
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 12427–12440

July 9-14, 2023 ©2023 Association for Computational Linguistics

Transforming Visual Scene Graphs to Image Captions

Xu Yang1 Jiawei Peng1 Zihua Wang1 Haiyang Xu2∗ Qinghao Ye 2

Chenliang Li2 Songfang Huang2 Fei Huang2 Zhangzikang Li1 Yu Zhang1∗

1 School of Computer Science & Engineering, Key Lab of Computer Network
& Information Integration (Ministry of Education), Southeast Univ., Nanjing, China

2Alibaba Group
{101013120, pengjiawei, zihua, zhang_yu}@seu.edu.cn,{shuofeng.xhy, yeqinghao.yqh,

lcl193798, songfang.hsf}@alibaba-inc.com, {fairhuang, lizhangzikang}@gmail.com

Abstract

We propose to TransForm Scene Graphs into
more descriptive Captions (TFSGC). In TF-
SGC, we apply multi-head attention (MHA)
to design the Graph Neural Network (GNN)
for embedding scene graphs. After embed-
ding, different graph embeddings contain di-
verse specific knowledge for generating the
words with different part-of-speech, e.g., ob-
ject/attribute embedding is good for generat-
ing nouns/adjectives. Motivated by this, we
design a Mixture-of-Expert (MOE)-based de-
coder, where each expert is built on MHA, for
discriminating the graph embeddings to gener-
ate different kinds of words. Since both the
encoder and decoder are built based on the
MHA, as a result, we construct a simple and
homogeneous encoder-decoder unlike the pre-
vious heterogeneous ones which usually apply
Fully-Connected-based GNN and LSTM-based
decoder. The homogeneous architecture en-
ables us to unify the training configuration of
the whole model instead of specifying differ-
ent training strategies for diverse sub-networks
as in the heterogeneous pipeline, which re-
leases the training difficulty. Extensive experi-
ments on the MS-COCO captioning benchmark
validate the effectiveness of our TFSGC. The
code is in: https://anonymous.4open.science/r/
ACL23_TFSGC.

1 Introduction

Image captioning, which aims to generate one sen-
tence for describing multi-aspects of an image,
has made huge progress since the proposal of the
encoder-decoder framework (Vinyals et al., 2015;
Xu et al., 2015). Such a framework contains one
visual encoder to extract a series of visual features
from the image and one language decoder to gen-
erate captions from the extracted visual features.
Since the visual encoder is usually well pre-trained
by image classification and object detection, the

*Corresponding authors.

extracted features contain abundant knowledge of
the object categories, which enables the captioning
model to generate object-abundant captions.

However, object category is not the only visual
pattern that matters for high-quality captions (An-
derson et al., 2018; Jiang et al., 2020), object at-
tributes and relations also play significant roles in
generating descriptive captions, i.e., the caption
containing multi-aspects of an image. Motivated
by this, researchers propose to incorporate addi-
tional semantic knowledge, e.g., object categories,
attributes, and relations, into the captioning models
by using the scene graph as the mediator (Yao et al.,
2018; Yang et al., 2020). Scene graphs assign each
object node with certain attribute nodes and some
pairwise objects with certain relation nodes. These
nodes are represented by the corresponding seman-
tic tags, e.g., as shown in Fig. 1, the object “dog” is
assigned with the attribute “black” and the pairwise
objects “dog” and “fish” have the relation “bite” in
between. To exploit the scene graph, Graph Neural
Network (GNN) (Battaglia et al., 2018) is deployed
to embed the graphs and the output embeddings are
input to the decoder for captioning.

The top part of Fig. 1 shows the pipeline
of the previous popular GNN-based captioning
model (Yao et al., 2018; Yang et al., 2020), which
implements GNN as a few Fully-Connected (FC)
and non-linear activation layers. To update the
node embedding, this GNN maps the concatenated
neighbour embeddings into the new one (Xu et al.,
2019). Then the updated graph embeddings are
input into the language decoder that contains a few
LSTM layers and an attention module. The LSTM
layers are used to generate the context vector based
on the partially generated captions. This context
vector works as the query in the attention module
for determining which graph embeddings should be
used to generate the next word. Compared with the
models without GNN, this GNN-LSTM pipeline
usually gets better performance.

12427

https://anonymous.4open.science/r/ACL23_TFSGC
https://anonymous.4open.science/r/ACL23_TFSGC


(a) Scene Graph (b) Encoder

FNN

Add&LN

Multi-head

Self Attention

GNN-LSTM

(c) Graph Embedding (d) Decoder

MHA

FNN

MHA MHA

MHA MHA-based

TFSGC

… …

…

MLP LSTM-based

Caption:

Add&LN Add&LN Add&LN

LSTM1

LSTM2

Attention

dog
fish

grass

bite

black

on

Caption:

A black dog biting a fish 

is running on the grass.

A dog that is standing 

in the grass.

Figure 1: Comparison between traditional heterogeneous GNN-LSTM (top part) and our homogeneous TFSGC
model (bottom part). In GNN-LSTM, they use MLP-based GNN and do not discriminate the graph embeddings
(grey colour in (c) is used to strengthen such indiscrimination). In TFSGC, we use MHA to design the GNN
and the decoder and discriminate diverse graph embeddings (different colours in (c) are used to strengthen such
discrimination).

However, this GNN-LSTM framework implies
two flaws which hinder the further improvement
of applying scene graphs. First, FC-based GNN
and LSTM do not share the same building blocks
and thus the constructed model is a heteroge-
neous structure, which requires well-chosen train-
ing strategies, e.g., choosing different learning rates
or optimizers for different sub-networks, to achieve
the best performance (Yang et al., 2020). Finding
such training configurations is a labour-intensive
process. Second, the graph embeddings are indis-
criminately selected during captioning (the grey
embeddings in Fig. 1 top (c) denote such indis-
crimination), which causes less descriptive cap-
tions. While intuitively, different kinds of node em-
beddings should be used for generating the words
with diverse part-of-speech (POS), e.g., the objec-
t/attribute/relation embeddings should be more re-
sponsible for the nouns/adjectives/verbs, respec-
tively (Yang et al., 2019b).

To alleviate the above-mentioned flaws, we
propose a novel homogeneous captioning model
to Transform Scene Graphs (TFSGC) into cap-
tions. Our TFSGC is built based on the Trans-
former (Vaswani et al., 2017) since it is more pow-
erful than LSTM in image captioning (Herdade
et al., 2019; Li et al., 2019; Cornia et al., 2020).
TFSGC is homogeneous since we use multi-head
attention (MHA) to design both the graph encoder
to embed the scene graphs and the language de-
coder to generate the caption.

Our design principle is quite simple where we
do not need to revise the self-attention operation
but only need to reformulate the input data struc-
ture. Specifically, to design GNN by MHA, we

first linearize the scene graph into a token sequence
and introduce a binary mask to index which two
nodes are connected in the graph. Then we use
the masked MHA operation to deal with this lin-
earized token sequence for graph embedding. In
this process, each token embedding is added by a
learnable type embedding to index the token type
(e.g., object/attribute/relation) and we will show
that such type embedding can help distinguish the
edge type during the attention calculation.

After graph operation, we get a series of objec-
t/attribute/relation embeddings, which will be used
in the decoder for captioning. To make the decoder
discriminate different embeddings for generating
different words, we learn from MOE networks (Ja-
cobs et al., 1991; Xue et al., 2022; Du et al., 2022)
to revise the original Transformer decoder with two
strategies. First, as Fig. 1 bottom (d) shows, we use
three encoder-decoder attention layers, which are
built on MHA, as three experts to address objec-
t/attribute/relation embeddings, respectively. Sec-
ond, we incorporate an attention-based soft routing
network to discriminate which kinds of embed-
dings should be more responsible for generating
the next word. Both the MOE-decoder and the
type embedding in the encoder help distinguish
node embeddings for better captions. We carry
exhaustive ablation studies and comparisons to val-
idate the effectiveness of TFSGC and it achieves
132.3/138.6/139.5 CIDEr scores when using BUT-
D/Patch/VinVL features.

2 Related Work

Image Captioning. For a long time, the attention-
based CNN-LSTM pipeline (Vinyals et al., 2015;

12428



Xu et al., 2015) is the most popular backbone for
captioning and various techniques have been added
into it for better performance, including building
stronger visual encoders (Lu et al., 2018; Jiang
et al., 2020), designing more advanced attention
mechanisms (Anderson et al., 2018; Wang et al.,
2020), incorporating semantic knowledge (You
et al., 2016; Gan et al., 2017; Yao et al., 2018; Yang
et al., 2020), and exploiting language structure (Lu
et al., 2017; Yang et al., 2019b).

Recently, Transformer (Vaswani et al., 2017)
has gradually substituted LSTM as the mainstream
language decoder in image captioning (Herdade
et al., 2019; Li et al., 2019) since it achieves bet-
ter performances than the LSTM-based models.
Based on this new backbone, researchers develop
more advanced strategies for further improving the
effectiveness, including designing more sophisti-
cated attention mechanisms (Huang et al., 2019;
Pan et al., 2020), introducing additional memory
blocks (Cornia et al., 2020; Yang et al., 2021b), dis-
tilling knowledge from the large-scale pre-training
models (Radford et al., 2021; Li et al., 2021; Xu
et al., 2021), and exploiting Transformer-based vi-
sual encoders (Wang et al., 2022; Fang et al., 2022),
modularized design for large-scale multi-modal
pretraining (Li et al., 2022; Xu et al., 2023; Ye
et al., 2023). Since the recently proposed SOTA
models use Transformer as the backbone, we also
built TFSGC based on Transformer for fair com-
parison.

Graph Neural Network (GNN). Scene Graph ab-
stracts the major visual patterns in a visual scene
as a graph. It is usually used as the mediator to nar-
row the gap between the vision and the language
domains. To incorporate scene graphs into deep
networks, GNN (Battaglia et al., 2018) is used to
embed the discrete node labels into dense embed-
dings. However, most of the previous GNNs are
MLP-based (Yang et al., 2020; Yao et al., 2018;
Xu et al., 2019; Milewski et al., 2020; Zhong et al.,
2020), which may limit the effectiveness of embed-
ding scene graphs in a Transformer architecture.
In our research, we design an MHA-based GNN
to remedy this limitation. Moreover, noisy scene
graphs may damage the performances (Nguyen
et al., 2021), so we use better scene graph parsers
to minimize the impact of noise on our model.

Mixture of Experts (MOE). The major idea of
MOE is to construct a network with lots of ex-
perts where different experts deal with diverse sam-

ples (Jacobs et al., 1991; Shazeer et al., 2017).
When a sample is input to the MOE network, a
routing network will decide which experts should
be more responsible for this input. Thus MOE nat-
urally fits our case where we hope diverse experts
can discriminate graph embeddings for generating
the words with different POS. Different from the
existent MOE-based Transformer (Lepikhin et al.,
2020; Xue et al., 2022; Du et al., 2022) which ap-
plies various feed-forward networks as different
experts, we set three encoder-decoder attention lay-
ers as different experts where the query is set to the
same context vector while the key and value are set
to object/attribute/relation embeddings.

3 Revisiting of Transformer

We first revisit the Transformer-based captioning
model and then introduce how to revise it to get
our TFSGC in the next section. Transformer-
based model contains a visual encoder to calcu-
late the contexts of the extracted visual features
and the output embeddings will be input into a
language decoder for captioning. For both the en-
coder and the decoder, the most elemental building
block is the multi-head attention (MHA). Given
the query, key, and value matrices: Q ∈ RNQ×d,
K ∈ RNK×d, V ∈ RNV ×d, MHA calculates the
output Y = MHA(Q,K,V ) as:

Input: Q,K,V

Att: Ai = Softmax(
QWQ

i (KWK
i )T√

d
)

Head : Hi = AiV W V
i ,

Multi-Head: H = [H1,H2, ...,Hh]W
H ,

Output: Y = LN(H +Q),

(1)

where WQ
i ,WK

i ,W V
i ∈ Rd×dh , and WH

i ∈
Rd×d are all trainable matrices; h is the number
of attention heads (set to 8 in the experiments) and
dh = d/h; Ai denotes the i-th attention matrix
used to calculate the i-th head matrix; [·] means
the concatenation operation; and LN is the Layer
Normalization operation.

Besides MHA, another important module in
Transformer is the Feed-Forward network (FFN):

FFN(Y ) = LN(FC(ReLU(FC(Y ))) + Y ), (2)

where FC denotes the fully-connected layer and
ReLU denotes the rectified linear function.

Given MHA and FFN, we can use them to build
a Transformer-based captioning model. For the
encoder, it stacks 6 identical blocks where each one
contains an MHA and an FFN. Given the output
of the former block as the input X , the next block

12429



calculates its output as:
Input: X,

Self-ATT: Y = MHA(Q = X,K = X,V = X),

Output : Z = FFN(Y ),

(3)

Note that the variables X,Y ,Z used here are
“local variables” for conveniently introducing the
work flow of Transformer architecture, whose val-
ues will be set to the specific values when introduc-
ing the concrete captioning model. In “Self-ATT”,
Q,K,V are set to the same value and this op-
eration is named as self-attention (Vaswani et al.,
2017). After stacking 6 blocks defined in Eq. (3),
a visual encoder is built. For the first block, its
input is the extracted visual feature set of the given
image. The output of the last block will be input
into the language decoder.

For the decoder, it also stacks 6 identical blocks
where each one contains two MHAs and an FFN.
Given the output of the former decoder block XD

and the output of the visual encoder XE , the next
decoder block calculates its output:

Input: XD,XE

Self-ATT: Y1 = MHA(Q = XD,K = V = XD),

ED-ATT: Y2 = MHA(Q = Y1,K = V = XE),

Output : Z = FFN(Y2),

(4)

Note that in “ED-ATT”, Q is set to the output of
the former decoder block while K,V are set to the
output of the visual encoder, and such operation is
called encoder-decoder attention (Vaswani et al.,
2017). After stacking 6 blocks defined in Eq. (4), a
language decoder is built.

For the first block in the decoder, XD in Eq. (4)
is set to the word embedding set of the partially
generated captions S = {s1, ..., st} at the t-th time
step. For all the decoder blocks, the input XE

is set to the same value, which is the output of
the visual encoder. The output of the last decoder
block Z = {z1, ...,zt} is used to calculate the
word distribution of the next word:

P (st+1) = Softmax(zt). (5)
Given the ground-truth caption S∗, we can train
this model by minimizing the cross-entropy loss:

LXE = − logP (S∗), (6)
or by maximizing a reinforcement learning (RL)
based reward (Rennie et al., 2017):

RRL = ESs∼P (S)(r(S
s;S∗)), (7)

where r is a sentence-level metric for the sam-
pled sentence Ss and the ground-truth S∗, e.g.,
the CIDEr-D (Vedantam et al., 2015) metric.

Node Feature

Node Type

Linear Linear Linear

r1o1 o2 o3 r2a1

KQ V

MatMul

Scale

Mask

SoftMax

MatMul

eo eo eo ea er er

Output: G

Scene Graph(a) Scene Graph(a)Symmetric Binary Mask Matrix M(b) Symmetric Binary Mask Matrix M(b)

r1o1 o2 o3 r2a1

u1 u2 u3 u4 u5 u6

u1

u2

u3

u4

u5

u6

o1

o2

o3

r1

r2

a1

(c) Linearized Scene Graph(c) Linearized Scene Graph

(d) MHA Operation(d) MHA Operation

Figure 2: The sketch of the proposed MHA-GNN.
In (a), square/triangle/circle demonstrate the object/at-
tribute/relation embeddings, where the dash line means
that all the object nodes should be connected for captur-
ing visual contexts. (b) sketches the built binary mask
matrix, where the top part shows the original graph em-
beddings (o/a/r). For convenience, we also index the
linearized annotation (u) in the left and top. (c) shows
the linearized scene graph, where the top and bottom
parts are respectively node feature and type embeddings.
(d) details how MHA achieves the graph operation.

4 Transforming Scene Graphs

In this section, we introduce how to revise the
Transformer to get our TFSGC. We will first show
how to get an MHA-based GNN and then introduce
how to design an MOE-based decoder.

4.1 MHA-GNN

A visual scene graph (Krishna et al., 2017) contains
three kinds of node embeddings: object/attribute/re-
lationship embeddings o/a/r. These nodes are con-
nected by the following rules: if an object oi has
an attribute ak, oi and ak are connected, e.g., o1

connects a1 in Fig. 2 (a). If two objects oi and oj

have the relation rk, we connect rk with oi and
oj , e.g., r1 connects o1 and o2. Given an image,
we extract a series of visual features from the im-

12430



age as the object embeddings: {o1, ...,oNo}. To
get the attribute/relation embeddings, we first use
the attribute/relation annotations from VG (Krishna
et al., 2017) to train the attribute/relation classifiers
to predict the labels. Then we use two learnable
embedding layers to respectively transform these
labels into the dense attribute/relation embeddings
{a1, ...,aNa}/ {r1, ..., rNr}.

Given these original node embeddings, GNN
will update each one by aggregating the neighbour
embeddings. In the previous GNN-LSTM-based
models, GNN is usually deployed by the FC lay-
ers, which aggregates the contexts by mapping the
concatenated neighbour embeddings to the new
one (Yao et al., 2018; Yang et al., 2020). However,
in our TFSGC, since Transformer is applied as
the backbone, we may more hope to use the basic
building block of Transformer to deploy the GNN.
Such a design principle has two advantages. First,
it alleviates the coding implementation difficulty
that we do not need to specify some additional
GNN operations. Second, which is more important,
when the GNN and the Transformer architecture
are homogeneous, the whole model will be more
easily trained. For example, we do not need to set
different training strategies like the learning rate or
optimizer to different sub-networks.

Since MHA (Eq. (1)) can learn the context
knowledge between the embeddings (Vaswani
et al., 2017), it can naturally be used to define the
graph operation for aggregating the knowledge. We
apply the following two steps to do this. Firstly, as
shown in Fig. 2, we linearize the object, attribute,
and relation embeddings into one sequence and add
the learnable type embeddings as the linearized to-
ken set: U = {u1, ...,uN}:

Object: ui = oi + eo, 1 ≤ i ≤ No,

Attribute: uNo+i = ai + ea, 1 ≤ i ≤ Na,

Relation: uNo+Na+i = oi + er, 1 ≤ i ≤ Nr,

(8)

where eo/ea/er are respectively learnable type
embeddings correspond to object/attribute/relation
types and N = No + Na + Nr. For example, in
Fig. 2, No/Na/Nr is 3/1/2, the objects o1:3 become
u1:3, the attributes a1 becomes u4, and the rela-
tions r1:2 become u5:6.

After linearizing, the topological knowledge of
the graph is lost, i.e., this token sequence does not
show which two nodes are connected or not. To
remedy such knowledge, we use a symmetric bi-
nary mask matrix M ∈ RN×N to all Transformer
blocks to mask the attention weights of the un-

connected nodes to control whether two nodes are
connected or not. If two nodes ui and uj are con-
nected in the original scene graph, we set Mi,j = 1
and Mi,j = 0 otherwise. Specifically, the values
of M are set as follows: 1) If oi has one attribute
aj , we set Mi,j+No = 1, e.g., o2 (u2) and a1 (u4)
in Fig. 2 are connected and M2,4 = 1. 2) If rk
connects with oi and oj , we set Mi,k+No+Na =
Mj,k+No+Na = 1, e.g., r1 (u5) connects o1 (u1)
and o2 (u2) and M1,5 = M2,5 = 1. 3) All the
object nodes are connected with each other since
they are visual features that their contexts play a
key role in captioning (Herdade et al., 2019). Thus
∀i, j ≤ No,Mi,j = 1. 4) Since the scene graph
is an undirected graph, M should be symmetric:
Mi,j = Mj,i.

After getting U and M , we can revise the Trans-
former encoder to get our MHA-GNN. Specifically,
we use U as the input of the encoder defined in
Eq.(3) and revise the Att operation in Eq. (1) as the
following Masked Att operation:

Ai = Softmax(M ⊙ QWQ
i (KWK

i )T√
d

), (9)

where ⊙ denotes the element-wise product. In
this way, the graph operation is defined by MHA.
Specifically, for each node embedding, it is updated
by weighted summing its neighbour embeddings,
where the weights are from the attention heads Ai

calculated by the Att operation in Eq. (1). Dur-
ing weighted summing, the binary matrix control
whether two nodes are connected or not. Note that
the edge type is implicitly embedded in Att oper-
ation due to the added node type embedding. For
example, after adding node type embeddings eo
and er to the object and relation embeddings o and
r, respectively, the inner-product becomes*:
(o+ eo)

T (r + er) = oTr + eT
o r + eT

r o+ eT
o er, (10)

where the right three terms are affected by the
node type embedding. Thus, when the edge type
changes (e.g., the object-relation edge changes to
object-attribute edge), the corresponding node type
embeddings also change (e.g., er changes to ea),
which means Eq. (10) encodes the knowledge of
edge types into the embeddings.

By stacking more such layers, the receptive
field is increasing and thus each node can be up-
dated by aggregating more neighbour embeddings,
which naturally follows the design principle of
GNN (Battaglia et al., 2018). The output graph

*For convenience, we omit the trainable matrices
WQ,WK in Eq. (1) in this inner-product operation.

12431



Position Embedding

GaGo Gr

Encoder-Decoder Encoder-Decoder Encoder-Decoder

Yo Ya Yr

Zo Za Zr

FNN

Soft-Router

MHA

Fusion Output: ZOutput: Z

Input: XDInput: XD Word EmbeddingWord Embedding

Attention Networks

Figure 3: The sketch of the MOE-decoder, we use differ-
ent colours to denote different experts: green/blue/yel-
low correspond to object/attribute/relation experts.

embedding set G are input to the decoder for cap-
tioning.

4.2 MOE-decoder

As mentioned before, a caption contains differ-
ent kinds of words for describing diverse visual
patterns, e.g., nouns/adjectives/verbs for object-
s/attributes/relations (Yang et al., 2019b), which
suggests that different experts should be used to
address diverse visual knowledge for generating
the corresponding words. Motivated by this idea,
we design an MOE-based (Jacobs et al., 1991;
Du et al., 2022) language decoder to discrimi-
nate diverse graph embeddings by setting three
encoder-decoder attention layers as different ex-
perts. As shown in Fig. 1 (c), the graph embed-
dings G = {g1, ..., gN} output from the MHA-
GNN can be naturally divided according to the
original token types in the scene graph: object/at-
tribute/relation sets Go = {g1, ..., gNo}/ Ga =
{gNo+1, ..., gNo+Na}/Gr = {gNo+Na+1, ..., gN}.
Then we only need to input them into the corre-
sponding experts for discriminating them. Fig. 3
sketches the designed MOE-based decoder, which
is got by revising the decoder defined in Eq. (4) as:

Input: XD,Go,Ga,Gr

SA: X = MHA(Q = K = V = XD),

EXPO: Yo = MHA(Q = X,K = V = Go),

EXPA: Ya = MHA(Q = X,K = V = Ga),

EXPR: Yr = MHA(Q = X,K = V = Gr),

FFN: Zo,Za,Zr = FFN(Yo,Ya,Yr),

SR: Z = SR(Zo,Za,Zr,X)

(11)

where EXPO, EXPA, and EXPR denote three dif-
ferent experts (encoder-decoder attentions) used to
address object, attribute, and relation embeddings,
respectively. They have the same structure while

with different parameters.
Note that the input XD is the word embeddings

of the partially generated captions and at t-th step,
XD = {x1

D, ...,x
t
D}. Then all the X/Zo/Za/Zr

also contain t elements, e.g., Zo = {z1
o , ...,z

t
o}.

Soft Router (SR) calculates an ensemble embed-
ding z at each time step to construct the embedding
set Z = {z1, ...,zt}. Specifically, for each ele-
ment x/zo/za/zr in X/Zo/Za/Zr, a corresponding
output z can be got†:

Input: x,zo,za,zr,

ATT:
α = {αo, αa, αr}

= Softmax({xTzo,x
Tza,x

Tzr})
Output: z = αozo + αaza + αrzr,

(12)

where ATT operation calculates the soft routing
weights, since x accumulates the context knowl-
edge of the partially generated caption, it can help
judge which kind of word should be generated at
the next step. For example, if the last word of this
partially generated caption is an adjective “black”,
the next word is more like to be a noun and thus
αo should be a large value for using more object
embeddings instead of the other embeddings.

5 Experiments

5.1 Datasets, Metrics, and Implementation
Details

Datasets. MSCOCO. We use MSCOCO (Lin
et al., 2014) to validate our TFSGC. This dataset
has 123,287 images and each one is labeled with 5
captions. We use two splits in the experiments:
the offline Karpathy split (113,287/5,000/5,000
train/val/test images) and the Official online split
(82,783/40,504/40,775 train/val/test images).
Visual Genome (Krishna et al., 2017) provides
scene graph annotations for training the scene
graph parser. We follow (Yang et al., 2020) to
filter the noisy dataset (e.g., lots of labels only ap-
pear a few times in the dataset) by removing the
attribute/relation labels appearing less than 2000
times and use the remained 103/64 attribute/rela-
tion labels to train the attribute/relation classifiers.
Implementation Details. In the experiments, we
use three kinds of visual features to exhaustively
compare to the other SOTA models, which are
BUTD (Anderson et al., 2018), Patch (Liu et al.,
2021), and VinVL (Zhang et al., 2021). During
training and inference, for BUTD/Patch/VinVL,
we respectively follow (Yang et al., 2020) and

†For convenience, we remove the superscript representing
for different time steps of each embedding.

12432



VinVL’s official parser‡ to parse SGs, where the
latter is more powerful. For all the visual features,
we set the batch size to 20 and use Adam (Kingma
and Ba, 2014) as the optimizer. For BUTD/Patch/V-
inVL features, We sequentially use cross-entropy
loss (Eq. (6)) and RL-based reward (Eq. (7)) to
train the models 20/20/30 and 30/30/30 epochs.
For BUTD/Patch/VinVL features, the learning rate
used in the cross-entropy stage is initialized as
5e−4/5e−4/2e−5 and both decayed by 0.8 every 5
epochs, the learning rate used in the RL-reward
stage is reset to 5e−5/2e−5/5e−6 and both de-
cayed by 0.8 every 5 epochs. During inference,
we use beam search where the beam size is 5.
We evaluate the captions by CIDEr-D (Vedantam
et al., 2015), BLEU (Papineni et al., 2002), ME-
TEOR(Banerjee and Lavie, 2005), ROUGE (Lin,
2004) and SPICE (Anderson et al., 2016).

5.2 Ablation Studies

To confirm the effectiveness of the proposed MHA-
GNN and MOE-decoder, we deploy exhaustive
ablations as follows. Note that we use BUTD fea-
ture in this section. BASE: We directly use the
classic Transformer architecture. SG: We incorpo-
rate the scene graphs into the Transformer by using
the node embeddings without any graph operations.
MLP-GNN: We apply MLP-based Graph Neural
Network (Xu et al., 2019) for embedding the scene
graphs. MHA-GNN w/o e: We apply the proposed
MHA-GNN while do not use node type embedding.
MHA-GNN: We apply the proposed MHA-GNN
and keep the decoder unchanged as BASE. GNN-
FC:We remove the binary mask matrix M from
TFSGC. MOE: We use the proposed MOE-decoder
and do not use GNN but input the original node
embeddings into the decoder. TFSGC: We apply
the integral TFSGC.

Table 1 compares the similarity metrics of the
ablation models. Firstly, we can find that the in-
tegral TFSGC achieves the highest scores, which
confirms its effectiveness. Next, we respectively
compare the ablation models to validate the effec-
tiveness of the proposed MHA-GNN and MOE-
decoder. By comparing MLP-GNN, SG, and
BASE, it is easy to see that using GNN can gain
more profits than only using node embeddings. Fur-
thermore, we can find that MHA-GNN has higher
CIDEr than MLP-GNN, which suggests that de-
signing GNN by MHA is more powerful than by

‡https://github.com/microsoft/scene_graph_benchmark

Models B@4 M R C S
BASE 38.4 28.5 58.1 128.7 22.0
SG 38.5 28.6 58.1 129.0 22.2
MLP-GNN 38.9 28.8 58.4 129.5 22.4
MHA-GNN w/o e 39.1 28.9 58.5 130.1 22.4
MHA-GNN 39.5 29.2 58.9 130.9 22.8
GNN-FC 39.2 29.0 58.3 130.5 22.3
MOE 39.2 28.8 58.5 130.1 22.5
TFSGC 39.8 29.6 59.3 132.3 23.4

Table 1: The performances of various ablation models.
The metrics: B@N, M, R, C, and S denote BLEU@N,
METEOR, ROUGE-L, CIDEr-D, and SPICE.

Models nouns adjectives verbs prepositions
BASE 43.8 12.7 20.3 40.1
SG 44.2 13.5 20.9 40.8
MLP-GNN 45.4 14.8 21.8 41.6
MHA-GNN w/o e 48.8 16.4 24.3 44.3
MHA-GNN 49.6 17.0 24.7 44.6
MOE 48.4 16.6 24.4 44.0
TFSGC 52.8 18.2 25.8 45.8

Table 2: The recalls (%) of five part-of-speech words.

MLP in the Transformer architecture. Next, to
see whether discriminating the graph embeddings
is beneficial or not, we can compare MHA-GNN
with MHA-GNN w/o e and find that using node
type embedding performs better. From the com-
parison between GNN-FC and TFSGC, it can be
seen that when removing M , the graph becomes
a fully-connected graph, which introduces more
noises. Also, it can be seen that MOE and TFSGC
respectively achieve better performances than SG
and MHA-GNN, which validates the effectiveness
of the MOE-decoder.

Besides evaluating these ablation models by sim-
ilarities, in Table 2, we calculate the recalls of the
words with different POS to evaluate the descrip-
tiveness. Table 2 shows that the captions gener-
ated from TFSGC have the highest recalls, sug-
gesting that TFSGC generates the most descrip-
tive captions. Also, we can find that both the pro-
posed MHA-GNN (MHA-GNN vs. MLP-GNN)
and MOE-based decoder (MOE vs. SG) can boost
the recalls, suggesting both of them improve the de-
scriptiveness. Moreover, We use Stanford Parser to
get the POS to train the route weights by the cross-
entropy loss, then the CIDEr of TFSGC boosts
from 132.3 to 132.9, suggesting the advantage of
using POS knowledge. Fig. 4 shows 4 examples of
the captions generated from diverse models, where
we can see that TFSGC generates more descriptive
captions. BASE generates less descriptive captions
since it does not use scene graphs and thus loses se-

12433

https://github.com/microsoft/scene_graph_benchmark


BASE: a truck is parked before 
a building.

MHA-GNN: a green truck 
parked in front of a building.

TFSGC: a green truck parked 
in front of a brick building.

BASE: a man standing on a 
snowboard.

MHA-GNN: a man with a hat 
standing on a snowboard 
standing.

TFSGC: a man with a black hat 
in a yellow jacket standing on a 
snowboard.

BASE: a dog wearing a tie on 
the floor.

MHA-GNN: a white dog 
wearing a tie is sitting.

TFSGC: a brown and white dog 
wearing a tie stand on the floor.

BASE: a motorbike parked on 
the side of a street.

MHA-GNN: a motorbike and a 
bike parked on the road.

TFSGC: a black motorbike 
carrying a bike parked near the 
fresh grass.

(a) (b) (c) (d)

near

bike

on

road

fresh

grass

floor

on

dog

brown

tie

white

with

yellow

with

with

on

board

black

red
green

before brick

truck

building

person

cloth

hat

motorbike
on

black

(e)

BASE: a birthday cake on a 
table.

MHA-GNN: a birthday cake 
with a boy on it.

TFSGC: there is a blue cake 
with a boy on a train on it.

boy

cake

trainon

on

blue

orange

Figure 4: The captions generated by BASE, MHA-GNN, and TFSGC. It can be found that TFSGC generates more
descriptive captions, e.g., it describes more attributes like “green truck” and “brick building” in (a), or using more
fine-grained nouns like “jacket” in (b). Diverse colors in TFSGC denote these words use more knowledge from
different experts: green/blue/orange corresponds to object/attribute/relation expert, which is got by checking which
one of αo/αa/αr in Eq (12) is the largest.

mantic knowledge compared with SG. MHA-GNN
does not use the soft router and thus can not select
the most suitable experts for generating correspond-
ing words, which may lose certain details. Also,
we show that which expert is more responsible for
the words with different POS, e.g., in Fig. 4 (b),
the adjective “yellow” is generated by using more
knowledge from the attribute expert.

5.3 Comparisons with SOTA

Recently, various SOTA captioning models with
diverse settings have been proposed, including
using different language decoders (LSTM, GRU,
and Transformer), different visual features, and
whether distilling knowledge from large-scale pre-
training models (CLIP (Radford et al., 2021) or
VInVL (Zhang et al., 2021)). In fairness, we
compare our TFSGC with the models that also
use Transformer-based decoder by three features:
BUTD (Anderson et al., 2018), Patch (Liu et al.,
2021), and VinVL (Zhang et al., 2021).

We compare with the following SOTA mod-
els: ETA (Li et al., 2019), ORT (Herdade et al.,
2019), AoANet (Huang et al., 2019), M2 Trans-
former (Cornia et al., 2020), CATT (Yang et al.,
2021b), APN (Yang et al., 2021a), DLCT (Luo
et al., 2021), X-Transformer (Pan et al., 2020),
Up-Down (Anderson et al., 2018), SGAE (Yang
et al., 2019a), NG-SAN (Guo et al., 2020),
PureT (Wang et al., 2022), and ViTCAP (Fang
et al., 2022). Specifically, ETA and ORT are
preliminary Transformer-based models; AoANet
and X-Transformer design stronger attention mech-

anisms; CATT and M2 Transformer introduce
additional memory networks; and APN exploits
the hidden tree structures. We set the training
batch size of TFSGC∗ to 50 as X-Transformer
for fairly comparing. These methods use BUTD
features, while ViTCAP and PureT use Patch fea-
tures. RSTNet and ViTCAP distill knowledge from
pre-trained vision-language BERTs. Note that in
VinVL (Zhang et al., 2021), they use OSCAR (Li
et al., 2020) as the captioner, while OSCAR is
trained on 6.5 million image-text pairs. To fairly
compare, we input VinVL feature into the classic
Transformer to generate the captions, which is de-
noted as VinVL(Transformer). Note that we do
not compare with extra large scale models trained
by millions of image-text pairs or with excessively
large parameter sizes, such as RSTNet (Zhou et al.,
2020) and LEMON (Hu et al., 2022). All the re-
sults are shown in Table 3.

From Table 3 we can find that TFSGC almostly
achieves the highest scores in different settings, i.e.,
achieving 132.3, 138.6, 139.5 CIDEr scores when
using BUTD, Patch, and VinVL features, respec-
tively. DLCT’s visual features extractor (Jiang
et al., 2020) is stronger than TFSGC(BUTD) (An-
derson et al., 2018) and thus DLCT is a little bet-
ter than TFSGC(BUTD). Among these compared
methods, although other SOTAs do not use scene
graphs, they usually have some other training bur-
dens. For example, APN and X-Linear apply more
complex attention mechanisms and it requires more
computation resource for well-training them, while
our TFSGC only apply the simplest attention opera-

12434



Models
Cross-Entroy Loss CIDEr optimization

B@4 M R C S B@4 M R C S
BUTD feature
ETA 37.1 28.2 57.1 117.9 21.4 39.3 28.8 58.9 126.6 22.7
ORT 35.5 28.0 56.6 115.4 21.2 38.6 28.7 58.4 128.3 22.6
AoANet 37.2 28.4 57.5 119.8 21.4 38.9 29.2 58.8 129.8 22.4
M2 Transformer - - - - - 39.1 29.2 58.6 131.2 22.6
CATT 37.3 28.5 57.4 119.0 21.5 39.4 29.3 58.9 131.7 22.8
APN - - - - - 39.6 29.2 59.1 131.8 23.0
DLCT - - - - - 39.8 29.5 59.1 133.8 23.0
TFSGC 38.1 28.6 57.7 120.2 21.9 39.8 29.6 59.3 132.3 23.4
BUTD feature & Larger Batch Size
X-Transformer 38.2 28.8 58.0 122.0 21.9 39.7 29.5 59.2 132.8 23.2
TFSGC∗ 38.4 28.8 57.8 122.3 22.1 39.9 29.8 59.4 133.0 23.4
Large Visual-language model pretraining
RSTNet - - - - - 40.1 28.9 59.5 135.6 23.3
LEMONbase 40.3 30.2 - 133.3 23.3 41.6 30.1 - 142.7 25.1
LEMONhuge 41.5 30.8 - 139.1 24.1 42.6 31.4 - 145.5 25.5
Patch feature
PureT - - - - - 40.9 30.2 60.1 138.2 24.2
ViTCAPsmall 35.7 28.8 57.6 121.8 22.1 40.1 29.4 59.4 133.1 23.0
TFSGC 38.8 29.4 58.2 122.2 22.3 41.4 30.1 60.1 138.6 24.4
VinVL feature
VinVL(Transformer) 35.4 28.6 57.5 121.5 21.3 40.6 30.0 59.8 137.3 23.7
TFSGC 38.5 29.2 58.8 122.7 22.4 41.7 30.5 60.4 139.5 24.6

Table 3: The performances of SOTA methods on MS-COCO Karpathy split. All models used are single models.

Models
B@4 M R C

c5 c40 c5 c40 c5 c40 c5 c40
Up-Down 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
SGAE 37.8 68.7 28.1 37.0 58.2 73.1 122.7 125.5
ETA 38.9 70.2 28.6 38.0 58.6 73.9 122.1 124.4
APN 38.9 70.2 28.8 38.0 58.7 73.7 126.3 127.6
NG-SAN 38.8 70.2 29.0 38.4 58.7 74.0 126.3 128.6
TFSGCS 39.0 70.9 29.1 38.4 58.9 74.4 127.2 129.8

AoANet 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6
X-Transformer 39.9 71.8 29.5 39.0 59.3 74.9 129.3 131.4
M2 Transformer 39.7 72.8 29.4 39.0 59.2 74.8 129.3 132.1
TFSGCE 39.7 72.6 29.6 39.2 59.5 75.1 129.6 133.1

Table 4: The scores on the MS-COCO online test server.
S indicates single model, E indicates ensemble model.

tion. Moreover, as detailed in Sec 4.1 of ViTCAP, it
applies much more training data (9.9M image-text
pairs from 4 datasets including VG) to pre-train
a concept network to get more powerful discrete
tags, while we only use one dataset VG to get scene
graphs and achieve better performance, which sug-
gests that connecting discrete tags into a graph is a
useful strategy if the discrete tags is not very power-
ful. Moreover, TFSGC achieves comparable perfor-
mances with LEMON (Hu et al., 2022) which uses
200 million image-text pairs and uses 12/24-layer,
768/1024-hidden units Transformers(base/huge).
To sum up, the advantage of TFSGC is that it can
effectively embed and discriminate the semantic
knowledge from scene graphs to balance the (usu-

ally more) burden of using more training data or of
training more complex networks.

We also submit the single model TFSGCS and
4-ensembled model TFSGCE trained by regional-
based features into the online server for testing,
where the results are shown in Table 4. From
this table, we can discover that both TFSGCS and
TFSGCE have the highest CIDEr-D scores, which
further confirm the effectiveness of the proposed
TFSGC.

6 Conclusion

We proposed to transform the scene graph into cap-
tions (TFSGC) by a simple and homogeneous net-
work. Specifically, we use MHA to design the
GNN by linearizing the scene graph and remedying
the lost topological knowledge with a binary mask
matrix. Furthermore, we add learnable type embed-
ding and design an MOE-based decoder to distin-
guish node embeddings for more descriptive cap-
tions. At last, we compared TFSGC with various
SOTA models and demonstrated that our model can
achieve comparable performances to some strong
benchmarks.

12435



Limitations

There are two major limitations of the proposed
TFSGC. The first one is that the effectiveness of
TFSGC depends on the quality of the scene graph.
Since MSCOCO does not have SG annotations, we
evaluate the parsers in Visual Genome: for BUT-
D/Patch and VinVL, the recall@50 of relation/at-
tribute are respectively 65.2/68.4 and 73.4/76.6.
We use VinVL’s SGs in TFSGC(BUTD) and CIDEr
improves from 132.3 to 133.1, suggesting better
SGs are beneficial. If the scene graph quality is
poor, then TFSGC will not achieve good perfor-
mance. When an incorrect node in the scene graph,
it also affects the output of the caption. e.g., in
Fig. 4 (e), the correct object label should be "surf-
board" instead of "train". In this paper, we use
Visual Genome, which contains abundant and use-
ful scene graph annotations for parsing effective
scene graphs, but current performance is not the
best, and we will improve the scene graph parser
based on the latest scene graph parsing methods in
the future.

The second limitation of TFSGC is that if the vi-
sual features contain abundant attribute or relation
knowledge, then the improvement of TFSGC com-
pared with the classic Transformer will be weak-
ened. For example, compared with the BUTD fea-
ture case where the relative improvement of CIDEr-
D is 3.6 (TFSGC-BASE in Table 1), the VinVL
feature is more powerful since it is trained by much
more data samples with more semantic labels, thus
the relative improvement is lower, which is 2.2
(TFSGC-VinVL(Transformer) in Table 3).

Acknowledgements

This work is supported by National Key
R&D Program of China (2018AAA0100104,
2018AAA0100100), National Science Foundation
of China (62206048), Natural Science Foundation
of Jiangsu Province (BK20220819, BK20211164),
and Young Elite Scientists Sponsorship Program
of Jiangsu Association for Science and Technology
Tj-2022-027.

References
Peter Anderson, Basura Fernando, Mark Johnson, and

Stephen Gould. 2016. Spice: Semantic propositional
image caption evaluation. In European Conference
on Computer Vision, pages 382–398. Springer.

Peter Anderson, Xiaodong He, Chris Buehler, Damien

Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
2018. Bottom-up and top-down attention for image
captioning and visual question answering. In CVPR,
5, page 6.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved cor-
relation with human judgments. In Proceedings of
the acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summariza-
tion, pages 65–72.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Al-
varo Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. 2018. Relational in-
ductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261.

Marcella Cornia, Matteo Stefanini, Lorenzo Baraldi,
and Rita Cucchiara. 2020. Meshed-memory trans-
former for image captioning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 10578–10587.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. 2022.
Glam: Efficient scaling of language models with
mixture-of-experts. In International Conference on
Machine Learning, pages 5547–5569. PMLR.

Zhiyuan Fang, Jianfeng Wang, Xiaowei Hu, Lin Liang,
Zhe Gan, Lijuan Wang, Yezhou Yang, and Zicheng
Liu. 2022. Injecting semantic concepts into end-
to-end image captioning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 18009–18019.

Zhe Gan, Chuang Gan, Xiaodong He, Yunchen Pu,
Kenneth Tran, Jianfeng Gao, Lawrence Carin, and
Li Deng. 2017. Semantic compositional networks for
visual captioning. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 5630–5639.

Longteng Guo, Jing Liu, Xinxin Zhu, Peng Yao,
Shichen Lu, and Hanqing Lu. 2020. Normalized
and geometry-aware self-attention network for image
captioning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 10327–10336.

Simao Herdade, Armin Kappeler, Kofi Boakye, and
Joao Soares. 2019. Image captioning: Transforming
objects into words. In Advances in Neural Informa-
tion Processing Systems, pages 11137–11147.

Xiaowei Hu, Zhe Gan, Jianfeng Wang, Zhengyuan Yang,
Zicheng Liu, Yumao Lu, and Lijuan Wang. 2022.
Scaling up vision-language pre-training for image
captioning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 17980–17989.

12436



Lun Huang, Wenmin Wang, Jie Chen, and Xiao-Yong
Wei. 2019. Attention on attention for image cap-
tioning. In Proceedings of the IEEE International
Conference on Computer Vision, pages 4634–4643.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,
and Geoffrey E Hinton. 1991. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87.

Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik
Learned-Miller, and Xinlei Chen. 2020. In defense
of grid features for visual question answering. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10267–10276.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, et al.
2017. Visual genome: Connecting language and vi-
sion using crowdsourced dense image annotations.
International Journal of Computer Vision, 123(1):32–
73.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. arXiv preprint
arXiv:2006.16668.

Chenliang Li, Haiyang Xu, Junfeng Tian, Wei Wang,
Ming Yan, Bin Bi, Jiabo Ye, Hehong Chen, Guo-
hai Xu, Zheng Cao, et al. 2022. mplug: Effective
and efficient vision-language learning by cross-modal
skip-connections. arXiv preprint arXiv:2205.12005.

Guang Li, Linchao Zhu, Ping Liu, and Yi Yang. 2019.
Entangled transformer for image captioning. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV).

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare,
Shafiq Joty, Caiming Xiong, and Steven Chu Hong
Hoi. 2021. Align before fuse: Vision and language
representation learning with momentum distillation.
Advances in neural information processing systems,
34:9694–9705.

Xiujun Li, Xi Yin, Chunyuan Li, Xiaowei Hu,
Pengchuan Zhang, Lei Zhang, Lijuan Wang,
Houdong Hu, Li Dong, Furu Wei, Yejin Choi,
and Jianfeng Gao. 2020. Oscar: Object-semantics
aligned pre-training for vision-language tasks. ECCV
2020.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. Text Summarization
Branches Out.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:

Common objects in context. In European confer-
ence on computer vision, pages 740–755. Springer.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan
Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
2021. Swin transformer: Hierarchical vision trans-
former using shifted windows. arXiv preprint
arXiv:2103.14030.

Jiasen Lu, Caiming Xiong, Devi Parikh, and Richard
Socher. 2017. Knowing when to look: Adaptive
attention via a visual sentinel for image captioning.
In CVPR, volume 6, page 2.

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh.
2018. Neural baby talk. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition, pages 7219–7228.

Yunpeng Luo, Jiayi Ji, Xiaoshuai Sun, Liujuan Cao,
Yongjian Wu, Feiyue Huang, Chia-Wen Lin, and
Rongrong Ji. 2021. Dual-level collaborative trans-
former for image captioning. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 2286–2293.

Victor Milewski, Marie-Francine Moens, and Iacer Cal-
ixto. 2020. Are scene graphs good enough to improve
image captioning? arXiv preprint arXiv:2009.12313.

Kien Nguyen, Subarna Tripathi, Bang Du, Tanaya Guha,
and Truong Q Nguyen. 2021. In defense of scene
graphs for image captioning. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 1407–1416.

Yingwei Pan, Ting Yao, Yehao Li, and Tao Mei. 2020.
X-linear attention networks for image captioning. In
CVPR, pages 10971–10980.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. In International
Conference on Machine Learning, pages 8748–8763.
PMLR.

Steven J Rennie, Etienne Marcheret, Youssef Mroueh,
Jarret Ross, and Vaibhava Goel. 2017. Self-critical
sequence training for image captioning. In CVPR,
volume 1, page 3.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538.

12437



Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS, pages 5998–6008.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4566–4575.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural image
caption generator. In CVPR.

Li Wang, Zechen Bai, Yonghua Zhang, and Hongtao
Lu. 2020. Show, recall, and tell: image captioning
with recall mechanism. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 12176–
12183.

Yiyu Wang, Jungang Xu, and Yingfei Sun. 2022. End-
to-end transformer based model for image captioning.
In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 8053–8072.

Haiyang Xu, Ming Yan, Chenliang Li, Bin Bi, Song-
fang Huang, Wenming Xiao, and Fei Huang. 2021.
E2e-vlp: end-to-end vision-language pre-training
enhanced by visual learning. arXiv preprint
arXiv:2106.01804.

Haiyang Xu, Qinghao Ye, Ming Yan, Yaya Shi, Jiabo Ye,
Yuanhong Xu, Chenliang Li, Bin Bi, Qi Qian, Wei
Wang, et al. 2023. mplug-2: A modularized multi-
modal foundation model across text, image and video.
arXiv preprint arXiv:2302.00402.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual atten-
tion. In International conference on machine learn-
ing, pages 2048–2057.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. 2019. How powerful are graph neural net-
works? In International Conference on Learning
Representations.

Fuzhao Xue, Ziji Shi, Futao Wei, Yuxuan Lou, Yong
Liu, and Yang You. 2022. Go wider instead of deeper.
In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 8779–8787.

Xu Yang, Chongyang Gao, Hanwang Zhang, and Jianfei
Cai. 2021a. Auto-parsing network for image caption-
ing and visual question answering. In Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision, pages 2197–2207.

Xu Yang, Kaihua Tang, Hanwang Zhang, and Jianfei
Cai. 2019a. Auto-encoding scene graphs for image
captioning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 10685–10694.

Xu Yang, Hanwang Zhang, and Jianfei Cai. 2019b.
Learning to collocate neural modules for image cap-
tioning. In Proceedings of the IEEE International
Conference on Computer Vision, pages 4250–4260.

Xu Yang, Hanwang Zhang, and Jianfei Cai. 2020. Auto-
encoding and distilling scene graphs for image cap-
tioning. IEEE Transactions on Pattern Analysis and
Machine Intelligence.

Xu Yang, Hanwang Zhang, Guojun Qi, and Jianfei Cai.
2021b. Causal attention for vision-language tasks. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 9847–
9857.

Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. 2018.
Exploring visual relationship for image captioning.
In Computer Vision–ECCV 2018, pages 711–727.
Springer.

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye,
Ming Yan, Yiyang Zhou, Junyang Wang, An-
wen Hu, Pengcheng Shi, Yaya Shi, et al. 2023.
mplug-owl: Modularization empowers large lan-
guage models with multimodality. arXiv preprint
arXiv:2304.14178.

Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang,
and Jiebo Luo. 2016. Image captioning with seman-
tic attention. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
4651–4659.

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei
Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and Jian-
feng Gao. 2021. Vinvl: Revisiting visual representa-
tions in vision-language models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5579–5588.

Yiwu Zhong, Liwei Wang, Jianshu Chen, Dong Yu, and
Yin Li. 2020. Comprehensive image captioning via
scene graph decomposition. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XIV 16,
pages 211–229. Springer.

Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu,
Jason Corso, and Jianfeng Gao. 2020. Unified vision-
language pre-training for image captioning and vqa.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 13041–13049.

12438



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

The Limitation section is given in page 10.

�7 A2. Did you discuss any potential risks of your work?
This work deal with image captioning, which is a task that does not have potential moral risks.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
The Abstract and Introduction sections are given in the page 1.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Left blank.

�3 B1. Did you cite the creators of artifacts you used?
The creators of artifacts are cited in the “Datasets, Metrics, and Implementation Details” section in
the page 6.

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
When we use the artifacts, we cite them in the paper, for example, the metrics are cited in the

“Datasets, Metrics, and Implementation Details” section in the page 6.

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
We use the evaluation metrics like BLEU or CIDEr-D to measure the similarities between the
generated and ground-truth captions, which is consistent with their intended use.

�3 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Such information is introduced in the Dataset section in the page 6.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Not applicable. Left blank.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

12439

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


C �7 Did you run computational experiments?
Left blank.

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
No response.

� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
No response.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
No response.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
No response.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

12440


