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Abstract

Cross-domain aspect-based sentiment analysis
(ABSA) aims to perform various fine-grained
sentiment analysis tasks on a target domain by
transferring knowledge from a source domain.
Since labeled data only exists in the source do-
main, a model is expected to bridge the domain
gap for tackling cross-domain ABSA. Though
domain adaptation methods have proven to be
effective, most of them are based on a discrim-
inative model, which needs to be specifically
designed for different ABSA tasks. To offer
a more general solution, we propose a unified
bidirectional generative framework to tackle
various cross-domain ABSA tasks. Specifi-
cally, our framework trains a generative model
in both text-to-label and label-to-text directions.
The former transforms each task into a uni-
fied format to learn domain-agnostic features,
and the latter generates natural sentences from
noisy labels for data augmentation, with which
a more accurate model can be trained. To in-
vestigate the effectiveness and generality of
our framework, we conduct extensive exper-
iments on four cross-domain ABSA tasks and
present new state-of-the-art results on all tasks.
Our data and code are publicly available at
https://github.com/DAMO-NLP-SG/BGCA.

1 Introduction

Aspect-based sentiment analysis (ABSA) is the
task of analyzing people’s sentiments at the aspect
level. It often involves several sentiment elements,
including aspects, opinions, and sentiments (Liu,
2012; Zhang et al., 2022). For instance, given the
sentence "The apple is sweet.", the aspect is ap-
ple, its opinion is sweet, and the corresponding
sentiment polarity is Positive. ABSA has attracted
increasing attention in the last decade, and various
tasks have been proposed to extract either single or
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multiple sentiment elements under different scenar-
ios. For example, aspect sentiment classification
(ASC) predicts the sentiment polarity of a given
aspect target (Chen et al., 2017; Li et al., 2018a;
Xu et al., 2020a) and aspect term extraction (ATE)
extracts aspects given the sentence (Li et al., 2018b;
Liu et al., 2015), while aspect sentiment triplet ex-
traction (ASTE) predicts all three elements in the
triplet format (Peng et al., 2020; Xu et al., 2021).

The main research line of ABSA focuses on
solving various tasks within a specific domain.
However, in real-world applications, such as E-
commerce websites, there often exist a wide vari-
ety of domains. Existing methods often struggle
when applying models trained in one domain to un-
seen domains, due to the variability of aspect and
opinion expressions across different domains (Ding
et al., 2017; Wang and Pan, 2018, 2019). Moreover,
manually labeling data for each domain can be
costly and time-consuming, particularly for ABSA
requiring fine-grained aspect-level annotation. This
motivates the task of cross-domain ABSA, where
only labeled data in the source domain is available
and the knowledge is expected to be transferable to
the target domain that only has unlabeled data.

To enable effective cross-domain ABSA, domain
adaptation techniques (Blitzer et al., 2006; Pan and
Yang, 2010) are employed to transfer learnt knowl-
edge from the labeled source domain to the unla-
beled target domain. They either focus on learning
domain-agnostic features (Ding et al., 2017; Wang
and Pan, 2018; Li et al., 2019c), or adapt the train-
ing distribution to the target domain (Gong et al.,
2020; Yu et al., 2021; Li et al., 2022). However, the
majority of these works are based on discriminative
models and need task-specific designs, making a
cross-domain model designed for one ABSA task
difficult to be extended for other tasks (Ding et al.,
2017; Wang and Pan, 2018; Li et al., 2019c; Gong
et al., 2020). In addition, some methods further
require external resources, such as domain-specific
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opinion lexicons (Yu et al., 2021), or extra models
for augmenting pseudo-labeled target domain data
(Yu et al., 2021; Li et al., 2022), which narrows
their application scenarios.

In a recent research line, pre-trained generative
models like BART (Lewis et al., 2020) and T5
(Raffel et al., 2020) have demonstrated impressive
power in unifying various ABSA tasks without any
task-specific design and external resources. By for-
mulating each task as a sequence-to-sequence prob-
lem and producing the desired label words, i.e., the
desired sentiment elements, they achieve substan-
tial improvements on various ABSA tasks (Zhang
et al., 2021b,c; Yan et al., 2021; Mao et al., 2022).
Despite their success in supervised in-domain set-
tings, their effectiveness has yet to be verified in the
cross-domain setting. Moreover, unlabeled data of
the target domain, which is usually easy to collect,
has shown to be of great importance for bringing in
domain-specific knowledge (Pan and Yang, 2010).
How to exploit such data with the generative for-
mulation remains a challenge.

Towards this end, we propose a Bidirectional
Generative Cross-domain ABSA (BGCA) frame-
work to fully exploit generative methods for various
cross-domain ABSA tasks. BGCA employs a uni-
fied sequence-to-sequence format but contains two
reverse directions: text-to-label and label-to-text.
The text-to-label direction converts an ABSA task
into a text generation problem, using the original
sentence as input and a sequence of sentiment tu-
ples as output. After training on the source labeled
data DS , the model can then directly conduct infer-
ence on the unlabeled data xT of the target domain
DT to get the prediction ŷT . The prediction can be
used as pseudo-labeled data to continue-train the
text-to-label model. However, ŷT is inevitably less
accurate due to the domain gap between the source
and target domains. This is where the reverse di-
rection, i.e., label-to-text, plays its role.

Specifically, we first reverse the order of input
and output from the text-to-label stage of the source
domain to train a label-to-text model. Then this
model takes the prediction ŷT as input and gener-
ates a coherent natural language text x̂T that con-
tains the label words of ŷT . Note that even though
the prediction ŷT could be inaccurate regarding
the original unlabeled data xT , the generated sen-
tence x̂T can plausibly well match with ŷT . This is
because the label-to-text model was trained to gen-
erate an output text that can appropriately describe

the input labels. Consequently, ŷT , drawn from
the target domain, is able to introduce in-domain
knowledge, thereby enhancing the overall under-
standing of the domain-specific information. In ad-
dition, x̂T aligns more closely with ŷT compared
to xT , which effectively minimizes the prediction
noise. As such, they can be paired together to cre-
ate a more accurate and reliable generated dataset.
Finally, the generated target data DG and the la-
beled source data DS can be combined to train the
model in the text-to-label direction, which effec-
tively enriches the model knowledge in the target
domain.

Our proposed BGCA framework exhibits some
unique advantages. Firstly, it effectively utilizes
the unlabeled target domain data by capturing im-
portant domain-specific words (i.e., sentiment ele-
ments) of the target domain in the first text-to-label
stage. In the meantime, it bypasses the issue from
the domain gap since it takes the noisy prediction
as input and obtains more accurate text-label pairs
in the label-to-text stage. Secondly, we fully lever-
age generative models’ encoding and generating
capabilities to predict labels and generate natural
sentences within a unified framework, which is in-
feasible for discriminative models. This allows the
model to seamlessly switch between the roles of
predictor and generator. Finally, BGCA utilizes a
shared model to perform training in both directions,
allowing for a more comprehensive understanding
of the association between sentences and labels.

In summary, our main contributions are: (1)
We evaluate generative methods on four cross-
domain ABSA tasks, including aspect term extrac-
tion (ATE), unified ABSA (UABSA), aspect opin-
ion pair extraction (AOPE), and aspect sentiment
triplet extraction (ASTE), and find that the gener-
ative approach is an effective solution. Without
any unlabeled target domain data, it can already
achieve better performance than previous discrim-
inative methods. (2) We propose a novel BGCA
framework to effectively utilize unlabeled target
domain data and train a shared model in reverse
directions. It can provide high-quality augmented
data by generating coherent sentences given noisy
labels and a unified solution to learn the associa-
tion between sentences and labels thoroughly. (3)
Our proposed method achieves new state-of-the-art
results on all tasks, which validate the effectiveness
and generality of our framework.
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The manager was [rude]NEG and handled the situation 
extremely poorly.

T5
text-to-label

The team also assists you very [nicely]POS when 
choosing which computer is right for you.

The drink menu looked [great]POS, but when the food 
came, it was [average]NEU.

Labeled Source
Dataset DS <pos> team <opinion> nicely  

<neg> manager <opinion> rude  

<pos> menu <opinion> great 

The manager was extremely [rude]NEG, and would not 
accept the return. ✓

The team also assists you very [nicely]POS when 
choosing which computer is right for you. 

The menu is absolutely [great]POS, with a wide variety 
of options to choose from. ✓

Train        Predict       Shared       Source       Target       Generated

Unlabeled Target 
Dataset DT

Labeled Source
Dataset DS

Generated 
Dataset DG

T5
label-to-text

(team, nicely, pos)

(manager, rude, neg) ✓

(menu, great, pos) ✘
(empty) ✘

<pos> team <opinion> nicely  

<neg> manager <opinion> rude  

<pos> menu <opinion> great 

(team, nicely, pos)

(manager, rude, neg) 

(menu, great, pos)

Figure 1: Overview of our proposed BGCA framework, which includes text-to-label and label-to-text directions.
We take examples from the ASTE task for illustration. Underlining and square brackets indicate gold aspects and
gold opinions, respectively. The gold labels for the target domain are shown for demonstration only. The generated
dataset will be combined with the labeled source dataset to conduct final training in a text-to-label manner.

2 Related Work

Cross-domain ABSA Cross-domain ABSA
aims to utilize labeled data from a source domain
to gain knowledge that can be applied to a tar-
get domain where only unlabeled data is available.
The main research line of cross-domain ABSA in-
volves two paradigms: feature-based adaptation
and data-based adaptation (Zhang et al., 2022).
Feature-based adaptation focus on learning domain-
invariant features. Some have utilized domain-
independent syntactic rules to minimize domain
gap (Jakob and Gurevych, 2010; Chernyshevich,
2014; Ding et al., 2017; Wang and Pan, 2018,
2019), while others have employed domain dis-
criminators to encourage the learning of universal
features (Li et al., 2019c; Yang et al., 2021; Zhou
et al., 2021; Zhang et al., 2021a). On the other
hand, data-based adaptation aims to adapt the train-
ing data distribution to the target domain. They
either adjust the importance of individual training
instances through re-weighting (Xia et al., 2014;
Gong et al., 2020), or generate additional training
data using another pre-trained model (Yu et al.,
2021; Li et al., 2022). Despite their effectiveness,
most of these works require task-specific design or
external resources, preventing easy extensions to
other cross-domain ABSA tasks.

Generative ABSA Recently, generative models
have obtained remarkable results in unifying var-
ious ABSA tasks. By formulating each ABSA
task as a sequence-to-sequence problem, genera-
tive models can output the desired sentiment ele-
ment words (Zhang et al., 2021c; Mao et al., 2022)

Task Output Tuple Example Output
ATE (a) (apple)

UABSA (a, s) (apple, positive)
AOPE (a, o) (apple, sweet)
ASTE (a, o, s) (apple, sweet, positive)

Table 1: Output tuple of various ABSA tasks, and ex-
ample output given the sentence "The apple is sweet.",
where a, o and s denote aspect, opinion and sentiment.

or their indexes (Yan et al., 2021) directly. In ad-
dition, some works successfully adopt the gener-
ative model on single ABSA tasks by converting
the task to a natural language generation or para-
phrase generation problem (Liu et al., 2021; Zhang
et al., 2021b). Nevertheless, their potential is not
explored under the cross-domain setting.

3 Problem Formulation

To examine the generality of our proposed frame-
work, we consider four ABSA tasks, including
ATE, UABSA, AOPE, and ASTE. Given a sen-
tence x = [w1, w2, ..., wn] with n words, the task
is to predict a set of sentiment tuples denoted as
y = {ti}|t|i=1, where each tuple ti may include a
single element from aspect (a), opinion (o), and
sentiment (s), or multiple elements in pair or triplet
format. The element within each tuple depends on
the specific ABSA task, detailed in Table 1.

Under the cross-domain ABSA setting, the train-
ing dataset consists of a set of labeled sentences
from a source domain DS =

{
xS
i ,y

S
i

}NS
i=1

and a
set of unlabeled sentences from a target domain
DT = {xT

j }NT
j=1. The goal is to leverage both DS
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and DT to train a model, which can predict the
label of test data from the target domain.

4 Methodology

We introduce our Bidirectional Generative Cross-
domain ABSA (BGCA) framework in this section.
As shown in Figure 1, it contains two sequential
stages, namely text-to-label, and label-to-text, to
obtain high-quality augmented data. The text-to-
label direction (on the top part) converts various
tasks into a unified format and can produce noisy
predictions on the unlabeled target data, whereas
the label-to-text direction (on the bottom part) uti-
lizes such noisy predictions to generate natural sen-
tences containing the given labels so as to aug-
ment high-quality training data and enriches model
knowledge of the target domain.

4.1 Text-to-label

The text-to-label direction unifies different ABSA
tasks into a sequence-to-sequence format. It takes
a sentence as input and outputs a sequence of sen-
timent tuples extracted from the sentence. We an-
notate the output sequence with predefined tagger
tokens to ensure a valid format, which can pre-
vent decoding ambiguity. The tagger tokens are k
continuous tokens {⟨mj⟩}kj=1 initialized by embed-
ding of the words {mj}kj=1. Specifically, we use
⟨aspect⟩, ⟨opinion⟩ to mark aspect and opinion
terms, and ⟨pos⟩, ⟨neu⟩, ⟨neg⟩ to annotate posi-
tive, neutral and negative sentiments. The output
formats with the continuous taggers for different
tasks are:

ATE : x ⇒ ⟨aspect⟩ a
UABSA : x ⇒ ⟨pos⟩ a
AOPE : x ⇒ ⟨aspect⟩ a ⟨opinion⟩ o
ASTE : x ⇒ ⟨pos⟩ a ⟨opinion⟩ o

(1)

where a and o denote the aspect and the opinion
terms, respectively. Taking ASTE as an example,
we use the format of ⟨pos⟩ followed by the ex-
tracted aspect word(s), and ⟨opinion⟩ followed by
the extracted opinion word(s) to annotate the posi-
tive opinion term expressed on the corresponding
aspect term in a sentence. Based on this format, we
are able to extract the aspect, opinion, and senti-
ment from the output sequence to form a complete
sentiment tuple through simple regular expressions.

The text-to-label direction is trained on {x,y}
pairs from DS by minimizing the standard maxi-
mum likelihood loss:

L = −
l∑

i=−1

log p (yi | x; y≤i−1) , (2)

where l denotes the sequence length.
After training on the source labeled data DS , we

can directly conduct inference on the target domain
DT to extract the sentiment tuples ŷT . During the
inference, we employ constrained decoding (Cao
et al., 2021) to ensure each generated token ŷTi
of the output sequence is selected from the input
sentence or the predefined tagger tokens, in order
to prevent invalid output sequences and ensure that
the output is relevant to the specific domain:

ŷTi = argmax
yj∈U

p
(
yj | xT ; ŷT≤i−1

)
, (3)

where U = {wi}ni=1 ∪ {⟨mj⟩}kj=1.

4.2 Label-to-text
Although the text-to-label model can be directly ap-
plied for prediction on the target domain, it does not
exploit the unlabeled target domain data in the train-
ing process, which has been proven to be crucial for
incorporating target-domain knowledge (Pan and
Yang, 2010). One straightforward way to eliminate
this problem is to use (xT , ŷT ) as pseudo-labeled
data to continue training the above text-to-label
model. However, such naive self-training suffers
from the noise of ŷT . Our label-to-text stage alle-
viates this weakness by pairing the label ŷT with a
new sentence that matches this label better.

Specifically, we continue to train the above
model using the labeled dataset from DS . Nev-
ertheless, the training pairs are reversed into the
label-to-text direction, where the input is now the
sequence y with sentiment tuples, and the output
is the original sentence x:

ATE : ⟨aspect⟩ a ⇒ x
UABSA : ⟨pos⟩ a ⇒ x
AOPE : ⟨aspect⟩ a ⟨opinion⟩ o ⇒ x
ASTE : ⟨pos⟩ a ⟨opinion⟩ o ⇒ x

(4)

Similarly, the label-to-text direction is trained on
{y,x} pairs from DS by minimizing the standard
maximum likelihood loss:

L = −
l′∑

i=−1

log p (xi | y;x≤i−1) , (5)

and l′ refers to the sequence length.
After training, we use the sentiment tuples ŷT ,

extracted from a target domain unlabeled data xT ,
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Task ATE&UABSA AOPE ASTE
L R D S L14 R14 R15 R16 L14 R14 R15 R16

Train 3045 3877 2557 1492 1035 1462 678 971 906 1266 605 857
Dev 304 387 255 149 116 163 76 108 219 310 148 210
Test 800 2158 1279 747 343 500 325 328 328 492 322 326

Table 2: The statistics of ATE, UABSA, AOPE and ASTE tasks

to generate a natural sentence x̂T incorporating the
sentiment information in ŷT . To ensure fluency
and naturalness, we decode the whole vocabulary
set:

x̂Ti = argmax
xj∈V

p
(
xj | ŷT ; x̂T≤i−1

)
, (6)

where V denotes the vocabulary of the model.
The label-to-text stage thus augments a gener-

ated dataset DG =
{
x̂T
i , ŷ

T
i

}NT
i=1

. By considering
each natural sentence as a combination of context
and sentiment elements, we can find that the gen-
erated sentence’s context is produced by a model
pre-trained on large-scale corpora and fine-tuned
on the labeled source domain, while its sentiment
elements such as aspects and opinions come from
the target domain. Therefore, DG can play the role
of an intermediary which connects the source and
target domains through the generated sentences.

As previously mentioned, due to the gap between
source and target domains, the text-to-label model’s
prediction on unlabeled target data is noisy. Instead
of improving the text-to-label model, which may be
difficult, our label-to-text stage creates a sentence
x̂T that is generated specifically for describing ŷT .
Thus, even with the presence of noise in the ex-
tracted labels ŷT , the label-to-text stage offers a
means of minimizing the negative impact and ulti-
mately yields a more accurate pseudo-training sam-
ple. Finally, since these two stages train a shared
model based on sentences and labels from two di-
rections, it gives the model a more comprehensive
understanding of the association between sentences
and labels, leading to a more accurate prediction of
labels for given sentences.

4.3 Training
Ideally, the generated dataset DG should fulfil the
following requirements: 1) the natural sentence
should exclusively contain sentiment elements that
are labeled in the sentiment tuples, and should not
include any additional sentiment elements; 2) the
natural sentence should accurately convey all the
sentiment elements as specified in the sentiment tu-
ples without any omissions; 3) the sentiment tuples

should be in a valid format and can be mapped back
to the original labels; Therefore, we post-process
{x̂t, ŷt} pairs from DG by: 1) filtering out pairs
with ŷt in invalid format or contains words not
present in x̂t; 2) utilizing the text-to-label model
to eliminate pairs where ŷt is different from the
model’s prediction on x̂t. In the end, we combine
the source domain DS , and the generated dataset
DG as the ultimate training dataset and continue to
train the same model in a text-to-label manner as
outlined in Section 4.1.

5 Experiments

5.1 Experimental Setup
Datasets We evaluate the proposed framework
on four cross-domain ABSA tasks, including ATE,
UABSA, AOPE, and ASTE. Datasets of these tasks
mainly consist of four different domains, which
are Laptop (L), Restaurant (R), Device (D), and
Service (S). L, also referred to as L14, contains
laptop reviews from SemEval ABSA challenge
2014 (Pontiki et al., 2014). R is a set of restau-
rant reviews based on SemEval ABSA challenges
2014, 2015, and 2016 (Pontiki et al., 2014, 2015,
2016), denoted as R14, R15, R16 for the AOPE
and ASTE tasks. D contains digital device reviews
provided by Toprak et al. (2010). S includes re-
views from web service, introduced by Hu and Liu
(2004). Specifically, we can perform the ATE and
UABSA tasks on all four domains, whereas the
AOPE and ASTE tasks can be conducted on L and
R domains, with R being further divided into R14,
R15, and R16. We follow the dataset setting pro-
vided by Yu et al. (2021) for the ATE and UABSA
task, and Fan et al. (2019), Xu et al. (2020b) for
the AOPE, ASTE task respectively. We show the
statistics in Table 2.

Settings We consider all possible transfers be-
tween each pair of domains for each task. Follow-
ing previous work (Li et al., 2019a,b; Gong et al.,
2020; Yu et al., 2021), we remove D→L and L→D
for the ATE and UABSA tasks due to their domain
similarity. Additionally, we exclude transfer pairs
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Methods S→R L→R D→R R→S L→S D→S R→L S→L R→D S→D Avg.
ATE
Hier-Joint† 46.39 48.61 42.96 27.18 25.22 29.28 34.11 33.02 34.81 35.00 35.66
RNSCN† 48.89 52.19 50.39 30.41 31.21 35.50 47.23 34.03 46.16 32.41 40.84
AD-SAL† 52.05 56.12 51.55 39.02 38.26 36.11 45.01 35.99 43.76 41.21 43.91
BERTB-UDA† 56.08 51.91 50.54 34.62 32.49 34.52 46.87 43.98 40.34 38.36 42.97
BERTB-CDRG† 56.26 60.03 52.71 42.36 47.08 41.85 46.65 39.51 32.60 36.97 45.60
GAS 61.24 53.02 56.44 31.19 32.14 35.72 52.24 43.76 42.24 37.77 44.58
BERTE-UDA†∗ 59.07 55.24 56.40 34.21 30.68 38.25 54.00 44.25 42.40 40.83 45.53
BERTE-CDRG†∗ 59.17 68.62 58.85 47.61 54.29 42.20 55.56 41.77 35.43 36.53 50.00
BGCAtext-to-label 60.03 55.39 55.83 36.02 35.43 37.73 54.18 43.45 42.49 37.89 45.84
BGCAlabel-to-text 63.20 69.53 65.33 45.86 44.85 54.07 57.13 46.15 37.15 38.24 52.15
UABSA
Hier-Joint† 31.10 33.54 32.87 15.56 13.90 19.04 20.72 22.65 24.53 23.24 23.72
RNSCN† 33.21 35.65 34.60 20.04 16.59 20.03 26.63 18.87 33.26 22.00 26.09
AD-SAL† 41.03 43.04 41.01 28.01 27.20 26.62 34.13 27.04 35.44 33.56 33.71
AHF 46.55 43.49 44.57 33.23 33.05 34.96 34.89 29.01 37.33 39.61 37.67
BERTB-UDA† 47.09 45.46 42.68 33.12 27.89 28.03 33.68 34.77 34.93 32.10 35.98
BERTB-CDRG† 47.92 49.79 47.64 35.14 38.14 37.22 38.68 33.69 27.46 34.08 38.98
GAS 54.61 49.06 53.40 30.99 29.64 33.34 43.50 35.12 39.29 35.81 40.48
BERTE-UDA†∗ 53.97 49.52 51.84 30.67 27.78 34.41 43.95 35.76 40.35 38.05 40.63
BERTE-CDRG†∗ 53.09 57.96 54.39 40.85 42.96 38.83 45.66 35.06 31.62 34.22 43.46
BGCAtext-to-label 54.12 48.08 52.65 33.26 30.67 35.26 44.57 36.01 41.19 36.55 41.24
BGCAlabel-to-text 56.39 61.69 59.12 43.20 39.76 47.94 45.52 36.40 34.16 36.57 46.07

Table 3: Results on cross-domain ATE and UABSA tasks. The best results are in bold. Results are the average
F1 scores over 5 runs. † denotes results from Yu et al. (2021), and the others are based on our implementation. ∗
represents methods that utilize external resources.

between R14, R15, and R16 for the AOPE and
ASTE tasks since they come from the same restau-
rant domain. As a result, there are ten transfer pairs
for the ATE and UABSA tasks, and six transfer
pairs for the AOPE and ASTE tasks, detailed in
Table 3 and 4. We denote our proposed frame-
work as BGCAlabel-to-text, which includes the bidi-
rectional augmentation and utilizes the augmented
data for training the final model. To investigate
the effectiveness of the generative framework for
cross-domain ABSA tasks, we also report the re-
sults with a single text-to-label direction, denoted
as BGCAtext-to-label, which is essentially a zero-shot
cross-domain method.

Metrics We choose the Micro-F1 score as the
evaluation metric for all tasks. A prediction is
counted as correct if and only if all the predicted
elements are exactly matched with gold labels.

Implementation Details We choose T5 (Raffel
et al., 2020) as our backbone model and use T5-
base checkpoint from huggingface1. It is a trans-
former model (Vaswani et al., 2017) that utilizes
the encoder-decoder architecture where all the pre-

1https://github.com/huggingface/

training tasks are in sequence-to-sequence format.
For simplicity, we use the Adam optimizer with
a learning rate of 3e-4, a fixed batch size of 16,
and a fixed gradient accumulation step of 2 for all
tasks. Regarding training epochs for text-to-label,
label-to-text, and final training, we search within a
range in {15, 20, 25, 30} using the validation set
of the source domain for selection. We train our
model on a single NVIDIA V100 GPU.

5.2 Baselines

For cross-domain ATE and UABSA tasks, we fol-
low previous works to compare with established
baselines including Hier-Joint (Ding et al., 2017),
RNSCN (Wang and Pan, 2018), AD-SAL (Li et al.,
2019c), AHF (Zhou et al., 2021), BERTB/E-UDA
(Gong et al., 2020), and BERTB/E-CDRG (Yu et al.,
2021) where BERTB and BERTE refer to models
based on the original BERT and the continually
trained BERT on large-scale E-commerce data con-
taining around 3.8 million reviews (Xu et al., 2019).
All of these methods utilize unlabeled target data,
and BERTB/E-CDRG are trained in a self-training
manner, which generates pseudo labels and retrain
a new model with such labels.
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Methods R14→L14 R15→L14 R16→L14 L14→R14 L14→R15 L14→R16 Avg.
AOPE
SDRN 45.39 37.45 38.66 47.63 41.34 46.36 42.81
RoBMRC 52.36 46.44 43.61 54.70 48.68 55.97 50.29
SpanASTE 51.90 48.15 47.30 61.97 55.58 63.26 54.69
GAS 57.58 53.23 52.17 64.60 60.26 66.69 59.09
BGCAtext-to-label 58.54 54.06 51.99 64.61 58.74 67.19 59.19
BGCAlabel-to-text 60.82 55.22 54.48 68.04 65.31 70.34 62.37
ASTE
RoBMRC 43.90 40.19 37.81 57.13 45.62 52.05 46.12
SpanASTE 45.83 42.50 40.57 57.24 49.02 55.77 48.49
GAS 49.57 43.78 45.24 64.40 56.26 63.14 53.73
BGCAtext-to-label 52.55 45.85 46.86 61.52 55.43 61.15 53.89
BGCAlabel-to-text 53.64 45.69 47.28 65.27 58.95 64.00 55.80

Table 4: Results on cross-domain AOPE and ASTE tasks. The best results are in bold. Results are the average F1
scores over 5 runs.

Methods ATE UABSA AOPE ASTE Avg.
BGCA† 52.15 46.07 62.37 55.80 54.10
- self-training* 46.13 41.56 61.33 55.99 51.25
- continue* 46.63 42.22 58.56 54.70 50.53
- w/o sharing 52.08 44.72 61.64 55.76 53.55

Table 5: Ablation Study. BGCA† represents our
BGCAlabel-to-text setting. * denotes replacing the label-
to-text stage with the corresponding training method.

For cross-domain AOPE and ASTE tasks, since
there is no existing work on these two tasks un-
der the cross-domain setting, we leverage the in-
domain state-of-the-art models in a zero-shot man-
ner for comparisons, including SDRN (Chen et al.,
2020) for AOPE, and RoBMRC (Liu et al., 2022),
SpanASTE (Xu et al., 2021) for ASTE task. In
addition, we also refine RoBMRC and SpanASTE
to work for the AOPE task by simply omitting the
prediction of sentiment polarity.

Most of the above baselines are discriminative
methods based on the pre-trained BERT model. To
enable a fair comparison, we also employ GAS
(Zhang et al., 2021c) for all four ABSA tasks,
which is a strong unified generation method based
on the same pre-trained generative model, i.e., T5-
base, as our proposed BGCA method.

5.3 Main Results

We report the main results for the ATE and UABSA
tasks in Table 3 and the AOPE and ASTE tasks
in Table 4. We have the following observations:
1) Our method with a single text-to-label direc-
tion (BGCAtext-to-label) establishes a strong baseline
for cross-domain ABSA tasks. Compared to dis-
criminative baseline methods without external re-
sources, it shows an improvement of 0.24%, 2.26%,
4.5%, and 5.4% on the cross-domain ATE, UABSA,

AOPE, and ASTE tasks, respectively. This demon-
strates that generative models can actually gener-
alize well across different domains with our de-
signed continuous tagger to indicate the desired
sentiment elements. 2) Our proposed framework
BGCAlabel-to-text with bidiretional augmentations
achieves new state-of-the-art results on all four
cross-domain ABSA tasks. It outperforms the pre-
vious best models by 2.15% and 2.61% on the ATE
and UABSA tasks and by 3.28% and 2.07% on
AOPE and ASTE. Notably, it requires no external
resources and can be seamlessly applied to all cross-
domain ABSA tasks. This verifies the generaliz-
ability and effectiveness of our proposed bidirec-
tional generation-based augmentation method. 3)
Compared to other generation-based methods such
as GAS and BGCAtext-to-label, BGCAlabel-to-text out-
performs all of them on four tasks, indicating that
the label-to-text direction can effectively utilize the
unlabeled target data and leverage the potential of
generative models.

5.4 Ablation Study

We conduct ablation studies to analyze the effec-
tiveness of each component in BGCA. Results of
different model variants are reported in Table 5.

Ablation on label-to-text generation To investi-
gate the effectiveness of the label-to-text direction,
and verify our assumption that it can fix the noisy
prediction issue, we replace it with the self-training
method and denote it as “self-training” in Table
5. Specifically, we use the pseudo labels of the
unlabeled target domain data extracted by the text-
to-label stage to replace our augmented data. As
shown in Table 5, the performance drops about
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Sentence from R Prediction Label-to-text Generation
The [service]POS was good to excellent
along with the [attitude]POS.

(service, POS)
The [service]POS I received from
Toshiba was excellent.

[Bottles of wine]POS are cheap and good. (bottles, POS)
I love the [bottles]POS they are made out
of.

Our [waitress]NEU wasn’t mean, but not
especially warm or attentive either.

(waitress, NEG)
The [waitress]NEG didn’t even answer
my question.

Table 6: Examples on L→R from the UABSA task. Gold aspects are marked by square brackets. POS, NEU and NEG
denote positive, neutral and negative sentiment.
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Figure 2: Comparison results of our method with a
different number of generations.

three points on average for four tasks. This in-
dicates that the pseudo-labeled samples from the
text-to-label model contain more noise. Adding
label-to-text generation could effectively address
this issue by generating pseudo-training data with
less noise. To further investigate the effectiveness
of generated samples, we manually check some
samples on L→R from the UABSA task and show
some representative samples in Table 6. Note that
the gold labels for the target domain are not avail-
able during training, and we display them here for
investigation only. The first two example’s predic-
tions either omit an aspect or gives an incomplete
aspect, while the third example’s prediction gives
the wrong sentiment. However, the label-to-text
model can generate a correct sentence that appropri-
ately describes the prediction, although it is inaccu-
rate regarding to the original input sentence. These
examples demonstrate how the label-to-text stage
can resolve noisy prediction issues and produce
high-quality target domain data.

Ablation on unlabeled data utilization Con-
tinue training has shown to be an effective method
to leverage unlabeled data by conducting pre-
training tasks on relevant corpora to capture
domain-specific knowledge (Xu et al., 2019; Gong
et al., 2020; Yu et al., 2021). We compare it with
our method to discuss how to utilize unlabeled data
for generative cross-domain ABSA and denote it
as “continue” in Table 5. Specifically, we replace

Group ATE UABSA
text→label label→text text→label label→text

Zero 45.31 36.48 50.02 39.18
Single 41.53 47.99 35.02 43.17

Multiple 26.61 37.20 21.99 29.59

Table 7: Comparison results on cross-domain ATE and
UABSA tasks over different sentence groups containing
zero, single, or multiple aspects respectively.

the label-to-text stage with conducting continue-
train on the unlabeled data of the target domain,
with the span reconstruction objective as original
T5 pre-training (Raffel et al., 2020). The results
show that continue training lies behind our pro-
posed method and demonstrate that our framework
can effectively utilize unlabeled target domain data.
The possible reason may be that continue training
requires many training samples, which is infeasible
in cross-domain ABSA scenarios.

Ablation on model sharing To demonstrate the
advantages of training a shared model in both direc-
tions, we compare it to a method where a model is
newly initialized before each stage of training and
denote it as “w/o sharing” in Table 5. Results on
four tasks show that our approach outperforms the
non-shared method by an average of 0.6%, suggest-
ing that a shared model owns a better understanding
of the association between sentences and labels.

5.5 Further Analysis

Analysis on number of generated samples Fig-
ure 2 shows the comparison results over four tasks
with different numbers of generated samples. To
better analyze the effect of the number of gener-
ations, we exclude the source training data and
solely use the generated samples for final train-
ing. There is an apparent trend of performance
improvement with the increasing number of gener-
ated samples, revealing that the generated samples
can boost cross-domain ability.

Analysis on improvement types To understand
what types of cases our method improved, we cate-

12279



gorize sentences from the test set into three groups:
without any aspect, with a single aspect, and with
multiple aspects. We conduct our analysis on the
cross-domain ATE and UABSA tasks since they
contain sentences without any aspect, and evalu-
ate the performance of both the text-to-label and
label-to-text settings for each group. We choose
sentence-level accuracy as the evaluation metric,
i.e., a sentence is counted as correct if and only if
all of its sentiment elements are correctly predicted.
We present the average accuracy across all trans-
fer pairs in Table 7. The text-to-label model has
less knowledge of the target domain and thus tends
to predict sentences as no aspect, leading to high
accuracy in the group without any aspect. How-
ever, it also misses many sentiment elements in
the other two groups. On the other hand, although
label-to-text lies behind text-to-label in the group
without any aspect, it significantly improves the
performance of sentences with single or multiple
aspects. This indicates that the label-to-text model
has obtained more target domain knowledge than
the text-to-label setting, and thus can identify more
sentiment elements.

6 Conclusions

In this work, we extend the generative method to
cross-domain ABSA tasks and propose a novel
BGCA framework to boost the generative model’s
cross-domain ability. Specifically, we train a shared
generative model in reverse directions, allowing
high-quality target domain augmentation and a uni-
fied solution to comprehend sentences and labels
fully. Experiments on four cross-domain ABSA
tasks verify the effectiveness of our method.

7 Limitations

In this paper, we present a bidirectional genera-
tive framework for cross-domain ABSA that has
achieved outstanding results on four cross-domain
ABSA tasks. Although there is only one stage
during inference, our method involves multiple
training stages, including text-to-label, label-to-
text, and final training. These additional training
stages not only lengthen the training time but also
require additional computational resources, which
may hinder scalability for large-scale data and re-
sult in a burden for the environment.
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