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Abstract

Prompt-tuning based few-shot learning has gar-
nered increasing attention in recent years due
to its efficiency and promising capability. To
achieve the best performance for natural lan-
guage processing (NLP) tasks with just a few
samples, it is vital to include as many informa-
tive samples as possible and to avoid mislead-
ing ones. However, there is no work in prompt-
tuning literature addressing the problem of dif-
ferentiating informative hard samples from mis-
leading ones in model training, which is chal-
lenging due to the lack of supervision signals
about the quality of the samples to train a well-
performed model. We propose a framework
named Hard Sample Aware Prompt-Tuning
(HardPT) to solve the non-differentiable prob-
lem in hard sample identification with rein-
forcement learning, and to strengthen the dis-
crimination of the feature space without chang-
ing the original data distribution via an adaptive
contrastive learning method. An extensive em-
pirical study on a series of NLP tasks demon-
strates the capability of HardPT in few-shot
scenarios. HardPT obtains new state-of-the-art
results on all evaluated NLP tasks, including
pushing the SST-5 accuracy to 49.5% (1.1%
point absolute improvement), QNLI accuracy
to 74.6% (1.9% absolute improvement), NMLI
accuracy to 71.5 (0.7% absolute improvement),
TACREV F1-score to 28.2 (1.0 absolute im-
provement), and i2b2/VA F1-score to 41.2 (1.3
absolute improvement).

1 Introduction

In recent years, self-supervised pre-trained lan-
guage models (PLMs) like GPT (Radford et al.,
2019), and BERT (Devlin et al., 2019) have gained
significant popularity in various natural language
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processing (NLP) tasks. These PLMs follow a
general paradigm of transferring contextual knowl-
edge to specific NLP tasks by fine-tuning model
parameters. With the release of GPT-3 (Brown
et al., 2020), prompt-tuning has received much at-
tention of late for its outstanding performance in
downstream NLP tasks, without the cost of fine-
tuning giant PLMs. Particularly, prompt-tuning
has shown great superiority in few-shot learning
scenarios over fine-tuning methods.

To achieve the best performance for NLP tasks
with just a few samples, it is vital to include as
many informative samples as possible and to avoid
misleading ones. However, there is no work in the
literature addressing the problem of differentiating
informative hard samples from misleading ones in
prompt-tuning.

The concept of hard samples has been discussed
in the field of computer vision for object detection
and image classification tasks (Shrivastava et al.,
2016; Lin et al., 2017). During the training process,
high-loss samples are typically selected as hard
samples, and their weights are adjusted through re-
sampling or modifying the loss. However, relying
solely on the loss function results in poor perfor-
mance in identifying misleading samples. Addi-
tionally, this approach can result in a drift of the
original data distribution and overlook the optimiza-
tion of the sample feature space.

Most recently, Zhu et al. (2022) proposes an ap-
proach named EHN which is specifically designed
for distinguishing hard samples from noisy sam-
ples in the context of histopathology image clas-
sification tasks. However, this method relies on
additional prior knowledge as supervision signals,
making it impractical for real-world applications.
Automatically differentiating misleading and hard
samples in NLP tasks is challenging due to the lack
of supervision signals about the quality of the sam-
ples to train a quality classification model. Another
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work, Dataset Cartography (DC) (Swayamdipta
et al., 2020) aims to mine the statistical metrics,
confidence, and variability, to evaluate the qual-
ity of samples in NLP datasets. However, DC
fails to differentiate between misleading and hard
samples, categorizing them both as “hard-to-learn”.
Accurately estimating the quality of NLP samples,
particularly non-committal language descriptions,
remains challenging.

To address the problem of differentiating in-
formative hard samples from misleading ones in
prompt-tuning, we propose a framework named
Hard Sample Aware Prompt-Tuning (HardPT). We
classify the samples into three categories: easy,
hard, and misleading samples. Easy samples
mean they are easily classified correctly by the
model, while the hard samples are meant to be dif-
ficult for the model to learn correctly. Misleading
samples refer to harmful samples during data an-
notation. Due to the lack of supervised signals for
sample quality, we design a reinforcement learning
network to solve the non-differentiable problem
in hard sample identification. To better leverage
the identified hard samples, we innovatively pro-
pose an adaptive contrastive learning method to
strengthen the discrimination of the feature space
without changing the original data distribution.

We conduct an extensive empirical study on
various NLP tasks to demonstrate the capability
of HardPT in few-shot scenarios. Remarkably,
HardPT achieved state-of-the-art (SOTA) results
across all evaluated NLP tasks, including pushing
the SST-5 accuracy to 49.5% (1.1% absolute im-
provement), improving the QNLI accuracy by 1.9
percentage points, resulting in a noteworthy 74.6%.
Moreover, HardPT improves the NMLI accuracy to
reach 71.5 (0.7% absolute improvement), TACREV
F1-score to 28.2 (1.0 absolute improvement), and
i2b2/VA F1-score to 41.2 (1.3 absolute improve-
ment). These results highlight the exceptional per-
formance of HardPT in the few-shot scenarios.

Our key contributions can be summarized as
follows:

• We introduce the problem of Hard Sample
Aware Prompt-Tuning and propose a Rein-
forcement Learning network to automatically
differentiate informative hard samples pre-
cisely from misleading samples.

• We propose adaptive contrastive learning to

strengthen the discrimination of the feature
space without changing the original data dis-
tribution.

• The extensive experiments show that HardPT
achieves SOTA performance in few-shot sce-
narios.

2 Related work

Prompt-Tuning: Prompt-tuning (Brown et al.,
2020; Zong et al., 2021; Lester et al., 2021; Han
et al., 2021; Vu et al., 2022; Liang et al., 2022;
Asai et al., 2022) is an efficient way to adapt pre-
trained language models (PLMs) to downstream
tasks without tuning the parameters of PLMs. De-
pending on the type of prompt, prompt-tuning is
divided into two categories: soft prompt and hard
prompt. Soft prompt leverage trainable parameters
as prompts (Lester et al., 2021; Vu et al., 2022; Asai
et al., 2022), while hard prompt employs natural
language strings as prompts. With the emergence
of GPT-3 (Brown et al., 2020), the hard prompt
has gained significant attention in recent years, par-
ticularly in the context of few-shot learning. And
intensive efforts have been devoted to improving
the prompts. Zong et al. (2021) utilize demonstra-
tions to enhance prompt-tuning in few-shot sce-
narios and achieve improvement on various NLP
datasets. Liang et al. (2022) introduce more demon-
strations and utilize contrastive learning to compare
different demonstrations on the same datasets. Han
et al. (2021) propose to construct prompts auto-
matically by combining sub-prompts with logic
rules. However, the impact of the samples remains
underexplored in prompt-tuning.

Contrastive Learning: Contrastive learning (CL)
(Chopra et al., 2005; Yan et al., 2021; Gao et al.,
2021b; Li et al., 2022) is an effective method for
representation learning that brings samples of the
same class closer together while pushing those of
different classes apart in the representation space.
CL can be divided into unsupervised CL and su-
pervised CL according to whether the pretext task
requires labeled data. Unsupervised CL has gained
widespread popularity because it reduces the need
for labeled data for the model. Yan et al. (2021)
utilize CL by generating two distinct augmented
versions of the same sentence. They employ four
methods as a data augmentation module at the em-
bedding layer. This approach effectively leverages
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Figure 1: The model architecture of HardPT can be divided into two steps. (a) Samples are classified into easy, hard, and
misleading categories by an agent. The labels in the Prediction column indicate the model’s prediction accuracy, with green
indicating correct, yellow indicating challenging, and red indicating incorrect. (b) To enhance learning on hard samples, a
contrast batch is constructed comprising positive and negative samples, represented by the orange and blue boxes respectively.
The PLM is employed to classify the hard samples, and the adaptive contrastive loss is used as the training loss.

CL to enhance the diversity and quality of the aug-
mented data. With the help of labeled data, super-
vised CL can further improve the quality of features.
Li et al. (2021) use CL to enhance the performance
in sentiment classification tasks. PairSCL (Li et al.,
2022) constructs a cross-attention module to en-
hance feature representations by capturing relation-
ships and similarities among samples. Since all
datasets in this paper are labeled, we use the super-
vised CL method to strengthen the representation
of hard samples.

Reinforcement Learning: In order to achieve
high performance in model training, a substan-
tial quantity of labeled samples are typically re-
quired. However, this abundance of data is of-
ten accompanied by a significant amount of noise.
The absence of labels in unsupervised learning sce-
narios can make it difficult to distinguish noise
from relevant information. Reinforcement learn-
ing (RL) (Sutton and Barto, 2018) techniques
have emerged as a promising solution to this chal-
lenge. Feng et al. (2018) and Zeng et al. (2018) em-
ploy RL to select high-quality training sentences,
while Qin et al. (2018) leverage it to identify false-
positive samples. Chen et al. (2020) treat a Deep
Q-Network (DQN) module as a label denoiser, ef-
fectively selecting the most reliable labels. We use
REINFORCE (Williams, 1992), a classical algo-
rithm that is also used in Zhang et al. (2021), to
obtain the assessment of sample quality.

3 Method

Previous research has demonstrated the effective-
ness of prompt-tuning as a practical approach to
address few-shot learning in NLP. However, many
existing methods only focus on categorizing data
into easy and hard samples, overlooking the crucial
distinction between hard samples and mislabeled
misleading samples. In the context of few-shot
learning, failure to distinguish between these two
types of samples can lead to underutilization of
the value inherent in hard samples and result in a
decline in model performance. Therefore, it is im-
perative to address this issue to fully leverage the
potential of hard samples in the few-shot scenario.

To illustrate and address these problems more
clearly, this section begins by introducing the fun-
damental paradigm of prompt-tuning in Section
3.1. Section 3.2 describes the HardPT algorithm,
which mainly includes the detection and utilization
methods of hard samples. Towards the end of this
section, we outline the training process of HardPT.

3.1 Basic Paradigm of Prompt-Tuning

Prompt-tuning: Based on the fine-tuning method
for NLP, the sentence is transformed into x =
{[CLS], t1, t2, · · · , tn, [SEP]} by adding a special
token [CLS] before the first token and [SEP] after
the last token. [CLS] is encoded to a feature for
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classification, which aggregates vital information
for specific tasks, and [SEP] is a separator between
two sentences. Prompt-tuning transforms the NLP
tasks into cloze tasks by designing a template con-
taining single or multiple masks connected to the
original sentence x. The template can be expressed
as xprompt = {ttemp1 , · · · , [MASK], · · · , ttempm},
and the final input of the PLM is T (x) =
{[CLS], t1, t2, · · · , tn, ttemp1 , · · · , [MASK], · · · ,
ttempm , [SEP]}. We can infer the classes of sam-
ples according to the hidden vector at the [MASK]
position through MLP or other classifiers.

3.2 HardPT

In the context of few-shot learning, we contend
that harnessing the full potential of hard samples,
which the model finds challenging to learn, is just
as crucial as accurately classifying easy-to-learn
samples and excluding misleading samples that hin-
der model training. To effectively utilize hard sam-
ples, we need to address the following two prob-
lems in sequence: identifying hard samples from
the datasets and devising effective learning meth-
ods that allow the pre-trained language model to
incorporate the knowledge contained within them.

The initial challenge in effectively leveraging
hard samples is the task of identifying them, es-
pecially in scenarios where supervised signals for
assessing sample quality are unavailable. To ad-
dress this issue, we propose an RL-based module,
as depicted in Fig.1 (a), that employs agents to
tackle unsupervised classification problems related
to sample quality.

The main concept is to update the decision-
making network based on the better performance
observed in the previous exploration, aiming to
achieve higher expected returns. These perfor-
mance improvements are treated as “labels” for
training the network.

The agent’s reward function is defined as the in-
crement of the F1-score on the validation set, repre-
senting the change of F1-score when training with
or without this module across all samples. During
the pre-training stage, each reward obtained trig-
gers a fine-tuning process of the PLM from scratch
to prevent error accumulation. The agent utilizes
the cross-entropy to update, and the policy update
method is expressed by the following formula:

πi+1(a | o)
= argmin{−Ez∼πi(a|o)[ϕ(z) ≥ ψi]logπi+1(a | o)} (1)

where o represents the observation at the present
moment, πi represents the policy at the current
moment i, and F (ϕ(z) ≥ ψi) is defined as the
labeling function. ϕ(z) represents the increment
of F1-score for one sample set. ψi represents the
reward threshold at the present moment i. ψi is a
hyperparameter determined by quantile statistics.

{
F (ϕ(z)) = 1, if ϕ(z) ≥ ψi

F (ϕ(z)) = 0, if ϕ(z) < ψi
(2)

In the training set, each annotated instance is associ-
ated with a ground-truth label and a predicted label
in each training epoch. By comparing the predicted
labels with the ground-truth labels, we construct a
set called Ncorrect to gather samples with accurate
predictions. Additionally, the agent generates a set
of hard samples based on its observations, referred
to as Nhard.

The second step involves maximizing the util-
ity of the hard samples identified in the first step.
Drawing inspiration from CL, our objective is to
reduce the distance between hard samples and easy
samples with the same label in the feature space.
Given that our scenarios involve supervised clas-
sification problems, we propose a novel module
based on supervised CL. This module addresses the
challenge of limited samples in few-shot scenarios
by incorporating various methods for constructing
multiple positive and negative samples.

For each hard sample xihard selected by the agent,
we employ three approaches to construct positive
and negative samples. The first approach involves
random sampling within the same batch. In this
method, samples with the same labels as the hard
sample are considered positive samples, while the
remaining samples are considered negative sam-
ples. The second approach uses back-translation. It
involves translating data from one language to an-
other and then translating it back to the original lan-
guage. This process introduces slight differences
in expression while maintaining semantic similar-
ity, making it an effective method for constructing
positive samples in NLP tasks. These two methods
are tailored for sentiment analysis and natural lan-
guage inference tasks. The last approach involves
entity replacement which is designed specifically
for relation extraction tasks. Two samples with
the same label are selected, and the head entities
and tail entities of each sample are interchanged
to generate positive and negative samples. By em-
ploying these approaches, the batch size of CL can
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Figure 2: The training process of HardPT consists of three stages. In Stage 1, the training features of hard samples are collected.
Stage 2 involves the creation of a few-shot learning scenario and utilizes the features obtained in the previous stage to pre-train
the agent. Finally, in Stage 3, positive and negative samples are generated for the hard samples identified in Stage 2 and fed into
the network for the final end-to-end training.

be increased.

In Fig.1 (b), the operation after sample construc-
tion is depicted. The positive sample and negative
sample are concatenated behind the hard sample,
forming a complete input fed into the PLM. The
goal is to minimize the loss ℓ through backpropa-
gation once the sentence-level feature is obtained.
The adaptive contrastive loss is defined as follows:

1

k

k∑

i=1

[
−λ exp(Dθ(x

i
hard, x

i
neg))

exp(Dθ(xihard, x
i
pos)) + exp(Dθ(xihard, x

i
neg))

]

+ β[LCE(x
i
pos) + LCE(x

i
neg) + LCE(x

i
hard)]

(3)
where λ and β are trainable parameters designed
to strike a balance between correction and predic-
tion. This module aims to align representations
of samples with the same label and separate rep-
resentations of samples with different labels. The
supervised contrastive loss is formed using cross-
entropy loss:

LCE(x
i
∗) =

M∑

C=1

yiC log piC (4)

where k is the total number of samples. ∗ can be
replaced by xihard, xipos, and xineg, which are the i-th
hard, positive, and negative sample, respectively.
M is the total number of categories. yiC is a func-
tion, when the label of xi is C, yiC = 1, otherwise
yiC = 0. log piC means the probability of observa-
tion i belonging to C.

S⃗i = Fθ
PLM(Si)

S⃗j = Fθ
PLM(Sj)

Dθ(S⃗i, S⃗j) = 1− S⃗i·S⃗j

∥Si∥2 ∥Sj∥2

(5)

Fθ
PLM(Si) represents the encoder of the PLM for

the [MASK] in the input sentence and θ is the train-
able parameters. Dθ(S⃗i, S⃗j) measures the dissimi-
larity between two vectors S⃗i and S⃗j .

3.3 Training Process

As depicted in Fig.2, we divide the overall train-
ing method into three stages. In the first stage, the
BERT-base model is employed to train all samples.
The objective here is to collect the loss of samples
during training and extract the encoded features
using the PLM. In the second stage, we pre-train
the hard sample identification module. We ran-
domly sample from the dataset to create a subset
of data that adheres to the few-shot scenario and
utilize the agent to identify hard samples within
this subset. After multiple epochs, we calculate the
agent’s reward, which corresponds to the increase
in the F1-score achieved by using the RL module.
In the third stage, we perform end-to-end training
on the few-shot scenarios of the dataset. Both the
agents and PLM are fine-tuned using the informa-
tion obtained from the previous two stages. For the
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SST-2 SST-5 MR MPQA MNLI QNLI RTE

BERT 87.7 41.7 79.5 69.6 66.3 66.9 57.4
BERT+Prompt-Tuning 89.1 42.3 83.3 75.3 69.2 67.8 55.1
BERT+Focal loss 76.5 39.8 74.2 50.8 61.6 61.6 53.3
SCL+Prompt-Tuning 91.0 42.8 84.6 85.2 70.3 67.7 64.2
LM-BFF† (Gao et al., 2021a) 91.8 43.9 87.2 84.3 69.7 68.4 68.9
Demo-Tuning† (Liang et al., 2022) 93.2 48.1 88.1 85.8 70.8 72.7 70.2

HardPT 93.6 49.2 88.5 86.3 71.5 74.6 71.1

Table 1: The performance of SA and NLI tasks in a few-shot setting with K = 16, where K represents the number of samples
selected for each category. We randomly sample from the dataset and average the performance. The datasets marked as “†”
indicate the reproduction results obtained from the original codes. Accuracy is used as the evaluation metric.

TACRED TACREV Re-TACRED SemEval i2b2/VA DDI

BERT 20.6 25.4 47.4 60.3 22.8 26.7
BERT+Prompt-Tuning 26.6 24.2 50.1 68.0 37.2 35.4
PTR† (Han et al., 2021) 30.7 27.2 51.8 79.1 39.9 38.1

HardPT 31.1 28.2 52.1 79.9 41.2 38.7

Table 2: The performance of RE tasks in a few-shot setting with K = 16 and the evaluation metric is F1-score. For the general
scenario, we use the same templates as PTR. Additionally, we design biomedical templates, and their details are in Appendix A.

hard samples identified by the agent, we employ
the adaptive contrastive learning method to extract
valuable information from these samples. It is to be
noticed that the first stage need not be limited to the
datasets of current tasks, other available corpora
within the domain could also help sample quality
representation.

4 Experiment

In this section, we present the experimental setup
and results, which are divided into three parts. In
Section 4.1, we provide a brief description of the
public datasets utilized in this paper. The baseline
models employed in the experiments are outlined in
Section 4.2. In Section 4.3, we present the results
and provide a detailed analysis. For additional in-
formation regarding the dataset, experimental con-
ditions, and hyperparameter settings, please refer
to Appendices A to C.

4.1 Datasets

To verify the effectiveness of HardPT, we select
several representative NLP tasks including Senti-
ment Analysis (SA), Natural Language Inference
(NLI), and sentence-level Relation Extraction (RE).

The SA and NLI tasks utilize datasets selected
from the GLUE benchmark (Wang et al., 2019).
The SA task involves classifying text based on per-

sonal subjective sentiment, categorizing it into pos-
itive, negative, or more categories. The SA task
consists of binary classification datasets such as
SST-2 (Socher et al., 2013), MR (Pang and Lee,
2005), and MPQA (Wiebe et al., 2005). The SST-
5 dataset (Socher et al., 2013) is a well-known
multi-classification dataset comprising five classes.
The NLI task involves predicting the relationship
between a given premise proposition and a hypo-
thetical proposition, categorizing it as entailment,
neutral, or contradiction. Several well-known NLI
datasets we used include MNLI (Williams et al.,
2018), QNLI (Rajpurkar et al., 2016), and RTE (Da-
gan et al., 2005; Bar-Haim et al., 2006; Giampic-
colo et al., 2007, 2008; Bentivogli et al., 2009,
2010, 2011).

The sentence-level RE task involves classify-
ing the relations between specified entities in a
sentence. We utilized several classical datasets in
our study. In the general domain, we employ TA-
CRED (Zhang et al., 2017), TACREV (Alt et al.,
2020), and Re-TACRED (Stoica et al., 2021). Addi-
tionally, we included the biomedical datasets DDI
(Segura-Bedmar et al., 2013) and i2b2/VA (Uzuner
et al., 2011).

4.2 Baselines

The baselines for the SA and NLI tasks include
vanilla BERT, prompt-tuning based BERT, vanilla
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BERT with focal loss, supervised contrastive learn-
ing (SCL) models (Gunel et al., 2020), LM-BFF
(Gao et al., 2021a), and Demo-Tuning (Liang et al.,
2022) (current SOTA). As for the RE task, in ad-
dition to vanilla BERT and prompt-tuning based
models, we also include PTR as a baseline.

The vanilla BERT serves as a benchmark com-
pared to traditional PLM-based models. The
prompt-based model has gained popularity in ap-
plying PLMs to few-shot scenarios by constructing
task-specific prompts. Focal Loss, originally pro-
posed in the CV field, addresses the challenge of
handling hard samples and has been adapted to
PLMs to explore its potential. SCL is a funda-
mental framework based on CL in NLP, which has
proven effective for few-shot learning. LM-BFF
and Demo-tuning are two prompt-based methods
for NLP tasks that have achieved SOTA perfor-
mance on various established datasets. PTR, a clas-
sic prompt-based method, is specifically tailored
for the RE task. Evaluation measures for the SA
and NLI tasks are accuracy, while the RE task is
evaluated using the F1-score.

4.3 Experimental Results

The performance of HardPT and the baselines
are presented in Table 1 and Table 2. The PLM-
based prompt-tuning exhibits significant superior-
ity over traditional fine-tuning methods across all
tasks. This compelling result proves that prompt-
tuning can further enhance the utilization efficiency
of PLM in few-shot scenarios, enabling them to ef-
fectively absorb knowledge from the training set.

In SA and NLI tasks, using focal loss as the
fine-tuning objective function of fine-tuning does
not effectively address the challenge of hard sam-
ples within PLMs. This suggests that inference-
based confidence measures are inadequate for as-
sessing the difficulty of natural language samples.
Moreover, altering the sample distribution through
weighting in the loss function may result in train-
ing target deviations for PLMs. HardPT addresses
these limitations by constructing positive and neg-
ative samples with a specific target, thereby en-
hancing the model’s capabilities. Notably, HardPT
achieves improved performance on PLMs under the
few-shot setting while maintaining template sim-
plicity and consistency. Our results, as shown in Ta-
ble 1, demonstrate new SOTA performance across
all evaluated datasets, with notable achievements

Dataset Random
Stratification

Loss
Ranking HardPT

SST-2 34.1 74.1 93.6
SST-5 20.6 35.3 49.2
MR 54.2 69.6 88.5

TACRED 52.7 62.9 69.8
TACREV 61.9 72.8 79.1
Re-TACRED 71.5 85.6 90.5
SemEval 73.5 84.2 89.1

Table 3: Comparison of hard sample identification methods in
few-shot learning scenarios. Random stratification refers to
the scenario where hard samples are not specifically selected.
Loss ranking involves selecting hard samples based on the
sorting of sample losses in the model.

including a 1.1% absolute accuracy improvement
on SST-5 and a 1.9% absolute accuracy improve-
ment on QNLI.

As presented in Table 2, in RE tasks we achieve a
notable improvement in the F1-score for TACREV,
with an increase of 1.0. Additionally, we observe
an improvement of 1.3 in the F1-score for i2b2/VA
and a 0.6 improvement for DDI. These results on
the i2b2/VA and DDI datasets highlight the strong
transferability of HardPT, demonstrating its ability
to deliver exceptional performance not only in the
general domain but also in specific domains.

The results demonstrate that HardPT effectively
distinguishes hard samples from misleading ones
and utilizes CL to mine hard samples, thereby sig-
nificantly enhancing sample utilization efficiency
in few-shot scenarios on top of prompt-tuning.

5 Analysis

To validate the effectiveness of each component
in HardPT and its robustness against noise, we
conducted several controlled experiments. Firstly,
we conducted ablation experiments to verify the
impact of hard sample identification and the sam-
ple augmentation method in contrastive learning.
Secondly, we performed experiments to assess the
algorithm’s robustness in the presence of noise.

5.1 Ablation Experiments

We conduct two ablation experiments: the first
one validates the effectiveness of hard sample iden-
tification, and the second one examines the impact
of using different languages for back-translation in
the adaptive contrastive module.
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Effectiveness of hard sample identification mod-
ule. To validate the effectiveness of the hard sam-
ple identification module, we establish two control
groups. The first group is the random stratification,
where the samples are randomly divided into easy,
hard, and misleading categories, without any spe-
cific identification of hard samples by the model.
The second group involves partitioning the samples
based on training loss ranking, which represents
a basic mechanism for selecting potentially hard
samples. In this case, we set the quantiles for easy
and hard samples at 0.3 and 0.7, respectively.

Table 3 demonstrates that the hard sample identi-
fication used in HardPT outperforms both random
stratification and loss ranking alone. This indicates
that the agent has learned relevant sample quality
features. There are two reasons why using loss
ranking alone is less effective. Firstly, HardPT in-
corporates more input information by considering
both sample features and training loss comprehen-
sively, whereas loss ranking only focuses on the
loss and overlooks sample features. Secondly, the
loss ranking method may confuse hard samples
with misleading samples. Both hard samples and
misleading samples exhibit higher losses during
training, but loss ranking methods fail to effectively
differentiate between them.

Choice of back-translation method. In the adap-
tive contrastive learning module, we investigate
the importance of language selection in construct-
ing positive and negative samples. Given that the
original dataset is in English, we compare the im-
pact of using French, a language close to English,
and Vietnamese, a language significantly different
from English. As depicted in Table 4, employing
Vietnamese as an intermediate language introduces
considerable bias in back-translation, resulting in
unnecessary additional noise. Hence, when design-
ing the back-translation module, it is crucial to
consider language differences, and using similar
languages may be more suitable for constructing
positive and negative samples.

5.2 Robustness Experiment

In order to mitigate the potential influence of mis-
labeled labels in the original dataset, we carefully
select two datasets, SST-2 and SemEval, known for
their high-quality labels. To simulate the impact of
noise in real-world scenarios, we introduce artifi-
cial noise into the few-shot scenario of SST-2 and

Dataset Vietnamese French

SST-2 85.1 93.6
SST-5 39.6 49.2
MR 84.2 88.6

Table 4: The impact of different back translation methods on
SA task performance. We examine the effect of using different
intermediate languages, specifically French and Vietnamese,
on the construction of positive and negative samples.

SemEval at a ratio of 10%. The results presented
in Table 5 demonstrate that all models experience
a decline in performance in the presence of noise.
However, when compared to vanilla BERT and
prompt-tuning based BERT, HardPT exhibits su-
perior resistance to noise and greater robustness.
These findings also indicate that the prompt-tuning
method carries the risk of magnifying the influence
of misleading samples in noisy scenarios.

Model SST-2
(with 10% noise)

SemEval
(with 10% noise)

BERT 83.2 (-5.13%) 71.9 (-17.5%)
Prompt-tuning 80.9 (-9.20%) 75.3 (-15.5%)
HardPT 85.5 (-8.60%) 80.1 (-12.3%)

Table 5: Robustness verification results in the noisy scenario.
To simulate real-world noisy datasets, SST-2 and SemEval are
randomly injected with 10% noise, i.e., incorrect labels. We
compared the performance of our model with two baselines:
vanilla BERT and prompt-tuning based BERT.

6 Conclusions

This paper proposes HardPT, the first prompt-
tuning framework for hard sample identification
and utilization. HardPT focuses on the influence
of sample quality on the model in the few-shot sce-
nario based on prompt-tuning. Our method can
distinguish hard samples from misleading samples
without data quality labels, and mine the informa-
tion contained in hard samples using contrastive
learning based on the features of hard samples. An
extensive empirical study on a series of NLP tasks
demonstrates the capability of HardPT in few-shot
scenarios. HardPT obtains new SOTA results on all
evaluated NLP tasks, including pushing the SST-5
accuracy to 49.5% (1.1% point absolute improve-
ment), QNLI accuracy to 74.6% (1.9% absolute
improvement), NMLI accuracy to 71.5 (0.7% abso-
lute improvement), TACREV F1-score to 28.2 (1.0
absolute improvement), and i2b2/VA F1-score to
41.2 (1.3 absolute improvement).
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Limitation

In HardPT, we focus on training specifically on
hard samples while discarding misleading samples.
However, it is worth acknowledging that these mis-
leading samples may potentially contain valuable
information. Additionally, finding quantifiable and
interpretable evaluation metrics to accurately as-
sess the model’s ability to identify misleading and
hard samples is a crucial challenge. In our future
work, we plan to explore strategies for correcting
mislabeled samples and develop evaluation metrics
that accurately measure the accuracy of sample par-
titioning. Our aim is to maximize the utilization of
all available information from the original dataset.
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A Datasets

Table A and Table B present the statistics of each
dataset used in this study. They provide informa-
tion on the task type, as well as the number of
samples in the training and testing datasets. Specif-
ically, Table A displays the datasets information
in SA and NLI tasks, while Table B presents the
datasets information in RE tasks. The templates of
i2b2/VA dataset are shown in Table C. The template
of DDI dataset is “The relationship of [MASK]1 and
[MASK]2 is [MASK]3”.

Dataset Task type #Train #Test |Y|
SST-2 sentiment 6,920 872 2
SST-5 sentiment 8,544 2,210 5
MR sentiment 8,662 2,000 2
MPQA opinion polarity 8,606 2,000 2
MNLI NLI 392,702 9,815 3
QNLI NLI 104,743 5,463 2
RTE NLI 2,490 277 2

Table A: The statistics of the datasets used in this work. |Y|
denotes number of classes. In our few-shot setting, we only
sample K × |Y| examples in Dtrain.

Dataset Task type #Train #Val #Test |Y|
TACRED RE 68,124 22,631 15,509 42
TACREV RE 68,124 22,631 15,509 42
RE-TACRED RE 58,465 19,584 13,418 40
SEMEVAL RE 6,507 1,493 2,717 19
I2B2/VA RE 8,184 2,047 19,114 9
DDI RE 22,232 5,559 5,716 5

Table B: The RE datasets evaluated in this work. |Y| denotes
number of classes. In our few-shot setting, we only sample K
× |Y| examples in Dtrain and Dval, respectively.

Class Label [MASK]1 [MASK]2 [MASK]3

TrIP treatment is beneficial for problem
TrWP treatment is useless for problem
TrCP treatment is cause for problem
TrAP treatment is treatment for problem
TrNAP treatment is avoided because problem
TeRP test has revealed the problem
TeCP test is for detecting problem
PIP problem is relevant of problem
None entity is irrelevant of entity

Table C: The relations contained in the i2b2/VA dataset, and
specific templates corresponding to each relation. Combined
with the template, the input to the model is: “<S>. The
[MASK]1 [MASK]2 [MASK]3.”

B Environment of Experiments

The experimental environment is equipped with
32 V100 GPUs, and approximately 5000 GPU
hours are allocated on average to train a single
model.

C Parameters of Experiments

Hyperparameters: We maintain consistent and
neutral settings across all experiments to mitigate
potential bias in the experimental results attributed
to hyperparameters. Our model experiments em-
ploy fixed hyperparameters, while other models
adhere to the original settings outlined in their re-
spective papers.

In the experiments, our batch size is set to 16.
All the models used AdamW as an optimizer. The
learning rates of the agent model are set to 3e-
6 and 3e-5 in GLUE benchmarks and RE tasks,
respectively. In contrastive learning, the learning
rates are set to 3e-4 and 1e-6. Initially, the trainable
parameters in the loss function, responsible for
balancing the contrastive loss and cross-entropy
loss, are set to 1.0.
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