
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 12523–12541

July 9-14, 2023 ©2023 Association for Computational Linguistics

Neural Machine Translation Methods
for Translating Text to Sign Language Glosses

Dele Zhu1, Vera Czehmann1,2 and Eleftherios Avramidis2

1Technical University of Berlin, Berlin, Germany
2German Research Center for Artificial Intelligence (DFKI), Berlin, Germany

dele.zhu@gmail.com, {vera.czehmann,eleftherios.avramidis}@dfki.de

Abstract

State-of-the-art techniques common to low re-
source Machine Translation (MT) are applied
to improve MT of spoken language text to
Sign Language (SL) glosses. In our exper-
iments, we improve the performance of the
transformer-based models via (1) data augmen-
tation, (2) semi-supervised Neural Machine
Translation (NMT), (3) transfer learning and
(4) multilingual NMT. The proposed methods
are implemented progressively on two German
SL corpora containing gloss annotations. Mul-
tilingual NMT combined with data augmenta-
tion appear to be the most successful setting,
yielding statistically significant improvements
as measured by three automatic metrics (up to
over 6 points BLEU), and confirmed via human
evaluation. Our best setting outperforms all pre-
vious work that report on the same test-set and
is also confirmed on a corpus of the American
Sign Language (ASL).

1 Introduction

Sign Language Translation (SLT) aims to break
the language barrier between the deaf or hard-of-
hearing communities and the hearing communi-
ties. One challenging aspect of SLT is the fact
that Sign Languages (SLs) are multi-channeled and
non-written languages (Langer et al., 2014). There-
fore, Machine Translation (MT) for SLs cannot
directly take advantage of the recent developments
in text-based MT. For this purpose, previous work
has used written representations of the SLs. One
of these representations are glosses, where signs
are labeled by words of the corresponding spoken
language, often including affixes and markers.

It is known that glosses have strong limitations
as a linguistic representation (Pizzuto et al., 2006).
However, given the current status of SLT, we have
indications that research on SL gloss translation
can still be useful. For instance, translation from
spoken language text to SL glosses can be use-
ful for interpreters and educational uses (Collins

Figure 1: Text-to-video SLT using glosses as an inter-
mediate step (Source of images: Müller et al., 2020).

et al., 2012). Secondly, SL glosses are the only SL
representation having several parallel corpora big
enough to train MT, and the results may provide
indications for the future treatment of other more
appropriate representations. Previous research on
SLT has used glosses as an intermediate step to
build MT systems for translating from SLs to spo-
ken language text (Camgoz et al., 2017, 2018; Chen
et al., 2023) or from spoken language text to SLs
(Stoll et al., 2020; Saunders et al., 2020a,b, 2022).
In the latter case, glosses allow building the system
in two steps, i.e., text-to-gloss translation and gloss-
to-video production (Figure 1). The glosses can be
given to a system for the generation of SL (avatar
animations, autoencoders, GANs). Our work fo-
cuses on the first part of this pipeline, text-to-gloss
translation, whose results are responsible for the
generated sign animations. We find that prior re-
search, despite its improvements, has still not made
a big breakthrough in this direction (Rastgoo et al.,
2021).

SLs are Low-Resource Languages (LRLs) with
regards to MT, since there is little parallel data
(Coster et al., 2022). Despite the recent progress of
MT for LRLs (Sennrich et al., 2016a; Zoph et al.,
2016; Sennrich and Zhang, 2019; Ranathunga et al.,
2021), few of these methods have been used for MT
of SLs, such as data augmentation (Moryossef et al.,
2021; Zhang and Duh, 2021; Angelova et al., 2022)

12523



and transfer learning (Egea Gómez et al., 2022).
Other efficient techniques, e.g. semi-supervised
NMT (Cheng et al., 2016) and multilingual NMT
(Johnson et al., 2017) have not been explored. We
are therefore inspired to extensively explore the ef-
fects of the relevant methods on text-to-gloss trans-
lation. To the best of our knowledge, this paper is
the first work on text-to-gloss:

• to achieve significant improvements, as com-
pared to the baseline methods, on the
two known natural SL datasets annotated
with glosses (namely for the German SL:
Deutsche Gebärdensprache, further abbrevi-
ated as DGS),

• to perform extensive experimentation with
most known LRL-related MT methods and
their combinations and in particular:

• to apply semi-supervised NMT by copying
the monolingual data to both the source and
target side, for lack of monolingual corpora
with glosses,

• to use transfer learning via the warm-start
strategy, and

• to use a multilingual NMT setting with the
focus on improving the text-to-gloss direction.

All code of this work has been open sourced.1

2 Related work

The early-stage of text-to-gloss translation systems
were built using Statistical Machine Translation
(SMT; San-Segundo et al., 2012; López-Ludeña
et al., 2014), in an attempt to translate spoken lan-
guage into a signing 3D avatar using SL glosses
as intermediate. Although the system evaluations
reported good results based on limited data and
automatic metrics, deaf users assessed the system
conversely. Recently, with the advance of NMT,
more promising systems have emerged, based on
RNNs (Stoll et al., 2020) or as parts of end-to-end
transformer systems (Saunders et al., 2020b, 2022),
which contrary to our work do not try particular
LRL-related methods.

More related to our work, in terms of text-to-
gloss translation using LRL-related techniques, Li
et al. (2021) implement a transformer architecture
equipped with an editing agent that learns to syn-
thesize and execute editing actions on the source

1https://github.com/DFKI-SignLanguage/
text-to-gloss-sign-language-translation

Figure 2: Scheme of experiments.

sentence. Walsh et al. (2022) examine the effect of
different tokenization techniques and embedding
approaches such as BERT and Word2Vec on the
translation performance. Egea Gómez et al. (2021)
propose a syntax-aware transformer injecting syn-
tactic information into the word embeddings. In
their follow-up work, Egea Gómez et al. (2022)
achieve remarkable results with a transfer learning
strategy that uses various ways of aggregating lin-
guistic features and takes advantage of a pre-trained
mBART model by filtering the original embedding
and slicing model weights. In our work, we im-
prove over these transfer learning methods using
the warm-start strategy.

Data augmentation has been seen in gloss-to-
text translation (Moryossef et al., 2021; Zhang and
Duh, 2021; Angelova et al., 2022; Chiruzzo et al.,
2022). Empirical comparison of our efforts with all
state-of-the-art systems is presented in Section 5
(Table 4).

3 Methods

Our experiments (Figure 2) start from data prepro-
cessing and setting the baseline. We then explore
data augmentation, semi-supervised NMT, trans-
fer learning and multilingual NMT as measured by
automatic metrics. To confirm the consistency of
system improvements between the best performing
model and baseline, we conduct human evaluation.

3.1 Data augmentation

Data augmentation is a common technique used to
face low resource conditions by adding syntheti-
cally generated data from various sources (Li et al.,
2019). Here, we focus on the following methods:
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Combining preprocessing methods is based on
applying different preprocessing techniques on the
source sentences and pairing them with copied tar-
get glosses. The differently pre-processed versions
are concatenated into a new training dataset. This
technique may be beneficial in that no changes
are made to the target glosses and meanwhile the
datasets are enlarged, being more robust to variable
appearances of the spoken language sentences.

Back-translation is to obtain additional source-
side data by translating a target-language monolin-
gual dataset with target-to-source model (Sennrich
et al., 2016a). The generated source sentences are
then paired with their target side into a synthetic
parallel dataset. However, we lack a monolingual
glosses dataset, so we use a gloss-to-text system to
only translate the target-side glosses of the paral-
lel corpus into spoken language text. This results
in a synthetic version of the corpus, with the side
of spoken language text modified. The synthetic
corpus is then concatenated with the original one.

Forward translation or self-learning (Zhang
and Zong, 2016) provides synthetic parallel pairs,
in which the synthetic target data are obtained by
translating an additional source-language monolin-
gual dataset with the baseline system.

Tagging aims at informing the NMT model
which sentences are original and which are syn-
thetic, as the augmented data may be of lesser
quality (Caswell et al., 2019). For this purpose,
a special token is added in the beginning of each
synthetic source sentence in the training data.

3.2 Semi-supervised NMT

To a certain extent, text-to-gloss translation can
be regarded as a monolingual rephrasing task, as
there is a large overlap in vocabulary of both sides.
Thus, it triggers the assumption, that instead of
generating synthetic data by models, we simply
copy the monolingual data to both source and tar-
get side (Currey et al., 2017). This can be regarded
as semi-supervised NMT, in which the model takes
advantage of the concatenation of unlabeled mono-
lingual data and labeled parallel data (Cheng et al.,
2016). In this work, we do not delve into other
potential effective factors of this method, e.g. size
and domain of the monolingual data.

3.3 Transfer learning

Transfer learning uses learned knowledge to im-
prove related tasks (Pan and Yang, 2010), i.e., a
parent model is pre-trained on a large corpus, used
to initialize the parameters of the child model on
a relatively small corpus. Zoph et al. (2016) first
introduced the feasibility of transfer learning for
NMT. We follow two approaches which differ in
whether the child language pair (SL) is included
during the parent model pre-training:

Model fine-tuning refers to fine-tuning a pre-
trained model to train a child model. Although the
pre-trained model usually contains a large vocab-
ulary, it does not guarantee a full coverage of the
child language pair. To alleviate this situation, the
core operation of this approach is to modify the
given vocabulary file manually. We tokenize the
parallel SL dataset (i.e., the child language pair)
with the source-side tokenizer of the pre-trained
model. Then, we append the vocabulary of the SL
dataset into the pre-trained vocabulary. Since the
vocabulary of the fine-tuned model has to be the
same size as the original one, we replace the most
frequent vocabulary occurrences of the pre-trained
vocabulary with entries from the SL vocabulary.

Our method of fine-tuning by modifying the vo-
cabulary is a simplification of the replacing algo-
rithm used for Vocabulary Transformation (Kocmi
and Bojar, 2020).

Warm-start training addresses the problem of
vocabulary mismatch between parent and child
models by introducing a joint vocabulary (Nguyen
and Chiang, 2017). In this case, a parent model is
pre-trained, but the training data of the child lan-
guage pair is included during the pre-training of the
parent model (Neubig and Hu, 2018). When the
pre-training converges, this model is fine-tuned by
training only on the child language pair. In order
to select which language pair should be chosen as
a parent one, Neubig and Hu (2018) suggest that
using resources from related languages helps in im-
proving the effectiveness of transfer learning, as it
benefits from a high probability of words or charac-
ters overlapping within the related languages. For
this reason we will be using a parallel dataset for
paraphrasing of the spoken language.

3.4 Multilingual NMT

Multilingual NMT handles the simultaneous trans-
lation between more than one language through a
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single model. We suggest multilingual NMT, con-
sidering that the amount of parallel data for our
intended language direction is small but there is a
larger parallel corpus for another related language
direction (Johnson et al., 2017). Here we follow the
case of one-to-many translation, i.e., one source
language to multiple target languages. Parallel cor-
pora from the two language pairs are concatenated
and a target-language-indicator token is added at
the beginning of each source language sentence. A
joint vocabulary across all the training data is built.

In our case, the first target language refers to
the SL glosses and the second target language is
another spoken language. Contrary to other mul-
tilingual NMT experiments, we only focus on the
performance of the text-to-gloss direction. An ex-
ample of the combined parallel set follows:

• German-to-English: <2en> Wie heißt du? → What is your
name?

• German-to-DGSglosses: <2gloss> im süden freundliches
wetter → sued region besser

3.5 Evaluation

Following most of the MT tasks, we use three auto-
matic evaluation metrics including BLEU-4 (Pap-
ineni et al., 2002), ChrF (Popović, 2015) and TER
(Snover et al., 2006), with disabled internal tok-
enization, as suggested by Muller et al. (2022).
Paired bootstrap resampling (Koehn, 2004) was
performed to indicate the systems that are signif-
icantly better than the baseline, and the ones that
are tied with the best-scoring system.

In order to confirm our conclusions and because
the reliability of these metrics has not been con-
firmed for SL glosses, we conduct human evalu-
ation. Since performing human evaluation for all
system requires a lot of effort, we only collect hu-
man evaluation for the translation outputs from the
best-scoring model and the baseline of every cor-
pus, testing the hypothesis that the best-scoring
system is significantly better than the baseline. Sig-
nificance testing between pairs of systems is based
on a one-tailed t-test, with a confidence threshold
of α = 0.05. As a means of quantitative human eval-
uation, we use Direct Assessment (Graham et al.,
2013). Alternative translations of the same source
by different systems are displayed shuffled at the
same screen. A signer scores each output of shuf-
fled systems from 0 to 6 (similar to Kocmi et al.,
2022). Outputs marked with 0 fail to translate any
of the contents of the original sentence, whereas

outputs marked with 6 show no significant mistakes
in the translation.

4 Experiments

4.1 Datasets

We conduct our experiments on two parallel Ger-
man SL (DGS) corpora containing gloss annota-
tions.

RWTH-PHOENIX-Weather 2014T (Camgoz
et al., 2018), abbreviated as PHOENIX, is a par-
allel corpus of SL containing weather forecasts.
The original language was German, translated into
DGS by professional interpreters and then anno-
tated with DGS glosses. We use the provided split
of parallel train-, dev- and test-set with respective
sizes of 7,096, 519 and 642 sentences.

The Public DGS Corpus (Hanke et al., 2020;
Konrad et al., 2020)2, further abbreviated as DGS
corpus, contains conversations and narrations on
topics culturally relevant to the deaf/Deaf commu-
nity. The original language was DGS, which was
then annotated with DGS glosses and German trans-
lation. We use the parallel corpus in plain text as
extracted by Angelova et al. (2022)3, including
the alignment of the DGS glosses to the German
text by using the corresponding timestamps and
prepending the gloss of the dominant hand to the
non-dominant one, in case they co-occurred. We
also follow the same data split into 54,325 training,
4,470 development and 5,113 test sentence pairs.
Due to the big size of the test-set, for the human
evaluation, we sample randomly 10% of the test
sentences.

The DGS corpus gloss annotation (Konrad et al.,
2022) includes suffixes to indicate different word
variants, types, or groups. Muller et al. (2022)
note that some annotation conventions may not be
relevant to SLT and may make the problem unnec-
essarily harder. We confirmed this via our prelim-
inary experiments (Appendix D), which yielded
very low scores (∼1 BLEU) when generating suf-
fixes and we decided to strip all suffixes, for the
following reasons. In order to be able to see the
improvements of our methods we needed more
generous references. Secondly, a criterion was to
preserve basic lexical and syntactic information. A

2https://www.sign-lang.uni-hamburg.de/
meinedgs/ling/start_de.html

3https://github.com/dfki-signlanguage/
gloss-to-text-sign-language-translation
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signer, part of our group, reviewed several gloss
examples and noticed that while the suffixes might
indicate lexical and phonological variants, so do
the corresponding words in the German text, and
with having written language as source there was
in theory no way to determine which variant was
necessary (except training a system to learn from
context which seemed excessive at this point). Fi-
nally, PHOENIX glosses had no suffixes whatso-
ever, so by stripping the suffixes, the automatic
metrics between the two corpora are comparable.
Further work should focus on the importance of the
suffixes, the right granularity for every purpose and
how to optimize their generation. An example of
suffix stripping follows:

• original: $INDEX1* SCHÖN1A ALLE2B ICH1 NICHT1*
$GEST-OFFˆ

• stripped: $INDEX SCHÖN ALLE ICH NICHT $GEST-
OFF

NCSLGR is a very small American Sign Lan-
guage (ASL) parallel corpus (Vogler and Neidle,
2012), which we split ourselves to 1500, 177 and
178 sentences for train, development and test set.

Other corpora The German monolingual
weather domain sentences (Angelova et al., 2022)
and Europarl-v10 (Koehn, 2005) are used in data
augmentation and semi-supervised NMT section
(Sections 3.1 and 3.2) respectively. For training
the parent model in transfer learning (Section 3.3),
we use the parallel German paraphrasing corpus
Tatoeba-Challenge (Tiedemann, 2020) for the
main experiments in DGS and the synthetic
text-to-gloss corpus ASLG-PC12 (Othman and
Jemni, 2012) for the supplementary experiment
in ASL. The German-English bilingual corpora
News-commentary-v16 (Barrault et al., 2019)
and Europarl-v10 are used in the section of
Multilingual NMT (Section 3.4).

We report the statistics of vocabulary level and
sentence lexical overlap of corpora with the custom
split in Appendix F.

4.2 Data Preprocessing

For the data preprocessing, at source side, we per-
form lemmatization on both corpora and alpha-
bet normalization specifically on the PHOENIX
(the letters ü, ö, ä, and ß in the glosses are pre-
normalized by dataset creators). We then apply
Byte Pair Encoding (BPE; Sennrich et al., 2016b)
to decompose the words and build vocabulary. In

the end, we set the lemmatized+normalized sen-
tences with lowercased glosses of PHOENIX and
lemmatized sentences with generalized glosses of
the DGS corpus to train the models. We present
the relevant statistics in Appendixes A and B.

4.3 Software

All software used is open source. MT models
are trained with MarianNMT 1.11.0 (Junczys-
Dowmunt et al., 2018). We also used Sentence-
piece 0.1.97 (Kudo and Richardson, 2018), Moses-
scripts (Koehn et al., 2007), Subword_nmt 0.3.8
(Sennrich et al., 2016b), Hanover Tagger Lemma-
tization library 1.0 (Wartena, 2019), Scipy library
1.9.3 for t-test (Virtanen et al., 2020), SacreBLEU
2.2 (Post, 2018) for the automatic metrics and
Streamlit 1.17 for the evaluation interface. To avoid
model overfitting, we use several techniques such
as early stopping (Zhang and Yu, 2005) during the
model training.

4.4 Baselines

For the training hyperparameters, we start from the
settings for a transformer (Vaswani et al., 2017) by
the MarianNMT tutorial4. Specifically by baseline
training, we take the advice of some paper that in-
dicate in LRL MT scenarios with small data size,
the model performance increases when the number
of encoders/decoders are reduced compared to the
original transformer architecture, e.g. one encoder
and two decoders (Gu et al., 2018) and five en-
coders and five decoders (Chen et al., 2019; Araabi
and Monz, 2020). After running extensive experi-
ments with different combinations, which indicates
we should reduce the encoder depth from 6 to 1 and
the decoder depth from 6 to 2 to have the neural
network fit better the small datasets. We present the
baselines in Table 1. Our baseline models achieved
a BLEU score of 22.78 on the PHOENIX dev set
and 4.04 on the DGS dev set.

4.5 Effect of monolingual dataset

We first investigate the effect of using the additional
monolingual dataset.

4.5.1 Data augmentation
Combining preprocessed data We collect differ-
ent types of source text applied with different pre-
processing methods of Section 4.2. For PHOENIX,

4https://github.com/marian-nmt/
marian-examples/tree/master/transformer
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we combine the original, the normalized, the lem-
matized, and the lemmatized+normalized text with
the copied target glosses. For DGS, we mix the
original and lemmatized text with the correspond-
ing target glosses into a new training dataset.

Back-translation We first train simple gloss-to-
text translation models for both corpora and then
they generate sets of new source sentences from
the target-side glosses. The synthetic texts are
paired appropriately and then mixed with the origi-
nal dataset.

Forward translation For PHOENIX, we use a
German weather-domain monolingual dataset with
the size of 1,203 to get a set of new glosses. To-
wards DGS, as it is a multiple-domain corpus, we
obtain the new glosses by translating its source
sentences with the baseline system.

We summarize the detailed statistics of the aug-
mented datasets in Appendix C.

4.5.2 Semi-supervised NMT
Here, we use the German monolingual dataset
Europarl-v10 with a size of 2,107,971 sentences as
auxiliary data. The monolingual data are copied to
both the source and target side. To fit the neural
network better with a larger training dataset, the
encoder-depth is increased from 1 to 6, the decoder-
depth from 2 to 6, the validation frequency from
500 to 5,000 and the max batch size from 64 to
1,000, as compared to the baseline. We build up a
joint vocabulary of 32,000 entries after the corre-
sponding BPE merge operations.

4.6 Effect of bilingual dataset

Then we start investigating the impact of the addi-
tional bilingual dataset on the model performance.

4.6.1 Transfer learning
Model fine-tuning We take the German to En-
glish pre-trained model5 from Opus (Tiedemann
and Thottingal, 2020), whose vocabulary size is
65k. By applying the pre-trained tokenizer to both
corpora, we get new vocabulary with size of 2,155
and 7,435 for PHOENIX and DGS corpus, respec-
tively. We then crop the pre-trained vocabulary
accordingly and merge the newly built vocabulary
into it.

5https://opus.nlpl.eu/leaderboard/index.
php?model=deu-eng%2Fopus-2021-02-22&pkg=
Tatoeba-MT-models&scoreslang=deu-eng&test=all

Warm-start training We select the Tatoeba chal-
lenge German paraphrasing dataset with a size of
4,574,760 as the parent language pair. In the first
round of training, the training data contain German
paraphrasing pairs and SL pairs. The parent model
is trained using the Tatoeba challenge validation set.
When it converges, we use this as pre-trained model
to train with only the SL dataset. The child model
is further trained using the SL development set for
validation, until it converges too. We again build
the joint vocabulary as in Section 4.5.2. During the
two training phases, we reduce the validation fre-
quency from 1,000 to 100 for a better observation.

4.6.2 Multilingual NMT

We set up the identical source language in this
part, i.e., German. Only one additional language
is selected to train the multilingual NMT, i.e., En-
glish. We assume that a larger auxiliary dataset
could be more helpful. Therefore, we set up two
groups of sub-experiments with different sizes of
auxiliary datasets in this section, i.e., a relatively
small dataset New-commentary-v16 with the size
of 398,981 (“Multi") and a larger one Europarl-v10
with the size of 1,828,521 (“Multi-big"). Vocab-
ulary and hyperparameters follow those of Sec-
tion 4.5.2.

4.7 Effect of combining methods

We run the experiments independently and sepa-
rately in Section 4.5 and Section 4.6. However,
we cannot refuse the assumption that additional
gain could be achieved by combining some or all
of the best performing methods from above sec-
tions. Explicitly, we continue our experiments as
following:

1. Combine all the data augmentation techniques
of Section 4.5.1

2. Tag the monolingual data in the semi-
supervised NMT setting of Section 4.5.2.

3. Combine multilingual NMT setting of Sec-
tion 4.6.2 with combined preprocessed data
and back-translation, respectively.

5 Results

In this part, we will present the performance of
the various methods on both SL datasets and offer
some further analysis.
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Corpus System BPE Vocab Dev Test
BLEU ChrF TER BLEU ChrF TER

PHOENIX

Baseline 2k 22.78 51.87 55.84 20.14 52.04 56.12

Combine 2k 24.01 52.32 53.20 21.88 51.51 54.53
Combine+Tag 2k 22.94 52.09 52.88 21.11 51.65 54.81
Back 2k 23.63 52.03 53.98 21.04 51.59 54.57
Back+Tag 2k 23.62 52.85 52.88 21.57 52.41 53.94
Forward 2k 23.03 52.56 53.71 20.40 51.54 55.63
Forward+Tag 2k 23.45 52.49 54.16 21.64 52.27 54.57
All_combined 2k 23.63 52.32 54.19 21.04 51.97 54.71

Semi 32k 26.76 55.41 51.10 22.67 53.87 53.07
Semi+Tag 32k 26.55 55.76 50.83 24.15 55.13 51.17

Fine-tune 65k 26.39 56.84 50.88 24.67 55.97 52.86
Warm 32k 27.62 56.92 49.25 24.89 55.46 50.40

Multi 32k 28.34 57.29 48.48 24.30 55.71 51.03
Multi-big 32k 27.45 56.52 48.77 24.97 55.75 49.89
Multi+combine 32k 26.61 55.59 50.21 23.22 54.55 52.84
Multi-big+combine 32k 28.02 57.07 49.31 24.94 55.89 51.01
Multi+back 32k 28.41 57.54 49.39 26.32 56.70 51.15
Multi-big+back 32k 28.53 57.64 48.93 25.98 56.67 50.94

DGS

Baseline 5k 4.04 31.20 79.34 3.13 30.38 78.64

Combine 5k 3.71 29.97 80.21 2.75 29.31 80.01
Combine+Tag 5k 3.23 28.69 81.31 2.27 28.17 81.03
Back 5k 3.83 30.08 82.75 3.06 29.30 80.94
Back+Tag 5k 3.88 29.66 79.55 2.75 28.91 79.05
Forward 5k 3.51 29.14 83.03 2.81 28.24 81.13
Forward+Tag 5k 3.75 29.69 86.20 2.93 29.06 83.21
All_combine 5k 3.14 28.37 81.61 2.43 27.87 81.83

Semi 32k 5.16 33.43 76.19 4.42 31.81 76.35
Semi+Tag 32k 5.00 32.69 79.47 4.10 31.30 78.67

Fine-tune 65k 5.82 35.05 79.92 4.53 34.14 78.98
Warm 32k 5.87 33.42 74.07 4.55 31.90 74.54

Multi 32k 6.06 35.18 74.51 5.32 33.55 74.71
Multi-big 32k 6.60 35.26 73.25 5.46 33.49 73.53
Multi+combine 32k 4.64 32.33 80.39 3.85 31.38 78.34
Multi-big+combine 32k 6.79 35.50 73.98 5.61 33.88 73.94
Multi+back 32k 5.35 33.43 78.30 4.85 32.16 76.76
Multi-big+back 32k 6.82 35.57 76.37 5.78 33.87 76.12

Table 1: Automatic metric scores of extensive experimentation search of the two DGS corpora. We boldface all the
values that are not statistically significantly different from the best value of each evaluation metric and underline the
results that are statistically significantly higher than baseline at the 95% confidence level.

5.1 Automatic evaluation

The performance of the various experiments, as
measured with automatic metrics can be seen in
Table 1. Looking at the scores on the test sets, we
can observe that:

(1) Overall, the results on PHOENIX are bet-
ter than on DGS corpus in all aspects. One of the
reasons may be that DGS corpus is of broader do-
main and has a much bigger vocabulary. To support
our assumption, we calculate the type-to-token ra-
tio (Templin, 1957) for both corpora (PHOENIX:
2.2% and DGS corpus: 3.2%).

(2) For PHOENIX, data augmentation has shown
a significant improvement in comparison with the

baseline, as measured by BLEU (+1.74) and TER
(-1.59), although ChrF fails to measure a significant
improvement. On the contrary, the performance on
DGS corpus declines as compared to the baseline.

(3) Incorporating the large-scale monolingual
dataset, (semi-supervised NMT), could further im-
prove the scores of translation systems for both SL
datasets. Tagging here seems to be of big impor-
tance for PHOENIX (+1.5 BLEU).

(4) Transfer learning incurs further improvement,
with scores equal or better to the ones achieved with
semi-supervised NMT. Here, each metric favors
a different setting. ChrF indicates a significant
improvement with fine tuning, TER prefers warm
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System Test
BLEU ChrF TER

Baseline 10.50 30.65 78.95
Back 9.37 28.25 78.67
Warm-start 12.11 33.53 83.44
Multi 12.35 38.33 78.26

Table 2: Automatic metric scores for NCSLGR corpus.

start, whereas BLEU indicates only a very small
difference between the two.

(5) Multilingual NMT increases the automatic
scores even further. The best scoring methods, fa-
vored by two automatic metrics each, and taking
into consideration the significance tests, are (a) for
PHOENIX the Multi with back-translation, Multi-
big and Multi-big with back-translation, and (b) for
DGS corpus the Multi-big, the Multi-big with back-
translation, and the Multi-big with combined pre-
processing.

In order to confirm the generalizability of our
findings, we repeated the experiments with a very
small corpus of the ASL, and the results are shown
in Table 2. We observe that our best-scored method
for the German SL (DGS) also gives the best per-
formance for the ASL corpus, which is confirmed
with two out of the automatic metrics.

In Table 4, we compare our best model to the
approaches of recent work which have run experi-
ments on PHOENIX text-to-gloss translation task.
One can see that our best-scoring system performs
3.13 points BLEU higher than the closest result.

5.2 Quantitative Human Evaluation

As part of the human evaluation, an effort of ap-
proximately 40 hours for the PHOENIX test set and
20 hours for the DGS corpus was made. The results
of the human evaluation (Table 3) confirm the ba-
sic hypothesis: that the best performing method of
multi-NMT is statistically significantly better than
the baseline. The density of the human evaluation
scores of the two best scoring systems can be seen
in Figure 3. One can see that more than half of
the test-sentences of the best PHOENIX system are
scored with a 5 or 6, whereas the corresponding
percentage for the DGS corpus is only around 20%.
Despite the extremely low automatic scores of the
best model on the DGS corpus, it is promising that
the human evaluator assigned the best score to 10%
of the test sentences.

6 Conclusion

In this paper, we applied several techniques, com-
monly used in low resource MT scenarios, for
MT from spoken language text to sign language
glosses. We presented an extensive experimen-
tation including data augmentation (combination
of different pre-processing methods, back- and
forward-translation), semi-supervised NMT, trans-
fer learning with two different methods and mul-
tilingual NMT with different data sizes. The ex-
periments were based on the two known natural
datasets including gloss annotation, the RWTH-
PHOENIX-Weather 2014T dataset and the Public
DGS Corpus. Automatic metrics indicate signifi-
cant improvement on the evaluation scores for both
datasets when using most of the above methods,
whereas the best results are achieved via a Multi-
lingual NMT model (6.18 and 2.65 BLEU against
the baseline respectively). Our best system out-
performs all other state-of-the-art systems from
previous work that report on the same test-set. Ad-
ditionally, the best setting is confirmed with an
experiment run on a corpus of the ASL. The con-
clusions are supported by human evaluation.

Limitations

• These methods have been performed on three
SL datasets (Section 4.1) as these were the
only publicly available natural SL corpora
found to contain gloss annotations. There-
fore, the generalization of these conclusions to
other SLs is limited and should be confirmed
upon availability of suitable data.

• SL glosses are not an accurate representation
of SLs and critical information can be miss-
ing, causing further limitations to the usabil-
ity of the results (e.g. for SL video produc-
tion) and the reliability of the automatic eval-
uation. However, as explained in the Intro-
duction (Section 1), we think that given the
current resource limitation, investigation of
MT on glosses may be a research step to pro-
vide indications for other SL representations.

• As explained in Section 4.1, stripping the
gloss suffixes from the DGS corpus was done
in order to allow more clear comparisons with
the automatic evaluation metrics, given the
low scores incurred when the suffixes were
there. It is clear that suffix stripping limits the
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System Size automatic human
BLEU↑ ChrF↑ TER↑ Mean↑ Std↑

PHOENIX Egea Gómez et al. (2021)
642

13.13 46.86 73.33 2.74 1.64
PHOENIX baseline 20.14 52.04 56.12 3.85 1.58
PHOENIX Multi+back 26.32 56.70 51.15 4.44 1.35

DGS Baseline (sampled 10%) 511 3.44 29.56 78.55 2.49 1.81
DGS Multi-big (sampled 10%) 6.97 33.16 73.45 3.28 1.60

Table 3: System comparison based on the human evaluation. The bold-faced systems are significantly better than
the respective baselines.

(a) PHOENIX Multi+back (b) DGS Multi-big

Figure 3: Density of human evaluation scores for the two best-scoring systems.

Approach Dev Test
BLEU↑ BLEU↑

Amin et al. (2021) - 10.42
Egea Gómez et al. (2021)† - 13.13
Stoll et al. (2020) 16.34 15.26
Zhang and Duh (2021) - 16.43
Li et al. (2021) - 18.89
Saunders et al. (2020b) 20.23 19.10
Saunders et al. (2022) 21.93 20.08
Egea Gómez et al. (2022) - 20.57
Walsh et al. (2022) 25.09 23.19
Our PHOENIX Multi+back 28.41 26.32

Table 4: Results comparison with recent work. (†) We
compute the BLEU by ourselves, as the authors of paper
only present the BLEU score in character level.

representational capacity of the glosses. As
stated, further work should focus on the im-
portance of the DGS gloss suffixes, the right
granularity for every purpose and how to opti-
mize their generation from MT.

• The original language direction of the DGS
corpus was opposite to the one that we run
our training and evaluation on. This is known
to create translationese artifacts. Similar con-
cerns have been expressed regarding the clean-
liness of the PHOENIX corpus (Muller et al.,
2022). Finally, whereas in MT of spoken lan-
guage text, test-sets have been manually cu-
rated by professional translators for this pur-
pose, in our experiments we use data splits,

whose test set quality may not have been con-
firmed.

• The human evaluation part (Section 3.5) was
performed with one signer, but evaluation by
more people and coverage of the Deaf commu-
nity would be ideal. Additionally, due to the
high effort required, we could only validate
the hypothesis that the best system is signif-
icantly better than the baseline. Given more
evaluation capacity one could verify whether
there is a significantly perceived quality dif-
ference between methods that were scored
closely by the automatic metrics (e.g. transfer
learning and multilingual MT).

• The automatic metrics used have been de-
signed for evaluating the textual output for
MT of spoken languages. Whether they are
applicable and reliable with regards to SLs
and particularly to SL glosses has not been
sufficiently analyzed and should be consid-
ered for further work. Any interpretation of
the scores should consider this limitation.

• Despite the big progress regarding the model
trained on the DGS-corpus (Section 5.1), the
BLEU scores achieved indicate very low per-
formance, if judged from the experience on
the automatic scores for text translation for
spoken languages. Whereas we tried to get
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some information about this by looking at the
distribution of scores, further investigation on
whether such a system is usable with regards
to particular use cases (interpretation, text-to-
video) is needed.

Ethical considerations

In our work, we present experiments on the German
Sign Language (DGS) that are part of a broader re-
search aiming to provide equal access to language
technology for sign language users. Nevertheless,
the fact that the majority of the researchers in NLP
are hearing people entails the risk of developments
that are not in accordance with the will of the re-
spective communities, and therefore it is required
that every research step takes them in constant
consideration. In our broader research we have
included members of the Deaf/deaf and hard of
hearing communities as part of the research team,
consultants and participants in user studies and
workshops and we have been in co-operation with
related unions and communication centers.

The fact that we are performing experiments on
glosses, known to be inferior to the full linguistic
capacity of the sign languages, should be seen as a
methodological tool to aid further research.

The Public DGS corpus is provided under a lim-
ited license for linguistic research (Schulder and
Hanke, 2022), prohibiting any further commercial
usage. Any further usage of relevant artifacts from
our work should respect the license of the origi-
nal corpus. Removal of information that names or
uniquely identifies individual people or offensive
content was not deemed necessary. In the Pub-
lic DGS corpus, participants provided consensus,
whereas the content was carefully curated. The
PHOENIX corpus does not pose any relevant risk
because the content (weather forecasts) does not in-
clude any personal information. All other datasets
used have been published with open or public do-
main licenses. Since our work does not use videos
of SLs, there should be no ethical concerns regard-
ing processing of human faces.
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Tom Kocmi and Ondřej Bojar. 2020. Efficiently reusing
old models across languages via transfer learning.
In Proceedings of the 22nd Annual Conference of
the European Association for Machine Translation,
pages 19–28, Lisboa, Portugal. European Association
for Machine Translation.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of the
2004 Conference on Empirical Methods in Natural
Language Processing, pages 388–395, Barcelona,
Spain. Association for Computational Linguistics.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of
Machine Translation Summit X: Papers, pages 79–86,
Phuket, Thailand.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, An-
tônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17:261–272.

Christian Vogler and Carol Neidle. 2012. A new web
interface to facilitate access to corpora: development
of the ASLLRP data access interface. In Proceed-
ings of the 5th Workshop on the Representation and
Processing of Sign Languages: Interactions between
Corpus and Lexicon.

12535

https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://doi.org/https://dl.acm.org/doi/10.1145/3567592
https://doi.org/https://dl.acm.org/doi/10.1145/3567592
https://doi.org/10.1007/s10044-011-0243-9
https://doi.org/10.1007/s10044-011-0243-9
https://doi.org/10.1007/s10044-011-0243-9
https://doi.org/10.48550/ARXIV.2008.12405
https://doi.org/10.48550/ARXIV.2008.12405
https://doi.org/10.48550/ARXIV.2004.14874
https://doi.org/10.48550/ARXIV.2004.14874
https://openaccess.thecvf.com/content/CVPR2022/html/Saunders_Signing_at_Scale_Learning_to_Co-Articulate_Signs_for_Large-Scale_Photo-Realistic_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Saunders_Signing_at_Scale_Learning_to_Co-Articulate_Signs_for_Large-Scale_Photo-Realistic_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Saunders_Signing_at_Scale_Learning_to_Co-Articulate_Signs_for_Large-Scale_Photo-Realistic_CVPR_2022_paper.html
https://aclanthology.org/2022.lrec-1.18
https://aclanthology.org/2022.lrec-1.18
https://aclanthology.org/2022.lrec-1.18
https://aclanthology.org/2022.lrec-1.18
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P19-1021
https://doi.org/10.18653/v1/P19-1021
https://aclanthology.org/2006.amta-papers.25
https://aclanthology.org/2006.amta-papers.25
https://doi.org/10.1007/s11263-019-01281-2
https://doi.org/10.1007/s11263-019-01281-2
https://doi.org/10.1007/s11263-019-01281-2
http://www.jstor.org/stable/10.5749/j.ctttv2st
http://www.jstor.org/stable/10.5749/j.ctttv2st
http://www.jstor.org/stable/10.5749/j.ctttv2st
https://aclanthology.org/2020.wmt-1.139
https://aclanthology.org/2020.wmt-1.139
https://aclanthology.org/2020.wmt-1.139
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/2020.eamt-1.61
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://hdl.handle.net/2144/31886
https://hdl.handle.net/2144/31886
https://hdl.handle.net/2144/31886


Harry Walsh, Ben Saunders, and Richard Bowden. 2022.
Changing the representation: Examining language
representation for neural sign language production.
In Proceedings of the 7th International Workshop on
Sign Language Translation and Avatar Technology:
The Junction of the Visual and the Textual: Chal-
lenges and Perspectives, pages 117–124, Marseille,
France. European Language Resources Association.

Christian Wartena. 2019. A probabilistic morphology
model for german lemmatization. In Conference on
Natural Language Processing, Proceedings of the
15th Conference on Natural Language Processing
(KONVENS 2019), pages 40 – 49.

Jiajun Zhang and Chengqing Zong. 2016. Exploiting
source-side monolingual data in neural machine trans-
lation. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1535–1545, Austin, Texas. Association
for Computational Linguistics.

Tong Zhang and Bin Yu. 2005. Boosting with early
stopping: Convergence and consistency. The Annals
of Statistics, 33(4).

Xuan Zhang and Kevin Duh. 2021. Approaching sign
language gloss translation as a low-resource ma-
chine translation task. In Proceedings of the 1st
International Workshop on Automatic Translation
for Signed and Spoken Languages (AT4SSL), pages
60–70, Virtual. Association for Machine Translation
in the Americas.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin
Knight. 2016. Transfer learning for low-resource neu-
ral machine translation. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1568–1575, Austin, Texas.
Association for Computational Linguistics.

Appendix

A Statistics of sign language datasets

We present the statistical analysis of all sign lan-
guage corpora in Table 5 and Table 6. Out-of-
Vocabulary (OOV) are the words that only appear
in development or test set and singletons are the
least frequent words appearing only once.

B Effect of source-side preprocessing

Previous work on gloss-to-text translation
(Moryossef et al., 2021) suggested the use of
lemmatization of the spoken language words
as part of their data augmentation pipelines.
Lemmatization of spoken language words in
the text-to-gloss is justified by the fact that
they contain inflection (e.g. for nouns, or verb
conjugation), something that does not exist in
SL glosses (Moryossef et al., 2021). Therefore

we ran preliminary experiments on PHOENIX
with lemmatization in order to determine the
baseline settings. The results of these experiments
on PHOENIX appear in Table 7. One can see
that lemmatization incurs considerable automatic
metric improvements, with an improvement of
around 0.9 BLEU score on test set.

In Table 8, we demonstrate the statistics of the
source side after the data preprocessing. We can see
that the vocabulary size has dropped by around 23%
and 25% after data preprocessing, respectively.

C Statistics of augmented datasets

As an appendix for Section 4.5.1, we present here
the statistics of the datasets through our data aug-
mentation methods in Table 9.

D Effect of DGS-Corpus gloss suffixes to
the automatic evaluation

We train these two multilingual NMT systems on
the DGS corpus under the same configurations but
they are evaluated against two different types of
reference translations: the original DGS glosses
and the glosses with stripped suffixes. In Table 10
we can observe the results, indicating that generat-
ing glosses with correct suffices is a much harder
problem and that current automatic metrics are not
optimized to measure that.

E Statistics of additional datasets

The statistics of additional datasets used for data
augmentation (Section 3.1), semi-supervised NMT
(Section 3.2), warm-start of transfer learning (Sec-
tion 3.3) and multilingual NMT (Section 3.4) are
shown in Table 11.

F Vocabulary-level and sentence-level
overlap for custom split

We calculate the vocabulary overlap over the dif-
ference of the vocabulary counts and OOVs in Ta-
ble 6 and Table 8 of the preprocessed datasets. The
DGS vocabulary overlap is 79.61% between test
and train set and 80.24% between dev and train set.
The vocabulary overlap for NCSLGR is 69.50%
and 70.60%, respectively. The official splits of the
PHOENIX dataset (that has been used in most of
the SoTA papers and related work) have a much
higher vocabulary overlap, of 95.45% and 95.08%
respectively.

12536

https://aclanthology.org/2022.sltat-1.18
https://aclanthology.org/2022.sltat-1.18
https://doi.org/10.25968/opus-1527
https://doi.org/10.25968/opus-1527
https://doi.org/10.18653/v1/D16-1160
https://doi.org/10.18653/v1/D16-1160
https://doi.org/10.18653/v1/D16-1160
https://doi.org/10.1214/009053605000000255
https://doi.org/10.1214/009053605000000255
https://aclanthology.org/2021.mtsummit-at4ssl.7
https://aclanthology.org/2021.mtsummit-at4ssl.7
https://aclanthology.org/2021.mtsummit-at4ssl.7
https://doi.org/10.18653/v1/D16-1163
https://doi.org/10.18653/v1/D16-1163


PHOENIX Generalized DGS
Text Glosses Text Glosses

Train Dev Test Train Dev Test Train Dev Test Train Dev Test

Sentences 7, 096 519 642 7, 096 519 642 54, 325 4, 470 5, 113 54, 325 4, 470 5, 113
Vocabulary 2, 887 951 1, 001 1, 085 393 411 20, 868 4, 617 4, 992 19, 521 4, 894 5, 688
Tot. words 99, 081 6, 820 7, 816 55, 247 3, 748 4, 264 472, 609 36, 629 44, 452 301, 772 21, 715 28, 405
Tot. OOVs - 57 60 - 14 19 - 971 1, 080 - 614 752
Singletons 1, 077 - - 355 - - 9, 946 - - 6, 286 - -

Table 5: Statistics of both corpora.

NCSLGR
Text Glosses

Train Dev Test Train Dev Test

Sentences 1, 500 177 178 1, 500 177 178
Vocabulary 2, 796 745 754 2, 287 662 639
Tot. words 13, 904 1, 860 1, 832 11, 064 1, 471 1, 449
Tot. OOVs - 219 230 - 210 192
Singletons 1, 665 - - 1, 209 - -

Table 6: Statistics of NCSLGR.

Preprocessing Dev Test
BLEU ChrF TER BLEU ChrF TER

No lemmatization 27.90 57.50 49.92 25.44 56.30 51.76
With lemmatization 28.41 57.54 49.39 26.32 56.70 51.15

Table 7: Effect of lemmatization on preliminary experiments of the PHOENIX corpus.

PHOENIX Generalized DGS
Text Preprocessed text Text Preprocessed text

Train Dev Test Train Dev Test Train Dev Test Train Dev Test

Sentences 7, 096 519 642 7, 096 519 642 54, 325 4, 470 5, 113 54, 325 4, 470 5, 113
Vocabulary 2, 887 951 1, 001 2, 216 793 836 20, 868 4, 617 4, 992 15, 170 3, 497 3, 791
Tot. words 99, 081 6, 820 7, 816 99, 081 6, 820 7, 816 472, 609 36, 629 44, 452 472, 609 36, 629 44, 452
Tot. OOVs - 57 60 - 39 38 - 971 1, 080 - 691 773
Singletons 1, 077 - - 765 - - 9, 946 - - 6, 929 - -

Table 8: Statistics of preprocessed corpora.

PHOENIX Text PHOENIX Glosses DGS Text DGS Glosses
Authentic Synthetic Authentic Synthetic Authentic Synthetic Authentic Synthetic

Original 7, 096 − 7096 − 54, 325 − 54, 325 −
Combining 7, 096 3 ∗ 7096 4 ∗ 7096 − 54, 325 54, 325 2 ∗ 54, 325 −

Back-translation 7, 096 7, 096 2 ∗ 7, 096 − 54, 325 54, 325 2 ∗ 54, 325 −
Forward-translation 7, 096 1, 023 7, 096 1, 023 2 ∗ 54, 325 − 54, 325 54, 325

Table 9: Statistics of augmented datasets

DGS gloss reference Dev Test
BLEU-4 ChrF TER BLEU-4 ChrF TER

Original_DGS 1.21 32.67 92.24 0.81 31.34 91.78
Generalized_DGS 6.06 35.18 74.51 5.32 33.55 74.71

Table 10: Results comparison with different DGS gloss references.
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Dataset Language (pair) #

Monolingual German weather domain sentences de 1, 203
Europarl-v10 de 2, 107, 971

Bilingual
Tatoeba-Challenge de-de 4, 574, 760
News-commentary-v16 de-en 398, 981
Europarl-v10 de-en 1, 828, 521
ASLG-PC12 en-ASL 87, 710

Table 11: Auxiliary language datasets overview.

For sentence lexical overlap within the DGS cor-
pus there are no sentences with 100% lexical over-
lap, 6.45% of the test sentences had approximately
90% overlap with the train set and 1.51% of the
test sentences had approximately 80% overlap with
the train set, whereas the sentence-level overlap
between the dev set and the train set is similar. For
the NCSLGR test set, the overlaps are 0, 12.23%
and 4,26% and for dev set 0, 14.44% and 5.88%
respectively. The sentence-level lexical overlaps of
our custom splits are lower or comparable to the
ones of the official PHOENIX corpus. These are
0, 11.06% and 16.04% in the test set and 0, 7.32%
and 15.42% in the dev set respectively.

G Statistics on computational
experiments

Experiments were run in a GPU computational
cluster on an Nvidia RTXA-6000, using 1 GPU, 2
CPUs and 50 GB of RAM and summing approxi-
mately 100 hours of computational time.

H Human Evaluation

The human evaluator and consultant is a user of the
German Sign Language (DGS) and an employed
member of our research team, having consented on
the use of their evaluation effort for this research.
The interface used for the human evaluation can be
seen in Figure 4.

The evaluation rating was that outputs marked
with 0 failed to translate any of the contents of the
original sentence, whereas outputs marked with
6 show no significant mistakes in the translation.
Insignificant mistakes or minor issues dropped the
rating from 6 to a 5 or 4, some correctly translated
words or phrases pushed it up from 0 to 1 or 2 or, if
some information was conveyed but it was missing
significant interrelations, to 3.
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Figure 4: The interface used for human evaluation.
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