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Abstract

Adversarial training is one of the best-
performing methods in improving the robust-
ness of deep language models. However, robust
models come at the cost of high time consump-
tion, as they require multi-step gradient ascents
or word substitutions to obtain adversarial sam-
ples. In addition, these generated samples are
deficient in grammatical quality and semantic
consistency, which impairs the effectiveness
of adversarial training. To address these prob-
lems, we introduce a novel, effective procedure
for instead adversarial training with only clean
data. Our procedure, distribution shift risk min-
imization (DSRM), estimates the adversarial
loss by perturbing the input data’s probabil-
ity distribution rather than their embeddings.
This formulation results in a robust model that
minimizes the expected global loss under adver-
sarial attacks. Our approach requires zero ad-
versarial samples for training and reduces time
consumption by up to 70% compared to current
best-performing adversarial training methods.
Experiments demonstrate that DSRM consid-
erably improves BERT’s resistance to textual
adversarial attacks and achieves state-of-the-art
robust accuracy on various benchmarks.

1 Introduction

Despite their impressive performance on various
NLP tasks, deep neural networks (DNNs), like
BERT (Devlin et al., 2019), are highly vulnerable to
adversarial exemplars, which arise by adding imper-
ceptible perturbations among natural samples un-
der semantic and syntactic constraints (Zeng et al.,
2021; Lin et al., 2021). Such vulnerability of DNNs
has attracted extensive attention in enhancing de-
fence techniques against adversarial examples (Li
et al., 2021; Xi et al., 2022), where the adversarial
training approach (AT) (Goodfellow et al., 2015) is
empirically one of the best-performing algorithms
to train networks robust to adversarial perturbations

∗ Corresponding author.

(Uesato et al., 2018; Athalye et al., 2018). Formally,
adversarial training attempts to solve the following
min-max problem under loss function L:

min
θ∈Θ

E(x,y)∼P0

Adversarial Samples (AT)︷ ︸︸ ︷
max
‖δ‖p�ε

L(θ,x+ δ, y)

︸ ︷︷ ︸
Distribution Shift (Ours)

,

where θ ∈ Θ are the model parameters, and (x, y)
denotes the input data and label, which follow the
joint distribution P0. The curly brackets show the
difference in research focus between our approach
and vanilla adversarial training.

Due to the non-convexity of neural networks,
finding the analytic solution to the above inner max-
imization (marked in red) is very difficult (Wang
et al., 2021). The most common approach is to
estimate the adversarial loss from the results of sev-
eral gradient ascents, such as PGD (Madry et al.,
2018) and FreeLB (Zhu et al., 2019). Li and Qiu
(2021) and Zhu et al. (2022) generate meaningful
sentences by restricting such perturbations to the
discrete token embedding space, achieving compet-
itive robustness with better interpretability (Shreya
and Khapra, 2022).

However, the impressive performance in adver-
sarial training comes at the cost of excessive com-
putational consumption, which makes it infeasible
for large-scale NLP tasks (Andriushchenko and
Flammarion, 2020). For example, FreeLB++ (Li
et al., 2021), which increases the perturbation in-
tensity of the FreeLB algorithm to serve as one
of the state-of-the-art methods, achieves optimal
performance with nearly 15 times the training time.
Moreover, the adversarial samples generated by
the aforementioned methods exhibit poor gram-
matical quality, which is unreasonable in the real
world when being manually reviewed (Hauser et al.,
2021; Chiang and Lee, 2022). Some works attempt
to speed up the training procedure by obtaining
cheaper adversarial samples (Wong et al., 2019) or
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generating diverse adversarial samples at a negligi-
ble additional cost (Shafahi et al., 2019). However,
they still require a complex process for adversar-
ial samples and suffer performance degradation in
robustness.

In this work, from another perspective of the
overall distribution rather than the individual adver-
sarial samples, we ask the following question: Can
we directly estimate and optimize the expectation
of the adversarial loss without computing specific
perturbed samples, thus circumventing the above-
mentioned problems in adversarial training?

DSRM formalize the distribution distance be-
tween clean and adversarial samples to answer the
question. Our methodology interprets the genera-
tion of adversarial samples as an additional sam-
pling process on the representation space, whose
probability density is not uniformly distributed like
clean samples. Adversarial samples with higher
loss are maximum points in more neighbourhoods
and possess a higher probability of being gener-
ated. We subsequently proved that the intensity
of adversarial perturbations naturally bound the
Wasserstein distance between these two distribu-
tions. Based on this observation, we propose an
upper bound for the adversarial loss, which can
be effectively estimated only using the clean train-
ing data. By optimizing this upper bound, we can
obtain the benefits of adversarial training without
computing adversarial samples. In particular, we
make the following contributions:

• We propose DSRM, a novel procedure that
transforms the training data to a specific distri-
bution to obtain an upper bound on the adver-
sarial loss. Our codes1 are publicly available.

• We illustrate the validity of our framework
with rigorous proofs and provide a practical al-
gorithm based on DSRM, which trains models
adversarially without constructing adversarial
data.

• Through empirical studies on numerous NLP
tasks, we show that DSRM significantly im-
proves the adversarial robustness of the lan-
guage model compared to classical adversarial
training methods. In addition, we demonstrate
our method’s superiority in training speed,
which is approximately twice as fast as the
vanilla PGD algorithm.

1https://github.com/SleepThroughDifficulties/
DSRM

2 Related Work

2.1 Adversarial Training
Goodfellow et al. (2015) first proposed to generate
adversarial samples and utilize them for training.
Subsequently, the PGD algorithm (Madry et al.,
2018) exploits multi-step gradient ascent to search
for the optimal perturbations, refining adversarial
training into an effective defence technique. Some
other works tailored training algorithms for NLP
fields to ensure that the adversarial samples have ac-
tual sentences. They craft perturbation by replacing
words under the guidance of semantic consistency
(Li et al., 2020) or token similarity in the embed-
ding space (Li and Qiu, 2021). However, these al-
gorithms are computationally expensive and trigger
explorations to improve training efficiency (Zhang
et al., 2019a). The FreeAT (Shafahi et al., 2019)
and FreeLB (Zhu et al., 2019) attempt to simplify
the computation of gradients to obtain accelera-
tion effects, which construct multiple adversarial
samples simultaneously in one gradient ascent step.
Our DSRM approach is orthogonal to these acceler-
ation techniques as we conduct gradient ascent over
the data distribution rather than the input space.

2.2 Textual Adversarial Samples
Gradient-based algorithms confront a major chal-
lenge in NLP: the texts are discrete, so gradi-
ents cannot be directly applied to discrete tokens.
Zhu et al. (2019) conducts adversarial training by
restricting perturbation to the embedding space,
which is less interpretable due to the lack of adver-
sarial texts. Some works address this problem by
searching for substitution that is similar to gradient-
based perturbation (Cheng et al., 2020; Li and Qiu,
2021). Such substitution strategies can combine
with additional rules, such as synonym dictionaries
or language models to detect the semantic consis-
tency of adversarial samples (Si et al., 2021; Zhou
et al., 2021). However, recent works observe that
adversarial samples generated by these substitution
methods are often filled with syntactic errors and
do not preserve the semantics of the original inputs
(Hauser et al., 2021; Chiang and Lee, 2022). Wang
et al. (2022) constructs discriminative models to
select beneficial adversarial samples, such a pro-
cedure further increases the time consumption of
adversarial training. In this paper, we propose to
estimate the global adversarial loss with only clean
data, thus circumventing the defects in adversarial
sample generation and selection.
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3 Methodology

In this section, we first introduce our distribution
shift risk minimization (DSRM) objective, a novel
upper bound estimation for robust optimization,
and subsequently, how to optimize the model pa-
rameters under DSRM.

Throughout our paper, we denote vectors as a,
sets as A, probability distributions as P , and defi-
nition as �. Specificly, we denote an all-1 vector
of length b as �11×b. Considering a model param-
eterized by θ ∈ Θ, the per-data loss function is
denoted as L(θ,x, y) : Θ × X × Y → R+. Ob-
serving only the training set St, the goal of model
training is to select model parameters θ that are
robust to adversarial attacks.

3.1 Adversarial Loss Estimation by
Distribution Shift

We initiate our derivation with vanilla PGD objec-
tive (Madry et al., 2017). Formally, PGD attempts
to solve the following min-max problem:

min
θ∈Θ

ρ(θ) � E(x,y)∼P0
max
‖δ‖p�ε

L(θ,x+ δ, y),

where θ ∈ Θ are the model parameters, and (x, y)
denotes the input data and label, which follow the
joint distribution P0.

Instead of computing the optimal perturbation
for each data point, we directly study the ρ(θ) from
the data distribution perspective. During the train-
ing process of PGD, each input x corresponds to an
implicit adversarial sample. We describe such map-
ping relationship with a transformation functions
f : X × Y → X as:

fε,θ(x, y) � x+ arg max
{δ:‖δ‖p≤ε}

L(θ,x+ δ, y).

(1)

The existence of fε,θ(x, y) can be guaranteed
due to the continuity of the loss function L(θ,x+
δ, y). Then the training objective ρ(θ) can be de-
noted as:

ρ(θ) = E(x,y)∼P0
L(θ, fε,θ(x, y), y) (2)

= E(x,y)∼Pf
L(θ,x, y), (3)

where Pf denotes the distribution of fε,θ(x, y). Eq.
3 omits the perturbation δ by introducing Pf , and
directly approximates the robust optimization loss.
However, the accurate distribution is intractable
due to the non-convex nature of neural networks.
We, therefore, constrain the above distribution shift
(i.e., from P0 to Pf ) with Wasserstein distance.

Lemma 3.1. Let Wp (P,Q) denotes the p-th
Wasserstein distance between P and Q (Peyré et al.,
2019). P0 and Pf are the respective distributions
of clean and perturbed samples. The p-norm of
perturbation δ is constrained by ‖δ‖p ≤ ε, then
the distribution shift in Eq. 3 is bounded by:

Wp (P0,Pf ) ≤ ε

Proof. With Eq. 1, we have:

Wp (P0,Pf ) �
(

inf
π∈Π(P0,Pf )

E(u,v)∼π

[
‖u− v‖pp

]) 1
p

≤
(
E(x,y)∼P0

[
‖x− fε,θ(x, y)‖pp

]) 1
p

≤ ε.

Lemma. 3.1 ensures that for bounded perturba-
tion strengths, the distribution shift between the
original and virtual adversarial samples is limited,
and we consequently define our Distribution Shift
Risk Minimization (DSRM) objective as follows:

Definition 3.1 (DSRM). Giving (x, y) ∼ P0, loss
function L and model parameters θ, the DSRM aim-
ing to minimize the worst-case loss ρDS(θ) under
distributional perturbations with intensity limited
to ε, that is:

min
θ∈Θ

ρDS(θ) � max
Wp(P0, Pt)�ε

E(x,y)∼Pt
L(θ,x, y).

(4)

Noticing that there always satisfies:

ρ(θ) ≤ ρDS(θ),

we subsequently optimize the upper bound ρDS(θ)
for adversarial training.

3.2 Distribution Shift Adversarial Training
In definition 3.1, we propose DSRM, a new ad-
versarial training objective from the perspective
of distribution shift. We now discuss how to op-
timize the model parameters with a finite training
set S � ∪n

i=1 {(xi,yi)}. We first introduce the
empirical estimation of Eq. 4 as follows:

ρDS(θ) ≈ max
Wp(P0, Pt)�ε

n∑

i=1

Pt(xi)L(θ,xi, yi),

where P0 is the unperturbed distribution. In vanilla
training procedure, all training data are weighted
as 1

n , where n is the value of training batch size.
We therefore model P0 as a uniform distribution.
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For the purpose of simplicity, we use LS(θ,Pt) to
denote the inner maximization term, that is:

ρDS(θ) ≈ max
Wp(P0, Pt)�ε

LS(θ,Pt). (5)

Suppose the worst-case distribution is Pf . To
make explicit our distribution shift term, we rewrite
the right-hand side of the equation above as:

LS(θ,P0) +

[
n∑

i=1

(
Pf (xi)−

1

n

)
L(θ,xi, yi)

]
,

where LS(θ,P0) � 1
n

∑n
i=1 L(θ,xi, yi) are

the empirical risk of training sets. The term
in square brackets captures the sensitivity of
ρDS(θ) at Pf , measuring how quickly the em-
pirical loss increase when transforming train-
ing samples to different weights. This term
can be denoted as LS(θ,Pf − P0). Since the
training set is finite, the probability distribution
over all samples can be simplified to a vec-
tor, let Pf = [Pf (x1),Pf (x2), ...,Pf (xn)], and
L = [L(θ,x1, y1), L(θ,x2, y2), ..., L(θ,xn, yn)],
we have:

LS(θ,Pf − P0) =

(
Pf − 1

n

)
LT . (6)

In order to minimize the LS(θ,Pf ), we first de-
rive an approximation to the inner maximization
of DSRM. We approximate the inner maximiza-
tion problem via a first-order Taylor expansion of
ρDS(θ) w.r.t Pf around P0, we obtain the estima-
tion as follows:

Pf = arg max
Wp(P0, Pt)�ε

LS(θ,Pt)

= arg max
Wp(P0, Pt)�ε

[LS(θ,Pt)− LS(θ,P0)]

≈ arg max
Wp(P0, Pt)�ε

[
(Pt − P0)

T ∇PtLS(θ,P0)
]
.

(7)
By Eq. 7, the value Pf that exactly solves this

approximation can be given by its dual problem.
For experimental convenience, here we only focus
on and present one of the special cases, that the
metric used in Wp (P0, Pt) treats all data pairs
equally. We empirically demonstrate that such ap-
proximations can achieve promising performance
in the next section. In turn, the solution of Pf can
be denoted as:

P∗
f = ε ∇PtLS(θ,P0) / ‖∇PtLS(θ,P0)‖+ P0.

(8)

Substituting the equation into Eq. 4 and differenti-
ating the DSRM objective, we then have:

∇θ(ρDS(θ)) ≈ ∇θLS

(
θ,P∗

f

)

=∇θ

[
LS (θ,P0) +

(
P∗
f − P0

)
∇PtLS (θ,Pt) |P∗

f

]
.

(9)
Though this approximation to ∇θ(ρDS(θ)) re-

quires a potential second-order differentiation (the
influence of weight perturbations on the loss of
DSRM), they can be decomposed into a multi-step
process, which is tractable with an automatic meta-
learning framework. In our experiments, we use
the Higher 2 package for differential to the sample
weight.

To summarize, we first update the parameters
for one step under the original data distribution P0,
and compute the empirical loss on a previously di-
vided validation set, which requires an additional
set of forward processes with the updated param-
eters. Later, we differentiate validation loss to the
weights of the input samples to obtain the worst-
case perturbation and re-update the parameters with
our distribution shift loss function. Our detailed
algorithm implementation is shown in Algorithm
1.

4 Experiments

In this section, we comprehensively analyse DSRM
versus other adversarial training methods in three
evaluation settings for three tasks.

4.1 Datasets and Backbone Model

We evaluate our proposed method mainly on the
four most commonly used classification tasks for
adversarial defence, including SST-2 (Socher et al.,
2013), IMDB (Maas et al., 2011), AG NEWS
(Zhang et al., 2015) and QNLI (Wang et al., 2018).
The statistics of these involved benchmark datasets
are summarised in Appendix A. We take the BERT-
base model (12 transformer layers, 12 attention
heads, and 110M parameters in total) as the back-
bone model, and follow the BERT implementations
in (Devlin et al., 2019).

4.2 Evaluation Settings

We refer to the setup of previous state-of-the-art
works (Liu et al., 2022; Xi et al., 2022) to verify
the robustness of the model. The pre-trained model

2https://github.com/facebookresearch/higher.
git.
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Algorithm 1: Framework of Our DSRM.
Input: Training set St, Validate set Sv,

Loss function L, Batch size b,
Pre-trained model parameters θ,
Batch sample weights w, Optimizer
δ, Perturbation size η.

Output: Model trained with DSRM
1 Initialize: Virtual Model θ� = θ, Step

n = 0;
2 while not converged do
3 w = �11×b ;
4 Sample batch train data from St:

Bt = {(xi,yi)}bi=1;
5 Compute gradient of the batch’s

empirical loss: ∇θ�nw
TL (θ�n,Bt);

6 Update virtual model:
θ�n+1 = θ�n − δ

(
∇θ�nw

TL (θ�n,Bt)
)
;

7 Sample valid data from Sv:
Bv = {(xj ,yj)}2bj=1;

8 Compute gradient of global loss to
sample weights:
g = ∇wL

(
θ�n+1,Bv

)
;

9 Update w with gradient g:
wn = w + ηg;

10 Compute gradient of the DSRM
objective: ∇θnw

T
nL (θn,Bt);

11 Update model parameters:
θn+1 = θn − δ

(
∇θnw

T
nL (θn,Bt)

)
;

12 n = n+ 1

13 end
14 return θn

is finetuned with different defence methods on var-
ious datasets and saves the best three checkpoints.
We then test the defensive capabilities of the saved
checkpoint via TextAttack (Morris et al., 2020) and
report the mean value as the result of the robustness
evaluation experiments.

Three well-received textual attack methods are
leveraged in our experiments. TextBugger (Li et al.,
2018) identify the critical words of the target model
and repeatedly replace them with synonyms until
the model’s predictions are changed. TextFooler
(Jin et al., 2020) similarly filter the keywords in
the sentences and select an optimal perturbation
from various generated candidates. BERTAttack
(Li et al., 2020) applies BERT to maintain semantic
consistency and generate substitutions for vulnera-
ble words detected in the input.

For all attack methods, we introduce four met-

rics to measure BERT’s resistance to adversarial
attacks under different defence algorithms. Clean
accuracy (Clean%) refers to the model’s test ac-
curacy on the clean dataset. Accurucy under at-
tack (Aua%) refers to the model’s prediction ac-
curacy with the adversarial data generated by spe-
cific attack methods. Attack success rate (Suc%)
measures the ratio of the number of texts success-
fully scrambled by a specific attack method to the
number of all texts involved. Number of Queries
(#Query) refers to the average attempts the attacker
queries the target model. The larger the number is,
the more complex the model is to be attacked.

4.3 Baseline Methods

Since our method is based on the adversarial train-
ing objective, we mainly compare it with previ-
ous adversarial training algorithms. In addition,
to refine the demonstration of the effectiveness of
our method, we also introduce two non-adversarial
training methods (InfoBERT and Flooding-X) from
current state-of-the-art works.

PGD Projected gradient descent (Madry et al.,
2018) formulates adversarial training algorithms to
minimize the empirical loss on adversarial exam-
ples.

FreeLB FreeLB (Zhu et al., 2019) generates vir-
tual adversarial samples in the region surrounding
the input samples by adding adversarial perturba-
tions to the word embeddings.

FreeLB++ Based on FreeLB, Li et al. (2021) dis-
covered that the effectiveness of adversarial train-
ing could be improved by scaling up the steps of
FreeLB, and proposed FreeLB++, which exhibits
the current optimal results in textual adversarial
training.

TAVAT Token-Aware Virtual Adversarial Train-
ing (Li and Qiu, 2021) proposed a token-level per-
turbation vocabulary to constrain adversarial train-
ing within a token-level normalization ball.

InfoBERT InfoBERT (Wang et al., 2020) lever-
ages two regularizers based on mutual information,
enabling models to explore stable features better.

Flooding-X Flooding-X (Liu et al., 2022)
smooth the parameter landscape with Flooding
(Ishida et al., 2020) to boost model resistance to
adversarial perturbations.
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TextFooler BERT-Attack TextBuggerDatasets Methods Clean%
Aua% Suc% #Query Aua% Suc% #Query Aua% Suc% #Query

Fine-tune 93.1 5.7 94.0 89.3 5.9 93.4 108.9 28.2 68.7 49.2
PGD† 92.8 8.3 90.7 94.6 8.7 90.5 117.7 31.5 65.2 53.3
FreeLB† 93.6 8.5 91.4 95.4 9.3 90.2 118.7 31.8 64.7 50.2
FreeLB++† 92.9 14.3 84.8 118.2 11.7 87.4 139.9 37.4 61.2 52.3
TAVAT† 93.0 12.5 85.3 121.7 11.6 85.3 129.0 29.3 67.2 48.6
InfoBERT‡ 92.9 12.5 85.1 122.8 13.4 83.6 133.3 33.4 63.8 50.9
Flooding-X‡ 93.1 28.4 67.5 149.6 25.3 70.7 192.4 41.9 58.3 62.5

SST-2

DSRM(ours) 91.5 32.8 65.1 153.6 27.2 69.1 201.5 44.2 51.4 88.6
Fine-tune 90.6 5.8 94.2 161.9 3.5 96.1 216.5 10.9 88.0 98.4
PGD† 90.6 14.3 81.2 201.6 17.3 80.6 268.9 27.9 67.8 134.6
FreeLB† 90.7 12.8 85.3 189.4 21.4 76.8 324.2 29.8 69.3 143.9
FreeLB++† 91.1 16.4 81.4 193.7 20.7 77.0 301.7 30.2 66.7 150.1
InfoBERT‡ 90.4 18.0 82.5 212.9 13.1 85.8 270.2 15.4 83.9 127.9
Flooding-X‡ 90.8 25.6 71.3 232.7 18.7 79.2 294.6 29.4 67.5 137.1

QNLI

DSRM(ours) 90.1 27.6 65.4 247.2 20.4 76.7 312.4 37.1 59.2 176.3
Fine-tune 92.1 10.3 88.8 922.4 5.3 94.3 1187.0 15.8 83.7 695.2
PGD† 93.2 26.0 72.1 1562.8 21.0 77.6 2114.6 41.6 53.2 905.8
FreeLB† 93.2 35.0 62.7 1736.9 29.0 68.4 2588.8 53.0 44.2 1110.9
FreeLB++† 93.2 45.3 51.0 1895.3 39.9 56.9 2732.5 42.9 54.6 1094.0
TAVAT† 92.7 27.6 71.9 1405.8 23.1 75.1 2244.8 54.1 44.1 1022.6
InfoBERT‡ 93.3 49.6 49.1 1932.3 47.2 51.3 3088.8 53.8 44.7 1070.4
Flooding-X‡ 93.4 45.5 53.5 2015.4 37.3 60.8 2448.7 62.3 35.8 1187.9

IMDB

DSRM(ours) 93.4 56.3 39.0 2215.3 54.1 41.2 3309.8 67.2 28.9 1207.7
Fine-tune 93.9 28.6 69.9 383.3 17.6 81.2 556.0 45.2 53.4 192.5
PGD† 94.5 36.8 68.2 414.9 21.6 77.1 616.1 56.4 41.9 201.8
FreeLB† 94.7 34.8 63.4 408.5 20.4 73.8 596.2 54.2 43.0 210.3
FreeLB++† 94.9 51.5 46.0 439.1 41.8 56.2 676.4 55.9 41.4 265.4
TAVAT† 95.2 31.8 66.5 369.9 35.0 62.5 634.9 54.2 43.9 231.2
InfoBERT‡ 94.5 33.8 65.1 395.6 23.4 75.3 618.9 49.6 47.7 194.1
Flooding-X‡ 94.8 42.4 54.9 421.4 27.4 71.0 590.3 62.2 34.0 272.5

AG NEWS

DSRM(ours) 93.5 62.9 31.4 495.0 58.6 36.1 797.7 69.4 24.8 294.6

Table 1: The experiment results of different defenders on four datasets. The best performance of each metric is
marked in bold. Methods labelled by † are adversarial training baselines, and methods labelled by ‡ are other SOTA
defence baselines. Our method surpasses existing methods by a large margin under almost all tasks.

4.4 Implementation Details

We reproduced the baseline works based on their
open-source codes, and the results are competitive
relative to what they reported in the paper. The
Clean% is evaluated on the whole test set. Aua%,
Suc% and #Query are evaluated on the whole test
dataset for SST-2, and on 1000 randomly selected
samples for the other three datasets. We train our
models on NVIDIA RTX 3090 GPUs. Most param-
eters, such as learning rate and warm-up steps, are
consistent with the FreeLB (Zhu et al., 2019). We
train 8 epochs with 3 random seeds for each model
on each dataset and report the resulting mean er-
ror (or accuracy) on test sets. To reduce the time
consumption for calculating the distribution shift
risk, for each step we sample 64 sentences (32 for
IMDB) from the validation set to estimate our ad-
versarial loss. More implementation details and

hyperparameters can be found in Appendix B.

4.5 Experimental Results

Our analysis of the DSRM approach with other
comparative methods against various adversar-
ial attacks is summarized in Table 1. Our
method demonstrates significant improvements in
the BERT’s resistance to these attacks, outper-
forming the baseline defence algorithm on most
datasets.

In the SST-2, IMDB, and AG NEWS datasets,
DSRM achieved optimal robustness against all
three attack algorithms. It is worth noting that the
effectiveness of DSRM was more pronounced on
the more complex IMDB and AG NEWS datasets,
as the estimation of adversarial loss for these tasks
is more challenging than for the simpler SST-2
dataset. This phenomenon verifies that our method
better estimates the inner maximation problem. In
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the QNLI dataset, DSRM only fails to win in the
BertAttack, but still maintains the lowest attack suc-
cess rate among all methods, with an Aua% that is
only 1% lower than that of FreeLB. This difference
in performance can be attributed to the varying
clean accuracy of the two methods, in which case
DSRM misclassifies a small number of samples
that are more robust to the attack.

In terms of clean accuracy, our method suffers
from a minor degradation on SST-2, QNLI and
AGNEWS, which is acceptable as a trade-off in ro-
bustness and generalization for adversarial training,
and we will further discuss this phenomenon in the
next section. On IMDB, our approach achieves the
best clean accuracy together with flooding-X. We
attribute this gain to the greater complexity of the
IMDB dataset, that the aforementioned trade-off
appears later to enable DSRM to achieve better
performance.

Overall, DSRM performs better than the base-
line adversarial training methods by 5 to 20 points
on average without using any adversarial examples
as training sources. Besides, our approach is more
effective for complex datasets and remains the best-
performing algorithm on Textfooler and Textbug-
ger, which demonstrates the versatility and effec-
tiveness of DSRM. Our experiments demonstrate
that adversarial training methods have a richer po-
tential for constructing robust language models.

5 Analysis and Discussion

In this section, we construct supplementary experi-
ments to analyze our DSRM framework further.

5.1 DSRM Induces Smooth Loss Distribution

Previous works demonstrate that deep neural net-
works suffer from overfitting training configura-
tions and memorizing training samples, leading
to poor generalization error and vulnerability to-
wards adversarial perturbations (Werpachowski
et al., 2019; Rodriguez et al., 2021). We verify
that DSRM mitigates such overfitting problems
by implicitly regularizing the loss’s smoothness in
the input space. Figure 1 shows the training/test
loss of each BERT epoch trained by DSRM and
fine-tuning. Models trained by fine-tuning overfit
quickly and suffer persistent performance degrada-
tion as the epoch grows. In contrast, the loss curves
of our method maintain lower generalization errors
with a minor variance of the predicted losses on
the test set. This improvement comes from the fact

that under the training objective of DSRM, where
the model allocates more attention to samples with
a higher loss.

(a) (b)

Figure 1: The train/test loss of DSRM and fine-tuning
on the SST-2 (a) and IMDB (b) datasets. We report
the mean loss on the train and test sets, and variance
(marked with shadow) only on the test set. Our method
maintains uniform loss distribution and better consis-
tency between training and test data while the fine-
tuning overfits quickly after one epoch.

5.2 Effect of Perturbation Intensity

DSRM has a single hyperparameter ε to control
the constraints on perturbation intensity. The ex-
tension in the perturbation range brings a better
optimization on the defence objective, while the
mismatch between the train and test set data dis-
tribution may impair the model performance. To
further analyze the impact of DSRM on model ac-
curacy and robustness, we conduct a sensitivity
analysis of perturbation intensity ε. Figure 2 illus-
trates the variation curve of performance change
for our method on three attack algorithms.

DSRM improves accuracy and Aua% when per-
turbations are moderated (≤ 0.2), similar to other
adversarial training methods. When the perturba-
tion becomes stronger, the model’s resistance to
adversarial attacks improves notably and suffers a
drop in clean accuracy. Such turning points occur
earlier in our method, making it a trade-off between
model accuracy and robustness. We argue that this
phenomenon comes from the fact that the clean
data distribution can be treated as a marginal distri-
bution in the previous adversarial training, where
the model can still fit the original samples.

5.3 Time Consumption

In section 2, we analyze the positive correlation
between training steps and model performance in
adversarial training. Such trade-off in efficiency
and effectiveness comes from the complex search
process to find the optimal perturbation. DSRM
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Figure 2: Accuracy and Aua% of BERT trained by
DSRM under different perturbations.

circumvents this issue by providing upper-bound
estimates with only clean data. To further reveal
the strength of DSRM besides its robustness per-
formance, we compare its GPU training time con-
sumption with other adversarial training methods.
As is demonstrated in Table 2, the time consump-
tion of DSRM is superior to all the comparison
methods. Only TAVAT (Li and Qiu, 2021) exhibits
similar efficiency to ours (with about 30% time
growth on SST-2 and IMDB). TAVAT neither con-
tains a gradient ascent process on the embedding
space, but they still require the construction of addi-
tional adversarial data. More experimental details
are summarized in Appendix C.

Methods SST-2 IMDB AG NEWS
Finetune 227 371 816
DSRM 607 1013 2744
TAVAT 829 1439 2811
FreeLB 911 1558 3151
PGD 1142 1980 4236
FreeLB++ 2278 3802 5348

Table 2: GPU time consumption (seconds) of training
one epoch on the whole dataset.

5.4 Trade-offs in Standard Adversarial
Training

In this section, we further discuss the trade-off
between computational cost and performance in
vanilla adversarial training. We empirically show
that larger perturbation radii and steps enhance
the effectiveness of textual adversarial training.
Similar phenomena are previously found in im-
age datasets by Zhang et al. (2019b) and Gowal
et al. (2020). The experimental results for these
two modifications are shown in Figure 3.

In sub-figure (a), relaxing perturbation thresh-
old remarkably increases the model robustness and

(a) (b)

Figure 3: The impact of different values of the perturba-
tion threshold (a) and ascent steps (b) on IMDB dataset.
We show the accuracy score of the FreeLB (Zhu et al.,
2019) algorithm under three attack methods. Sub-figure
(a) uses a 10-step gradient ascent with different con-
straints on the l2 norm of perturbations. In sub-figure
(b), each step introduces a perturbation of length 0.05.

only suffers a slight decrease when the threshold
is larger than 0.6 for Textbugger. In subfigure (b),
as the value of steps grows, the models’ accuracy
under attack increases until they reach their peak
points. Subsequently, they begin to decline as the
number of steps increases consistently. Notably,
the optimal results are 4-10% higher in (b) relative
to (a), demonstrating that a larger number of steps
is necessary to achieve optimal robustness.

We give a possible explanation for the above
performance. We describe the standard adversarial
training as exploring potential adversarial samples
in the embedding space. When the step number is
small, the adversarial sample space is correspond-
ingly simple, causing the model to underestimate
the adversarial risks. A broader search interval
can prevent these defects and achieve outstanding
robustness as the number of steps grows.

However, these best results occur late in the step
growth process. As shown in (b), a defence model
needs 30 steps (about ten times the time cost) for
Textfooler, 20 for Textbugger, and 40 for BertAt-
tack to achieve optimal performance. This draw-
back considerably reduces the efficiency and prac-
ticality of adversarial training.

6 Conclusion

In this paper, we delve into the training objective
of adversarial training and verify that the robust
optimization loss can be estimated by shifting the
distribution of training samples. Based on this dis-
covery, we propose DSRM as an effective and more
computationally friendly algorithm to overcome
the trade-off between efficiency and effectiveness
in adversarial training. DSRM optimizes the up-
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per bound of adversarial loss by perturbing the
distribution of training samples, thus circumvent-
ing the complex gradient ascent process. DSRM
achieves state-of-the-art performances on various
NLP tasks against different textual adversarial at-
tacks. This implies that adversarial samples, either
generated by gradient ascent or data augmentation,
are not necessary for improvement in adversarial
robustness. We call for further exploration and
understanding of the association between sample
distribution shift and adversarial robustness.
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7 Limitations

This section discusses the potential limitations of
our work. This paper’s analysis of model effects
mainly focuses on common benchmarks for ad-
versarial defence, which may introduce confound-
ing factors that affect the stability of our frame-
work. Therefore, our model’s performance on more
tasks, e.g., the MRPC dataset for semantic match-
ing tasks, is worth further exploring. In addition,
the present work proposes to conduct adversarial
training from the perspective of estimating the over-
all adversarial loss. We expect a more profound ex-
ploration of improving the accuracy and efficiency
of such estimation. We are also aware of the neces-
sity to study whether the properties of traditional
methods, such as the robust overfitting problem,
will also arise in DSRM-based adversarial training.
We leave these problems to further work.
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A Dataset Statistics

Dataset Train/Test Classes #Words

SST-2 67k/1.8k 2 19
IMDB 25k/25k 2 268

AG NEWS 120k/7.6k 4 40
QNLI 105k/5.4k 2 37

Table 3: Statistics of datasets. In our experiments, we
partition an additional 10 per cent of the training set as
the validation set to calculate the DSRM of the model

B Experimental details

In our experiments, we calculate the sample
weights by gradient ascending mean loss to a fixed
threshold. The weight of each sample in the normal
case is 1/n, where n is the size of a batch. We fine-
tune the BERT-base model by the official default
settings. For IMDB and AGNews, we use 10%
of the data in the training set as the validation set.
The optimal hyperparameter values are specific for
different tasks, but the following values work well
in all experiments:

Batch Size and Max Length: We use batch 16
and max length 128 for SST-2, QNLI, and AG
NEWS datasets. For the IMDB dataset, we use
batch 8 and max length 256 as its sentence are
much longer than other datasets.

Perturbation Thresholds ε: [0.8, 1, 1.2, 1.5].
Weights are truncated when the adversarial loss
is greater than the threshold.

Evaluation Settings: For SST-2, we use the of-
ficial test set, while for IMDB and AGNews, we
use the first 1000 samples in the test set to evalu-
ate model robustness. All three attacks are imple-
mented using TextAttack3 with the default parame-
ter settings.

C Training time measurement protocol

We measure the training time of each method on
GPU and exclude the time for I/O. Each method is
run three times and reports the average time. For a
fair comparison, every model is trained on a single
NVIDIA RTX 3090 GPU with the same batch size
for each dataset (8 for IMDB and 32 for the other
two datasets).

3https://github.com/QData/TextAttack
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