; Hawkins et al.,
2020), these systems entertain an actual interac-
tion with human users and go through a process of
continual learning that leverages that online data.
Given the communicative nature of the task, seman-
tic underspecification is likely to be an important

feature of the language used. In particular, it ap-
pears to deserve special attention when the goals
involve giving and receiving visually grounded in-
structions (here, it is indeed one of the dimensions
considered when analyzing models’ results; see
Kojima et al., 2021). Once again, models must be
capable of dealing with semantic underspecifica-
tion to communicate successfully and efficiently.

In the next section, we outline a few research
directions and provide examples of concrete steps
that can guide work aimed at achieving this goal.

4 Research Directions

4.1 Definitions and Operationalizations

As discussed in Section 1, semantic underspecifi-
cation can be generally defined as the lack, in a
linguistic signal, of part of the semantic informa-
tion required to understand the message, which is
typically obtained from other linguistic and non-
linguistic sources. To tackle the problem at a com-
putational level, it is important to formally define
and operationalize the phenomenon. For example,
by identifying which linguistic phenomena, words,
or classes of words are considered by the linguis-
tic theory as instances of semantic underspecifi-
cation and under which circumstances (top-down
approach). Or, by means of a data-driven mea-
sure, such as the applicability of a text to a more or
less large number of visual contexts (bottom-up ap-
proach). In either case, computational methods can
be used to refine or validate such definition (this is
the approach used, for example, by a recent work
testing the Uniform Information Density theory
using language models; Giulianelli et al., 2021).
Moreover, computational methods may be used to
distinguish between instances of underspecification
that are deliberate (e.g., using the pronoun they to
refer to an individual) from those that may depend
on contextual or situational aspects (e.g., not hav-
ing access to some information or not mentioning
something that is socially and culturally obvious).

4.2 Datasets and Annotations

Novel datasets or ad hoc annotations of existing
resources can be collected to study underspecified
language. These datasets can encompass the stan-
dard multimodal tasks (image captioning, visual
question answering, etc.) and therefore be used
as evaluation benchmarks to test existing models;
or, new tasks can be proposed, including the pre-
diction of an underspecification score, the para-
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phrasing or explanation of an underspecifed sen-
tence (or, vice versa, the de-overspecification of a
sentence), and so on. Moreover, annotations may
be collected at the sample and dataset level to in-
vestigate, for example, whether overspecified and
underspecified image descriptions or referring ut-
terances are equally good, informative, or inclu-
sive7 according to human speakers, how many and
which non-linguistic cues are needed to understand
them, which visual and communicative contexts
elicit more underspecified language, and so on.

4.3 Model Training and Testing
Operationalizing and annotating semantic under-
specification can be useful, in turn, for training and
testing purposes. As for the former, sampling cases
from a dataset with a varying degree of semantic un-
derspecification can be helpful for training or fine-
tuning models to make them more robust to any
language. As for the latter, benchmarking a model
with underspecified language can shed light on its
generalization abilities and applicability to truly
communicative scenarios. Moreover, a measure
of a sample’s semantic underspecification could be
used as an additional learning signal for the training
of foundational, task-agnostic multimodal models.
Indeed, such a measure may indicate the extent
to which language and vision convey redundant
or complementary information, the relative impor-
tance of each modality, and the relation between
the correctness and self-sufficiency of a sample. Fi-
nally, it may be interesting to leverage the degree
of semantic underspecification as a dimension to
which NLG models can adapt, e.g., to generate
text that is more or less specified depending on the
context, the interlocutor’s needs or style, and the
communicative goal of the linguistic interaction.

5 Conclusion

In this position paper, we argued that the NLP com-
munity must deal with semantic underspecifica-
tion, that is, the possibility for a linguistic signal
to convey only part of the information needed to
understand a message. This is a ubiquitous phe-
nomenon in human communication, that speakers
deal with by quickly and effortlessly integrating
non-linguistic information, e.g., from the surround-
ing visual context. We argued that research in mul-
timodal NLP combining language and vision is

7These directions may also be relevant to the line of work
exploring how to minimize biases and misrepresentations
when describing images (e.g., Bennett et al., 2021).

ready to take on this challenge, given that SotA
models that achieve unprecedented performance
on a range of downstream tasks (image captioning,
visual question answering, etc.) appear to strug-
gle with it. We indicated several directions and
concrete steps toward achieving this goal and dis-
cussed tasks and applications that would benefit
from a full mastery of semantic underspecification.

On a technical level, our paper highlights the
need to improve SotA models by making them ro-
bust to scenarios that may be different from those
seen in training. In our case, CLIP suffers with
sentences that resemble the language used in real
communicative contexts, which poses a problem
if we were to use it for modeling communica-
tive tasks or embed it in user-facing applications.
This general weakness of SotA models has been
recently illustrated by Thrush et al. (2022). Us-
ing WinoGround, a dataset of carefully designed
⟨image, description⟩ pairs testing compositionality
abilities, the authors reported chance-level perfor-
mance for all the Transformer-based multimodal
models they tested—including CLIP. A careful
analysis of the samples by Diwan et al. (2022) re-
vealed that the difficulties of the dataset go beyond
dealing with compositionality, and include ambigu-
ity aspects, reasoning abilities, and so on. In any
case, these findings are informative of the flaws of
the models and provide useful indications on which
directions to take for improving them.

On a theoretical level, the ideas presented in our
paper are consonant with a recent line of thought
that advocates approaches that are aware of com-
municative and pragmatic aspects in language un-
derstanding and generation (Andreas, 2022; Fried
et al., 2022; Giulianelli, 2022; Schlangen, 2022).
We believe this is an exciting direction, and support
a collaborative effort aimed at developing systems
that can use language with a communicative goal.

Limitations

Semantic underspecification has been extensively
studied in semantics, pragmatics, psycholinguistics,
communication sciences, and cognitive sciences.
In this position paper, we review this literature only
superficially, although we are aware that a gener-
alized and exhaustive understanding of the phe-
nomenon necessarily requires knowledge of this
previous work. We encourage the scholars working
on this topic to embrace its complexity and depth.

The paper focuses on approaches, tasks, and
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models within multimodal NLP. As such, it almost
completely neglects a discussion of semantic un-
derspecification within text-only NLP. However,
we are aware of the growing interest in the com-
munity at large for frameworks that propose and
evaluate models in pragmatic or communicative
contexts (Ruis et al., 2022; Andreas, 2022; Hu et al.,
2023), and that some of the directions and steps that
we propose could apply to text-only models (see,
e.g., the recent, relevant work on large language
models and ambiguity by Liu et al., 2023).

The two proofs of concept we report in the paper
consider a rather narrow set of semantic underspec-
ification phenomena, which may not be entirely
representative. Moreover, the manual annotation
that we perform, though consistent, does not ad-
here to any strict guidelines, and borderline cases
are entrusted to the linguistic competence of the an-
notator. Finally, and more in general, these proofs
of concepts are mostly intended to serve as a basis
for the discussion and as an indication of patterns
and trends. Therefore, future work should further
and more thoroughly investigate this issue.
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