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Abstract

Over the past few years, we’ve witnessed an
enormous interest in stock price movement pre-
diction using AI techniques. In recent literature,
auxiliary data has been used to improve pre-
diction accuracy, such as textual news. When
predicting a particular stock, we assume that in-
formation from other stocks should also be uti-
lized as auxiliary data to enhance performance.
In this paper, we propose the Causality-guided
Multi-memory Interaction Network (CMIN),
a novel end-to-end deep neural network for
stock movement prediction which, for the first
time, models the multi-modality between fi-
nancial text data and causality-enhanced stock
correlations to achieve higher prediction ac-
curacy. CMIN transforms the basic attention
mechanism into Causal Attention by calcu-
lating transfer entropy between multivariate
stocks in order to avoid attention on spurious
correlations. Furthermore, we introduce a fu-
sion mechanism to model the multi-directional
interactions through which CMIN learns not
only the self-influence but also the interactive
influence in information flows representing the
interrelationship between text and stock corre-
lations. The effectiveness of the proposed ap-
proach is demonstrated by experiments on three
real-world datasets collected from the U.S. and
Chinese markets, where CMIN outperforms ex-
isting models to establish a new state-of-the-art
prediction accuracy.

1 Introduction

Financial services, known for their competitive-
ness, have always been at the forefront of adopting
data science techniques to drive investment deci-
sions. Quantitative trading, a specific field within
it, has drawn immense interest from both academia
and industry over the last few decades. With the
rapid advancements in deep learning recently, com-
puter scientists and quantitative researchers have
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†Corresponding author: Rui Yan (ruiyan@ruc.edu.cn).

joined forces to apply AI techniques to tackle the
challenges within this domain.

Among various tasks, one of the most promi-
nent is stock price movement prediction (Bhard-
waj, 2021). The reason for its popularity is self-
evident: once a model is able to predict future
movement with considerable accuracy, numerous
trading strategies can be easily built around it.

Recent studies have shown that deep neural net-
works are ideal candidates for such prediction mod-
els (Yoo et al., 2021; Gunduz, 2021). Supporters
of the efficient-market hypothesis (EMH), which
posits that asset prices reflect all available informa-
tion, tackle the task with price information alone
(Zhang et al., 2017; Stoean et al., 2019; Sezer and
Özbayoglu, 2020). However, an alternative per-
spective suggests that additional insights can be
gained from analyzing news articles and social me-
dia posts, which may hold valuable clues about the
future (Hu et al., 2018; Xu and Cohen, 2018; Wang
et al., 2019b; Tang et al., 2020).

Another intriguing approach analyzes the rela-
tionships between different stocks. Clearly positive
and negative correlations, or even non-correlations
can be immensely useful in constructing a diversi-
fied stock portfolio (Borodin et al., 2003). Several
studies even empirically demonstrate that exploit-
ing correlations can improve the accuracy of stock
price movement prediction (Long et al., 2020; Yoo
et al., 2021). However, their correlations are often
realized by acquiring industry sector and calculat-
ing correlation matrices or attention scores, which
are bidirectional and symmetrical, leading to ex-
cessive attention on spurious correlations. Due to
the lag problem widely existed between two time
series, we are more concerned about the dominance
of information flow between stocks, specifically,
the direction of causality.

Additionally, we have observed that the situation
can significantly change when incorporating text
information. Let’s consider two highly correlated
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companies (A and B) and there is promising news
specifically about company A. In such a scenario,
it’s fairly easy to infer that the current news might
still have a substantial impact on company B, de-
spite there being no direct connection between the
two companies on paper. However, it’s impossible
to reach this conclusion by just examining the news
about company A or the correlation between A and
B alone, which highlights the limitations of relying
solely on individual pieces of textual information
or traditional correlations between stocks.

Inspired by observations above, we propose the
Causality-guided Multi-memory Interaction Net-
work (CMIN), a novel end-to-end deep neural net-
work which captures both financial news as well as
the causality-enhanced correlations between stocks
for better stock price movement prediction.

To achieve this goal, CMIN incorporates two
key components: the Text Memory Network and
the Stock Correlation Memory Network. Both net-
works utilize a recurrent neural network with non-
linear combination of memory attentions to gen-
erate a global memory abstraction. And we in-
troduce a global causality matrix according to the
transfer entropy between stock price time series
to guide the abstraction process, forming a Causal
Attention mechanism to capture the asymmetric
correlations. By considering causality, CMIN goes
beyond traditional symmetric correlations and cap-
tures the true inter-dependencies between stocks.
Furthermore, we employ an attention-based fusion
mechanism between the two networks, introducing
multi-directional interactions through which CMIN
learns not only the self-influence within each net-
work but also the interactive influence between
them. It captures the interrelationship between tex-
tual information and correlations, enhancing the
overall predictive power of CMIN.

We further demonstrate the effectiveness of
CMIN with experiments conducted on 3 real-world
datasets collected from both the U.S. and Chinese
markets, where CMIN achieves state-of-the-art pre-
diction accuracy, surpassing existing models in
terms of performance.

To summarize, our main contributions are:

• Proposal of a causality-guided multi-memory
interaction network for stock movement pre-
diction which is to our best knowledge the first
attempt to simultaneously consider causality-
enhanced correlations and textual information
to achieve higher prediction accuracy;

• Introduction of the attention-based multi-
directional interactions, so that CMIN cap-
tures not only the self-influence of temporal
movements and textual information but also
the interactions between these two types of
information flows;

• Collection and release of two new datasets:
one for the U.S. market and another for
the Chinese market. Both datasets in-
clude comprehensive financial texts and
stock price time series data, which are
publicly available at https://github.com/
BigRoddy/CMIN-Dataset, facilitating fur-
ther research and benchmarking in the field.

2 Related Work

2.1 Stock Movement Prediction

In traditional trading practices, two main frame-
works are commonly used to make predictions on
future stock prices (Ferreira et al., 2021). The first
is fundamental analysis, which aims to assess the
intrinsic value of a stock by considering various fac-
tors related to it as a whole, such as financial state-
ments, industry trends and economic conditions.
The other is technical analysis, which operates un-
der the assumption that the market is efficient (i.e.,
the Efficient Market Hypothesis holds true) and fo-
cuses on analyzing only historical and current price
patterns in order to predict future movements.

Although both frameworks have been widely
adopted by top hedge funds and investment firms,
technical analysis has gained more popularity
among AI practitioners, many of whom focus on
employing long short-term memory networks and
other innovative architectures to model stock price
history alongside technical analysis indicators (Nel-
son et al., 2017; Zhang et al., 2017; Stoean et al.,
2019; Sezer and Özbayoglu, 2020). This is primar-
ily because processing a single stream of price data
is relatively simpler than analyzing and synthesiz-
ing a range of diverse data sources with varying
frequencies and characteristics.

2.2 Predicting with the Help of Text Data

The recent advancement of natural language pro-
cessing (NLP) techniques has opened up new pos-
sibilities for analyzing large volumes of text data in
the context of stock movement prediction. Many re-
searchers have recognized the potential value of in-
corporating news articles, analysis, commentaries
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and even social media posts (Xu and Cohen, 2018),
which are believed to provide valuable insights
about the future. Some studies focus solely on tex-
tual information. For example, (Hu et al., 2018)
leverages attention mechanism at multiple levels
within a deep structure to identify the most impor-
tant news articles and predict price trends. Others
adopt a two-step approach. First, they extract fea-
tures (e.g. investor sentiment) from financial texts.
Then they fuse these features with price informa-
tion to make predictions such as (Li et al., 2017)
and (Jin et al., 2020). This integration of text anal-
ysis with quantitative techniques holds promise for
enhancing the accuracy and effectiveness of stock
movement prediction models.

2.3 Exploiting the Relations between Stocks

Another important trading framework takes advan-
tage of the correlations between different stocks.
Portfolio selection, particularly pairs trading, is a
well-known and successful trading strategy that
exploits the correlated nature of stocks, whether
positive or negative. In fact, as early as (Borodin
et al., 2003) pointed out that stock correlations
based portfolio selection could beat any strategy
that relied on predicting trends or specific targets.

The incorporation of correlations in stock move-
ment prediction has gained attention in recent years,
drawing inspiration from several existing works.
For example, (Yoo et al., 2021) utilizes transformer
to learn dynamic correlations between stocks in
an end-to-end manner. (Long et al., 2020) em-
ploys knowledge graphs and graph embedding tech-
niques to model the relationships between stocks.
These studies have achieved admirable results, po-
tentially due to effective feature engineering how-
ever, because the direct benefit of stock correlations
in predicting future prices lacks fundamental logic.

In this paper, we propose constructing a single
model to handle both textual data and stock corre-
lations simultaneously, aiming to shed light on the
success of correlation-based approaches with the
help of financial texts. We also introduce a novel
causal attention mechanism to interpret the under-
lying logic behind stock correlations, leveraging
transfer entropy to provide insights. We further
model the multi-directional interactions between
texts and correlations so that we could uncover not
only relevant texts for prediction through correla-
tions, but also the hidden stock correlations through
texts. By integrating text data and stock correla-

tions within a unified model, we aim to provide a
comprehensive understanding of the relationship
between the two and discover valuable insights for
stock movement prediction.

3 Problem Formulation

This paper is dedicated to predict the price move-
ment of a target stock. To this end, we leverage
both the correlations between stocks and textual
information to make prediction.

Consider a target stock with numerical features
denoted as Ptarget ∈ Rk×d, where k represents the
number of time steps in the monitoring window
and d represents the dimension of price features,
such as the highest and the closing prices. The
prices of n other relevant stocks are denoted as:
P = {P1, P2, · · · , Pn} ∈ Rn×k×d.

Besides, we have financial documents associ-
ated with the target stock, which are represented
as M = {M1,M2, · · · ,Mk} ∈ Rk×l×w, where l
denotes the number of documents in a time step
and w is the maximum number of words in a doc-
ument. In cases where a specific stock has fewer
than l documents at a given time step, zero padding
values are added to align the lengths. Similarly,
if a document contains fewer than w words, zero
padding is applied to ensure uniform length across
all documents (Ang and Lim, 2022).

We formulate the task as a binary classification
problem whose goal is to predict the movement of
the target stock at the next time step, denoted as
ŷtarget. Here, ŷtarget = 1 indicates a rise in the price
while ŷtarget = 0 indicates a fall.

4 Proposed Method

4.1 Model Overview
Figure 1 presents an overview of the Causality-
guided Multi-Memory Interaction Network
(CMIN). It is consisted of three main modules: fea-
ture embedding module, multi-memory networks
and multi-directional interaction module.

(1) The feature embedding module includes two
encoders, one for embedding the textual informa-
tion and another for embedding the price time se-
ries. Additionally, a global causality matrix is intro-
duced to capture the asymmetric correlations using
transfer entropy, which then guides the calculation
of attention weights in the multi-memory networks.

(2) The multi-memory networks consist of the
Text Memory Network and Stock Correlation Mem-
ory Network, which are designed to select and re-
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Figure 1: The structure of Causality-guided Multi-Memory Interaction Network (CMIN), which includes two
encoders: Text Encoder and Price Encoder, a global causality matrix between stocks calculated by price history
(changing as the monitoring window slides) and two memory networks: Text Memory Network and Stock Correlation
Memory Network with multi-directional interactions between them.

tain the most relevant and influential information
(textual and correlational) for the target stock.

(3) The multi-directional interaction module fa-
cilitates the interaction between the textual and
correlational information. This interaction allows
the two types of information to reinforce each other
and leverage the advantages of different informa-
tion flows for better prediction performance, en-
hancing the predictive capabilities of the CMIN.

4.2 Feature Embedding

Self-attention mechanisms have proven to be effec-
tive in capturing long-term dependencies and mod-
eling complex sequential patterns, particularly in
the Transformer architecture (Vaswani et al., 2017).
Given the significance of historical information
in financial documents and stock prices for stock
price movement prediction, we employ attention
mechanisms to summarize this information.

4.2.1 Text Encoder
The Text Encoder focuses on processing the finan-
cial documents M to extract meaningful represen-
tations for stock movement prediction. We firstly
use a popular word representation tool Glove (Li
et al., 2018) to generate the word embedding ten-
sor Mword ∈ Rk×l×w×dw , where dw is the size of
word embeddings. Each word in the financial doc-
uments is represented as a dw-dimensional vector.

Then the word embeddings are passed through a
text embedding layer. Here we adopt the bidirec-
tional Gated Recurrent Unit (Bi-GRU) (Li et al.,
2022) to capture both preceding and succeeding
contexts within each document. The average of
the last hidden vectors is taken as the text embed-
dings Mtext ∈ Rk×l×dm , or equivalently Mtext ∈
Rs×dm , where s is the total number of documents
in the monitoring window.

After that, the text attention mechanism is ap-
plied to summarize all historical documents across
time steps. The text embedding of the last time
step Mtext,−1 ∈ Rl×dm , serves as the query matrix,
while the entire text embeddings Mtext ∈ Rs×dm

acts as both the key and value matrices. Soft scaled
dot-product attention is used to compute the atten-
tion weights, which are then applied to the text em-
bedding to obtain a representation Etext ∈ Rl×dm

enhanced by the history state attention:

Etext = softmax(
Mtext,−1MT

text√
dm

)Mtext. (1)

The resulting Etext is the textual embedding that
contains highly concentrated information from the
stock’s related texts. This embedding serves as a
summary of the historical text data and is used for
further processing in the multi-memory networks
and multi-directional interaction module of CMIN.
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4.2.2 Price Encoder
The Price Encoder is introduced to utilize multi-
variate features from historical prices and capture
their temporal interrelationships. Firstly we em-
ploy a feature mapping layer to project them into
a latent space of dimension dp, aiming to improve
the learning capacity (Yoo et al., 2021). For tar-
get stock price Ptarget ∈ Rk×d, the historical price
embeddings P̃target ∈ Rk×dp can be formulated as:

P̃target = ReLU(PtargetWt + bt), (2)

where Wt ∈ Rd×dp , bt ∈ Rdp are parameters.
Moreover, recognizing that historical patterns

can repeat themselves sometimes, we incorporate
a multi-head price attention layer to capture each
stock’s distinctive changing patterns. The price em-
bedding of the target stock at the last time step is
donated as P̃−1

target ∈ Rdp . Then we employ the
multi-head attention mechanism with the query
P̃−1

target and the key/value P̃target as follows:

vtarget = MultiheadAtt(P̃target, P̃−1
target) (3)

vtarget is a key vector that serves as the initial
hidden state for the two memory networks, playing
a crucial role in the final prediction. Similarly,
we process the remaining stocks and obtain the
correlational embedding Ecorr ∈ Rn×dp . Notably,
the shared parameters across all stocks ensure the
stability and generality of the extracted features
(Wang et al., 2019a).

4.2.3 Causality Matrix
When it comes to detecting causal relationships and
conducting predictive analysis, transfer entropy,
a non-linear generalization of Granger causality
(Seth, 2007), serves as a conceptually neat and
mathematically rigorous method. It has been con-
sidered as an important tool for causality analysis
and successfully applied in diverse domains includ-
ing financial markets (Sandoval Junior et al., 2015).

Transfer entropy is derived from Shannon En-
tropy: H = −∑N

i=1 pi log pi. In this context, con-
sidering the time series of a stock, we can partition
the possible values into different bins and calculate
the probabilities at each time step. Transfer entropy
from series X to another series Y can be defined as
the average amount of information contained in the
source X but not contained in Y’s past:

TEX→Y =H(Yfuture|Ypast)
−H(Yfuture|Xpast, Ypast)

(4)

Based on this principle, for each monitoring win-
dow, we calculate the transfer entropy between
all stocks using their historical closing prices and
generate a transfer entropy matrix, referred to as
the Causality Matrix C ∈ Rn×n, which illus-
trates the asymmetric flow of information from
one stock to another. Specifically, C[i, j] repre-
sents the transfer entropy from stock i to stock j,
and C[i, j] > C[j, i] indicates that stock i provides
more predictive information about the movement
of stock j than j to i. This Causality Matrix will
next serve as a guide for the memory networks,
enabling the identification of causal dependencies
between multivariate stocks.

4.3 Multi-memory Networks
We introduce a Text Memory Network and a Stock
Correlation Memory Network (Sukhbaatar et al.,
2015) to manage the textual and correlational in-
formation separately. They each maintain a con-
tinuous representation and update it iteratively us-
ing multiple computational steps (hops), ultimately
producing a global memory abstraction.

As shown in Figure 1, each layer of the memory
network comprises an attention unit and a GRU
unit, which receive textual or correlational embed-
dings as inputs and are supervised by the continu-
ous representation generated in the previous layer.
To initialize the continuous representations of each
network, we use the target stock vector vtarget (gen-
erated from Eq.3):

v
(0)
text = v

(0)
corr = vtarget. (5)

4.3.1 Text Memory Network
In each layer h ∈ [1, H] of the Text Memory Net-
work, we input the textual embeddings Etext (Eq.1)
and the continuous representation from the previ-
ous layer v(h−1)

text . We utilize an attention unit (Eq.3)
to identify important information within the textual
embeddings. Subsequently, a non-linear GRU cell
unit (Xu et al., 2019) acts as an information aggre-
gator, determining the amount of text information
to retain:

v
Att(h)
text = MultiheadAtt(Etext, v

(h−1)
text ), (6)

where v
(h−1)
text is the query matrix and Etext repre-

sents the raw form of the key and value matrices.
Then the GRU cell unit updates the current hid-

den state into the next hidden state and outputs it to
the next layer as the new continuous representation:

v
(h)
text = GRU(v

Att(h)
text , v

(h−1)
text ). (7)
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4.3.2 Stock Correlation Memory Network
The Stock Correlation Memory Network is em-
ployed to dynamically identify stock relationships
and update the continuous representation of stock
correlations in an intuitive and asymmetric manner.

However, the use of unsupervised attention
weights in previous models can be problematic
as they may be inevitably misled by the dataset
bias, resulting in excessive attention on spurious
stock correlations. To address this, we introduce
extra knowledge in the form of Transfer Entropy-
based causality to guide the attention weights and
mitigate potential confounding effects.

For each target stock, we extract a causal vec-
tor vcausal = C[:, target] from the pre-calculated
causality matrix, which quantifies the degree of
information flow from other stocks to it. Then we
modify the traditional attention mechanism into
Causal Attention by incorporating causal guidance:

S = softmax(
QKT

√
d

), S̃ = f(S, vcausal). (8)

Here, f is a function that aggregates the attention
weight S and the causal vector vcausal to produce
a causality-guided attention weight S̃. We use the
average aggregation method for simplicity (i.e.,
f(S, vcausal) = (S + vcausal)/2). To better bal-
ance them, one can introduce a hyperparameter
λ ∈ [0, 1]. Then f() updates to f(S, vcausal) =
λS + (1− λ)vcausal. We believe that different de-
grees of causal attention can impact the model’s
performance, and leave it for future exploration.

The continuous representation is gradually up-
dated through the Causal Attention, indicating the
influence of causal relationships on movement pre-
diction and the self-influence on the flow of corre-
lation information:

v
Att(h)
corr = CausalAtt(Ecorr, v

(h−1)
corr ) (9)

v
(h)
corr = GRU(v

Att(h)
corr , v

(h−1)
corr ) (10)

It is important to note that although we design
multiple layers within each memory network to
learn deep representations, different layers of the
same memory network share the same unit. This
enables the network to focus on crucial informa-
tion that affects the movement of the target stock,
thereby enhancing the continuous representation.

4.4 Multi-directional Interactions
In reality, textual information and correlations have
an impact on each other when it comes to stock

price movement prediction. For instance, news
about a technological breakthrough in the new en-
ergy sector may uplift the prices of most stocks
in that industry, thereby affecting the correlations
among those stocks.

To simulate this phenomenon and enhance the
synergy between textual and correlational informa-
tion, we introduce a multi-directional interaction
module. This module allows textual and correla-
tional information to reinforce each other and am-
plify the advantages of different information flows
for better prediction performance.

Take the Text Memory Network as an example,
in each layer we firstly calculate the self-influence
by using v

(h−1)
text as the query:

v
Att(h)
text−>text = MultiheadAtt(Etext, v

(h−1)
text ) (11)

Next we consider the interactive influences from
correlations to texts using v

(h−1)
corr as the query:

v
Att(h)
corr−>text = MultiheadAtt(Etext, v

(h−1)
corr ) (12)

Finally, we produce a new attentional continuous
representation by averaging these two influences:

v
Att(h)
text =

v
Att(h)
text−>text + v

Att(h)
corr−>text

2
, (13)

which means that we replace Eqs. 6 with Eqs. 11-
13 to obtain the new attention-aggregated vector.

The workings of Stock Correlation Memory Net-
work are quite similar.

Consequently, the fusion of different informa-
tion flows is promoted due to the multi-directional
interaction mechanism in which CMIN learns not
only the influences from text/correlation to move-
ment prediction within each information flow but
also the interactive influences between different in-
formation flows, representing the interrelationship
between text and correlations.

4.5 Learning Objective

With the continuous representations v(H)
text and v

(H)
corr

from the last layer of each memory network, along
with the target stock representation vtarget, we con-
catenate them and apply a softmax function to gen-
erate the final prediction vector ŷ:

ŷ = softmax(Wy[v
(H)
text , vtarget, v

(H)
corr ] + by). (14)

The objective is to minimize the cross entropy loss:

L(y, ŷ)=−
n∑

i=1

(yi log (ŷi) + (1−yi) log (1−ŷi)) (15)

where n is the size of the training set.
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5 Experiments

In this section, we empirically evaluate our CMIN
model with three real-world datasets collected from
the U.S. and Chinese stock markets.

5.1 Experimental Settings
5.1.1 Datasets
In our experiments we have used three datasets,
namely ACL18, CMIN-US and CMIN-CN, span-
ning different time periods to evaluate our proposed
model CMIN against other baselines.

ACL18 (Xu and Cohen, 2018) is a classic
dataset with tweets from Twitter as financial texts
in the task of text-enhanced stock movement pre-
diction. As there are few existing high-quality
datasets containing both texts and price, we are
also making available two new benchmark datasets
along with this paper from 2018-01-01 to 2021-
12-31 in the U.S. and Chinese market named
CMIN-US and CMIN-CN. These two datasets
are available at https://github.com/BigRoddy/
CMIN-Dataset to facilitate further research and en-
able reproducibility. More details and statistics of
those three datasets are in Appendix A.

5.1.2 Baselines
We compare CMIN against the following four base-
lines, all of which are high-performing stock move-
ment prediction models proposed by recent studies:
•ALSTM(Qin et al., 2017) is a dual-stage

attention-based recurrent neural network, which
selects relevant time series across all time steps.
•Adv-LSTM(Feng et al., 2019) uses adversarial

training to improve the generalization of ALSTM.
•Stocknet(Xu and Cohen, 2018) introduces re-

current continuous latent variables and uses varia-
tional inference to address the posterior inference.
•DTML(Yoo et al., 2021) is a newly published

attention-based model that exploits the correlations
between stocks to improve the prediction accuracy.

5.1.3 Evaluation metrics
As we have formulated stock price movement pre-
diction as a classification problem, we choose two
classic metrics: Accuracy (Acc.) and Matthews
Correlation Coefficient (MCC), similar to the pre-
vious work (Xu and Cohen, 2018; Yoo et al., 2021).

Acc. =
tp+ tn

tp+ tn+ fp+ gn
(16)

MCC=
tp× tn− fp× tn√

(tp+ fp)(fn+ tp)(fn+ tn)(fp+ tn)
(17)

Models
ACL18 CMIN-US CMIN-CN

Acc. MCC Acc. MCC Acc. MCC

ALSTM 51.81 0.032 51.64 0.006 53.35 0.023
Adv-LSTM 52.75 0.052 51.73 0.012 53.49 0.025

Stocknet 58.23 0.081 52.46 0.022 54.53 0.045
DTML 57.44 0.191 52.06 0.031 54.42 0.083

CMIN 62.69 0.209 53.43 0.046 55.28 0.111

Table 1: A comparison of prediction accuracy be-
tween CMIN and other baselines on three different
datasets, where CMIN achieves state-of-the-art perfor-
mance across both Acc. and MCC metrics.

5.1.4 Implementation details
We set our model for daily price prediction, with a
history market window size k = 5 and the number
of price features dp = d = 3, namely the highest,
the lowest and the closing prices. We limit the
maximum number of financial texts in one single
day to be l = 20 , and the maximum length of a
text document w = 30. Within the Text Encoder,
we set the size of word embedding vector dw = 50
and the hidden state of Bi-GRU network dm = 50.

We implement the CMIN with Pytorch on a
NVIDIA Tesla V100 and train it with an Adam
optimizer (Kingma and Ba, 2015). All parameters
of our model are initialized with Xavier Initializa-
tion (Glorot and Bengio, 2010). We search the
hyperparameters of CMIN as follows: number of
layers of each memory network H in {1, 2, 3, 4, 5},
dropout rate in {0.1, 0.2, 0.3}, number of epochs in
{10, 20, 50}, and size of the price hidden state dp
in {3, 10, 50}. For baselines, we use their default
parameters and fine-tune them to fit our data.

5.2 Performance Analysis

The results are summarized in Table 1.
Among all models, ALSTM and Adv-LSTM per-

formed poorly with little improvement over random
prediction. This could be attributed to the fact that
these models rely solely on stock prices as the ba-
sis for decision-making. The Stocknet and DTML
incorporate additional information beyond stock
prices, demonstrated significant improvements over
ALSTM and Adv-LSTM, which highlights the im-
portance of utilizing financial texts and stock cor-
relations for this challenging task. CMIN outper-
formed all baselines and achieved state-of-the-art
performance on both two metrics across all datasets,
showing its excellent capabilities to leverage both
financial texts and stock correlations, as well as
capture their interrelationship.
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Models
ACL18 CMIN-US

Acc. MCC Acc. MCC

CMIN-TE 52.88 0.0394 50.96 0.0134
CMIN-PR 57.83 0.0498 52.55 0.0162
CMIN-CM 54.76 0.1474 52.98 0.0279
CMIN-MI 60.22 0.1535 53.38 0.0380

CMIN 62.69 0.2090 53.43 0.0460

Table 2: Performance of CMIN variants on ACL18 and
CMIN-US datasets, showing every component makes
an important contribution to the excellent performance.

5.3 Ablation Studies

To evaluate the contribution of CMIN’s different
components, we compare against several variants:
•CMIN-TE: CMIN without the Text (TE),

which makes decisions just based on stock prices.
•CMIN-PR: CMIN without the Price (PR),

which makes decisions just based on related texts.
•CMIN-CM: CMIN without the guide of causal-

ity matrix (CM).
•CMIN-MI: CMIN without multi-directional

interactions (MI) between memory networks.
The results are summarized in Table 2. CMIN-

TE only achieves a level of prediction accuracy on
par with ALSTM and Adv-LSTM, and is worst
among all the variants, again indicating the impor-
tance of text data. Similar to the performance of
Stocknet, CMIN-PR has a relatively high Acc. but
a low MCC, suggesting texts are particularly help-
ful to predict on one side of the binary classification.
By modeling both text data and stock relationships,
CMIN-CM reaches a good result. Finally, better
performance achieved when causality matrix and
multi-directional interactions are introduced into
the network. Overall, the ablation studies show that
every component makes an important contribution
to CMIN, and as a result the full model with all
components achieves the best performance.

5.4 Analysis of Memory Network Depth

As introduced before, we propose two memory
networks to retain vital features of texts and corre-
lations with multiple computational layers. And we
want to understand what would be the ideal number
of depths to achieve the best prediction results.

We change the number of layers H of each mem-
ory network to find out how the performance fluctu-
ates with it. The results are summarized in Figure
2. When we only have one memory layer, there is
no multi-directional information flows between the
two memory networks and as a result they only try

Figure 2: Performance of CMIN with a different num-
ber of memory network layers H on ACL18. CMIN
achieves its best performance with 3 memory layers.

to identify the vital information in the embeddings
related to or having an impact on the movement
of the target stock under the supervision of vtarget.
As the number of memory layers increases, the
interactions between two memory networks also
intensifies. It is intuitive that the performance of
CMIN reaches its peak when it has three memory
layers. With further increase the number of mem-
ory layers, CMIN is prone to overfit.

5.5 Case Study

Here we present an example to illustrate how
CMIN considers both financial texts and stock cor-
relations to avoid random noises in time series.

We visualized the causality matrix of ACL18
using a heat map as shown in Figure 3. Stocks are
sequenced by their industry sector. The black box
on the left shows weak causality, representing weak
information flow from Utilities to Materials. On
the other hand, the yellow box on the right indicates
the relative strong information flow from Materials
to Finance and within the Finance industry.

The target stock is Bank Of America (BAC) with
a monitor window spanning from 13/11/2015 to
19/11/2015. We employ CMIN to predict BAC’s
next movement direction on the day of 20/11/2015
and then output the attention scores of texts and
causality-guided correlation. The most focused
stock by CMIN is Berkshire Hathaway Inc. (BRK-
A). It’s interesting to note that both are in the same
industry sector: Finance, and they do appear to fol-
low a very similar movement pattern in the trading
days leading to 20/11/2015, which demonstrates
the ability of CMIN to find the dynamic stock cor-
relations with the guidance of Causality Matrix.

The financial text of BAC that obtains the high-
est attention score is "Beer, Credit Card Debt And
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Figure 3: Visualization of partial causal matrix (cover-
ing three industries) for ACL18. Each entry in the ma-
trix represents the transfer entropy between two stocks
and the redder the square, the stronger the causality.

Other Positives For Bank Of America", the ti-
tle of an news article1 which reports the rapidly-
improving banking landscape in the U.S.. This
text is clearly highly relevant to BAC’s subsequent
stock performance, which demonstrates that CMIN
is able to identify highly relevant texts having a
impact on the target stock movement.

Furthermore, it also illustrates the underlying
interrelationship between financial texts and stock
correlations. Except expressing an optimistic senti-
ment towards BAC, the news also shows a rapidly
improving state of affairs for the wider financial
industry. Therefore, through the Multi-directional
Interactions mechanism, the text strengthens the
model’s attention to stocks in the same sector.
These two aspects mutually reinforce and comple-
ment each other to help the model make the best
judgment that BAC’s stock price will rise on the
next day.

6 Conclusions

In this paper, we proposed CMIN, a causality-
guided multi-memory interaction network that
simultaneously models financial documents,
causality-enhanced stock correlations and the in-
teractions between the two, and recurrently learns
a global memory representation for movement
prediction. This multi-modality network was
designed to enable the concurrent discovery of
texts and stock correlations relevant to future price
change and we demonstrated, through experiments
on three datasets across two distinct markets, that
each component of the proposed architecture made
significant contributions to the model, leading
CMIN to achieve state-of-the-art accuracy.

1https://seekingalpha.com/article/3692516

Limitations

We discuss the limitations of our model as follows:

1. Due to the natural uncertainty of financial fore-
cast, although we have taken many methods
to improve the generalization performance of
the model (such as limiting the depth of mem-
ory layers and with the assistance of auxil-
iary data), creating a trustworthy application
requires considering many other factors be-
yond the algorithmic level. We advise that
users monitor the model’s performance over
time and regularly update it to adapt to ever-
changing market conditions.

2. This paper uses Granger causality based on
transfer entropy to make a preliminary attempt
to introduce causality between time series to
model the similarity between stocks more ac-
curately. But this description is junior and
classical, and there are lots of more modern
methods to measure precise causality in math-
ematics (like PC algorithm), which we believe
would further improve the performance.

3. We only experiment the performance of model
on the task of binary classification, leaving
more complex tasks (such as regression task
and returns prediction) and simulating actual
investment to evaluate the capability and po-
tential of the model comprehensively.
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Dataset Country Stocks Data Resources Data Range

Price Text Train Development Test

ACL18 US 87 Yahoo Finance Twitter 2014-01-01 to 2014-12-31 2015-01-01 to 2015-10-01 2015-10-01 to 2015-12-31

CMIN-US US 110
Yahoo Finance

Yahoo
2018-01-01 to 2021-04-30 2021-05-01 to 2021-08-31 2021-09-01 to 2021-12-31

CMIN-CN China 300 Wind

Table 3: Summary stats on experiment datasets. CMIN-US and CMIN-CN are two new benchmark datasets we are
making available alongside this paper.
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A Dataset Details

The statistics of datasets are summarized in Table 3.
ACL18 (Xu and Cohen, 2018) consists of 87

stocks of 9 industries from the U.S. stock market. It
also includes two types of data: tweets from Twitter
and historical stock prices from Yahoo finance. We
have processed in the same way as described in
(Xu and Cohen, 2018).

As there are few existing high-quality datasets
containing both texts and prices, we are also mak-
ing available two new benchmark datasets along
with this paper from 2018-01-01 to 2021-12-31:
CMIN-US includes the top 110 stocks from US
by market capitalisation; CMIN-CN consists of all
300 constituents of CSI300, a major Chinese stock
market index. Similar to ACL18, both CMIN-US
and CMIN-CN include financial texts as well as
historical stock prices data. The historical price
data in both datasets comes from Yahoo Finance.
The text data of CMIN-US is collected from Yahoo
finance2 and CMIN-CN from Wind 3. In our exper-
iments, we have used news headlines instead of the
entire texts for efficiency and noise reduction.

2https://finance.yahoo.com/
3https://www.wind.com.cn/
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