
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 12573–12589

July 9-14, 2023 ©2023 Association for Computational Linguistics

Large-scale Lifelong Learning of In-context Instructions
and How to Tackle It

Jisoo Mok1∗ Jaeyoung Do2† Sungjin Lee2 Tara Taghavi2
Seunghak Yu3 Sungroh Yoon1,4†

1 Department of ECE, Seoul National University 2 Amazon Alexa AI 3 NAVER Search US
4 Interdisciplinary Program in AI, Seoul National University

Abstract

Jointly fine-tuning a Pre-trained Language
Model (PLM) on a pre-defined set of tasks
with in-context instructions has been proven
to improve its generalization performance, al-
lowing us to build a universal language model
that can be deployed across task boundaries. In
this work, we explore for the first time whether
this attractive property of in-context instruction
learning can be extended to a scenario in which
tasks are fed to the target PLM in a sequen-
tial manner. The primary objective of so-called
lifelong in-context instruction learning is to im-
prove the target PLM’s instance- and task-level
generalization performance as it observes more
tasks. DYNAINST, the proposed method to life-
long in-context instruction learning, achieves
noticeable improvements in both types of gen-
eralization, nearly reaching the upper bound
performance obtained through joint training.

1 Introduction

A number of recent studies have shown that Pre-
trained Language Models (PLMs) only need to
undergo a brief fine-tuning process to achieve
remarkable instance-level generalization perfor-
mance within the observed task (Brown et al.,
2020). Compared to instance-level generalization
within seen tasks, however, the zero-shot cross-task
generalization capability of PLMs to unseen tasks
is just starting to be explored (Sanh et al., 2021; Wei
et al., 2021). In order to build a language model
that can generalize across task boundaries and thus
be deployed to various task scenarios, in-context
instruction learning draws inspiration from how hu-
mans can familiarize themselves with a variety of
language-related tasks only by following instruc-
tions (Mishra et al., 2022). To emulate the human
learning process, in-context instruction learning
trains the target PLM with both input-output pairs

∗Work done while interning at Amazon Alexa AI (magic-
shop1118@snu.ac.kr)

†Corresponding Authors

and a set of in-context instructions that contain
additional task-specific information.

The introduction of in-context instructions is
spearheading a noticeable progress in cross-task
generalization within Natural Language Processing
(NLP) research. The recent advances in-context
instruciton learning (Ouyang et al., 2022; Mishra
et al., 2022; Wang et al., 2022) indicate that fine-
tuning a PLM with task-specific instructions has a
positive impact on its cross-task generalization ca-
pability. One common limitation shared by the ex-
isting works is that they require a static, pre-defined
set of tasks to jointly train the target PLM. Any
learning paradigm bound by the assumption that
all of the tasks are pre-defined and non-changing
not only incurs a huge memory and computa-
tional cost but also raises serious data privacy con-
cerns (De Lange et al., 2021). In this paper, we aim
to address such concerns by studying whether it is
possible to sequentially fine-tune the target PLM
on a stream of large-scale instruction-paired tasks
in a lifelong manner.

In the same spirit as joint in-context instruc-
tion learning, the primary objective of lifelong
in-context instruction learning is to gradually im-
prove both instance- and task-level generalization
capabilities as the target PLM observes more train
tasks. With the help of lifelong in-context in-
struction learning, deployment of a universal lan-
guage model on edge devices with limited memory
and computation power becomes easier. In such
a resource-constrained setting, it is infeasible to
jointly train a language model from scratch on all
user data every time a new task is introduced. More-
over, it is difficult to deploy a separate model for
every task or utilize an extremely large model with
multi-task capability. Instead, we can deploy a
continuously evolving language model and train it
sequentially on a task stream.

To study the problem of lifelong in-context in-
struction learning within the context of instance-

12573

and task-level generalization, we adopt Super-
NaturalInstructions (Sup-NatInst) (Wang et al.,
2022), which is the largest dataset with in-context
instructions to date, and restructure it accordingly.
Because we believe that cross-language generaliza-
tion is beyond the scope of this paper, we use the
English subset of Sup-NatInst, and from here on,
we use Sup-NatInst to refer to the English subset
instead of the entire dataset. More details on the
characteristics of Sup-NatInst and the data restruc-
turing process are provided in Section 3.

Our proposed approach to lifelong in-context
instruction learning, DYNAINST, combines param-
eter regularization and experience replay. The reg-
ularizer employed by DYNAINST is designed to
induce wide local minima in the target PLM. Deep
neural networks with wide local minima are known
to achieve improved generalization performance
and become more robust against task distribution
shifts (Cha et al., 2020); these two advantages of
wide local minima are well-aligned with the ob-
jectives of lifelong instruction learning, making
it a particularly attractive choice of regularization.
To design a memory- and compute-efficient expe-
rience replay framework, we devise Dynamic In-
struction Replay, which is comprised of Dynamic
Instance Selection (DIS) and Dynamic Task Se-
lection (DTS). DIS and DTS flexibly determine
which instances and tasks are stored and replayed,
respectively. Our experimental results demonstrate
that DYNAINST outperforms strong baselines in
both instance- and task-level generalization under
various experimental scenarios.

Our contributions can be summarized as follows:

• This is the first work to study the potential of
lifelong in-context instruction learning as an
efficient framework towards building a contin-
uously evolving universal language model.

• We propose DYNAINST, a hybrid approach
to lifelong in-context instruction learning
that integrates a wide local minima-inducing
regularizer and Dynamic Instruction Replay.
With extensive experimental results, we verify
that DYNAINST outperforms existing base-
lines from continual learning.

• We present a series of empirical analyses and
ablation studies that offer further insights into
lifelong in-context instruction learning and the
inner-workings of DYNAINST.

Characteristic ConTinTin Ours.

In-Context instructions ✓ ✓
Fully continual ✗ ✓
Zero-shot generalization ✗ ✓
Large-scale ✗ ✓
Changing # of instances ✗ ✓

Table 1: Comparison of ConTinTin (Yin et al., 2022)
vs. our framework. Our learning objective and problem
definition are clearly distinguishable from ConTinTin.

2 Related Works

2.1 Lifelong Learning

Lifelong learning (De Lange et al., 2021; Mc-
Closkey and Cohen, 1989) concerns with the
problem of learning from a continuous stream of
data (Parisi et al., 2019; Chen and Liu, 2018). Thus,
what distinguishes lifelong learning from the con-
ventional paradigm of joint training is the sequen-
tial characteristic of the learning process, in which
only a subset of input data are fed to the model at
once. There are largely three different settings for
lifelong learning: class, domain, and task incremen-
tal settings (De Lange et al., 2021). Here, we focus
on the methods for task incremental setting, which
is most relevant to the investigated framework of
lifelong in-context instruction learning.

Based on how information from each task is
stored and utilized later in the task stream, task
incremental methods can be categorized into three:
parameter regularization-, rehearsal-, and archi-
tecture expansion-based methods. Regularization-
based methods (Li and Hoiem, 2017; Aljundi et al.,
2018; Liu et al., 2018; Kirkpatrick et al., 2017) dis-
courage re-visiting of inputs from previous tasks
and instead introduce an auxiliary regularization
term. Rehearsal-based methods (Rebuffi et al.,
2017; Lopez-Paz and Ranzato, 2017; Chaudhry
et al., 2018b; Shin et al., 2017) store a small num-
ber of instances and explicitly reuse the stored in-
stances when training on future tasks. They in-
evitably result in some memory consumption, but
this cost is offset by the clear advantage on the
performance side. Lastly, architecture expansion-
based methods (Mallya and Lazebnik, 2018; Serra
et al., 2018) add new parameters to the backbone
architecture each time a new task is presented.

Although lifelong learning is studied mostly
within computer vision or robotics-related tasks,
lifelong learning with NLP data has also been at-
tracting significant interest. Many of the lifelong

12574

learning works in NLP focus on learning a sequen-
tial stream of data that belong in the same task, such
as sentiment classification (Chen and Liu, 2018)
or task-oriented dialog systems (Mi et al., 2020;
Madotto et al., 2021). Recent research efforts aim
to explore a more challenging lifelong learning set-
ting that encompasses more than one task (Sun
et al., 2019; Kanwatchara et al., 2021), only uses
a limited number of instances per task (i.e., few-
shot setting (Qin and Joty, 2021)), or generalizes
to out-of-distribution data (Lin et al., 2022).

2.2 Learning with In-Context Instructions

The idea of introducing in-context instructions was
first proposed by Goldwasser and Roth (2014)
who explored whether an automated agent can un-
derstand and execute the instruction that is trans-
formed into a comprehensible expression through
semantic parsing. In the NLP community, utilizing
in-context language-based instructions continues
to rise in popularity as an effective method of im-
proving the generalization capability of PLMs. The
core concept of in-context instruction learning is to
utilize task-specific instructions that provide some
description or hint to the task at hand. For instance,
the NaturalInstructions-v1 (NI-v1) dataset (Mishra
et al., 2022), a predecessor to Sup-NatInst used in
our work, contains 64 NLP tasks, all paired with
real-world instructions from Amazon Mechanical
Turk (AMT) (Paolacci et al., 2010). The instruc-
tion schema of NI-v1 and Sup-NatInst resemble
each other in that they include the following: task-
specific definition, positive examples, negative ex-
amples, and some explanation for why an example
is positive or negative.

To the best of our knowledge, this is the first
work to explore whether a PLM can be trained se-
quentially on a stream of instruction-paired tasks.
While Yin et al. (2022) seemingly consider a simi-
lar problem, their framework, ConTinTin, and ours
fundamentally differ in several aspects. The key
differences between ConTinTin and our framework
are summarized in Table 1. Because ConTinTin
includes the joint training step prior to sequen-
tially adapting the jointly-trained model, it is not
fully continual. During the adaptation step, Con-
TinTin observes evaluation tasks and thus ignores
the trained model’s generalization capacity to un-
seen tasks, an important aspect of instruction-based
learning. Lastly, it is not as large-scale as ours, and
it assumes that for all of the pre-train tasks, the

Sup-
NatInst

500 Train Tasks
𝑻𝒕𝒓 = 𝒕𝒕𝒓,

𝟏 … , 𝒕𝒕𝒓
𝑲 ,

𝐊 = 𝟓𝟎𝟎

119 Eval Tasks
𝑻𝒆𝒗𝒂𝒍 = 𝒕𝒆𝒗𝒂𝒍,

𝟏 … , 𝒕𝒆𝒗𝒂𝒍
𝑲 ,

𝐊 = 𝟏𝟏𝟗

L Train Instances
𝒙𝟏, 𝒚𝟏 , … , 𝒙𝑳, 𝒚𝑳

1

2

3

Phase Data Metrics

Train Forgetting = 𝑚𝑎𝑥𝑙∈𝑗,…,𝑘−1𝐴𝑙 𝑡𝑗 − 𝐴𝑘(𝑡
𝑗)

Intransigence = 𝐴∗ 𝑡𝑗 − 𝐴𝑗 (𝑡
𝑗)

Eval 𝐺𝐸𝑁𝐼𝑛𝑠𝑡=
1

𝑘
σ𝑖=1
𝑘 𝐴𝑘(ǁ𝑡𝑡𝑟

𝑖)

𝐺𝐸𝑁𝑇𝑎𝑠𝑘 =
1

119
σ𝑖=1
119𝐴𝑘(ǁ𝑡𝑒𝑣𝑎𝑙

𝑖)

(a)

(b)

100 Test Instances
𝒙𝟏, 𝒚𝟏 , … , 𝒙𝟏𝟎𝟎, 𝒚𝟏𝟎𝟎

100 Test Instances
𝒙𝟏, 𝒚𝟏 , … , 𝒙𝟏𝟎𝟎, 𝒚𝟏𝟎𝟎

1

2

3

Figure 1: (a) visualizes how Sup-NatInst is restructured
for our purpose. (b) summarizes the data types and
metrics used for train and evaluation phases.

same number of instances are available. To tackle
the ConTinTin framework, Yin et al. (2022) pro-
pose a method dubbed InstructionSpeak, which we
consider as a baseline approach in Section 5.2.

3 Problem Definition

In this section, we describe Sup-NatInst and how it
is restructured for the purpose of lifelong in-context
instruction learning. Then, we formulate evaluation
metrics for quantifying the instance- and task-level
generalization capabilities. The visual summary of
problem definition is provided in Figure 1.

3.1 Data
Dataset Sup-NatInst, which contains 757 train
tasks and 119 evaluation tasks, is the largest and
most comprehensive among existing datasets for
in-context instruction learning. For the sake of
computational efficiency, we randomly sample 500
out of 757 train tasks. The results reported in the
original paper indicate that only minor performance
change occurs after the model observes approxi-
mately 400 train tasks; therefore, it is reasonable
to assume that the results obtained after 500 tasks
are sufficient for analyzing the characteristics of
large-scale lifelong in-context instruction learning.

The default instruction scheme of Sup-NatInst
includes four components: task definition, positive
examples, negative examples, and explanation. Un-
less specified otherwise, all explored approaches
leave out negative examples because they have
been shown to deteriorate the generalization perfor-
mance of the target model (Wang et al., 2022). An
example of instruction and instance in Sup-NatInst
can be found in Section A1 of Appendix.
Data Restructuring From here on, we refer to
some arbitrary target PLM model as F . We use t to

12575

RBReplay Bank (RB) RB

(b) DIS: selects instances
to store from each task.

𝑰𝑩𝟑

𝑰𝑩𝟔

𝑰𝑩𝟖

𝑰𝑩𝟏𝟏

𝑰𝑩𝟏𝟕

𝑰𝑩𝟒

𝑰𝑩𝟔

𝑰𝑩𝟕

𝑰𝑩𝟏𝟑

𝑰𝑩𝟏𝟗

……

(a) Overview of Lifelong Instruction Learning with DynaInst

…

𝑻𝒊+𝟏RB

𝑳𝑫𝒚𝒏𝒂

𝑻𝒊RB

𝑳𝑫𝒚𝒏𝒂

𝑻𝟓𝟎𝟎RB

𝑳𝑫𝒚𝒏𝒂

𝑻𝟏 =

𝑳𝑫𝒚𝒏𝒂 = 𝑳𝒄𝒆 + 𝑳𝒘𝒍𝒎

(b) Dynamic Instance Selection (DIS)

High-𝑯

(𝒙𝟏
𝟏, 𝒚𝟏

𝟏) (𝒙𝟐
𝟏, 𝒚𝟐

𝟏) (𝒙𝑳
𝟏, 𝒚𝑳

𝟏)

𝑯𝟏 𝑯𝟐 𝑯𝑳

(𝒙𝟏
𝟏, 𝒚𝟏

𝟏) (𝒙𝟓
𝟏, 𝒚𝟓

𝟏) (𝒙𝟕𝟏
𝟏 , 𝒚𝟕𝟏

𝟏)

(𝒙𝟏
𝟏, 𝒚𝟏

𝟏) (𝒙𝟐
𝟏, 𝒚𝟐

𝟏) (𝒙𝑳
𝟏, 𝒚𝑳

𝟏)

𝑰𝑩𝟏 = (𝒙𝟏
𝟏, 𝒚𝟏

𝟏) (𝒙𝟓
𝟏, 𝒚𝟓

𝟏) (𝒙𝟕𝟏
𝟏 , 𝒚𝟕𝟏

𝟏)

…

𝑰𝑩𝟏 𝑰𝑩𝟒𝟕 𝑰𝑩𝟒𝟖 𝑰𝑩𝟒𝟗 𝑰𝑩𝟓𝟎

𝑨𝟏 𝑨𝟒𝟕 𝑨𝟒𝟖 𝑨𝟒𝟗(c) DTS: selects
tasks to replay
from Replay Bank.

𝑨𝟓𝟎

𝑰𝑩𝟏 𝑰𝑩𝟏𝟏 𝑰𝑩𝟖 𝑰𝑩𝟔 𝑰𝑩𝟏𝟏

(c) Dynamic Task Selection (DTS)
Low-𝑯

Low-𝑨 (Most Difficult Tasks)

…

…

…

…

Figure 2: (a) depicts the overall lifelong instruction learning process with DYNAINST that encompasses Lwlm

and Dynamic Instruction Replay (DIR), which consists of Dynamic Instance Selection (DIS) and Dynamic Task
Selection (DTS). (b) Based on the model’s predictive entropy H, DIS selects a mix of high and low entropy instances.
(c) Based on the Rouge-L score A computed with the selected instances, DTS identifies most difficult tasks.

denote a task, which implicitly includes an instruc-
tion, and (x, y) to denote the input and output of
a task-specific instance. During the lifelong learn-
ing process, the 500 train tasks with L number of
labeled instances per task (Ttr = [titr]

500
i=1, where

titr = {(xi1, yi1), ..., (xiL, yiL)}) are sequentially fed
into F . In this work, we study two different set-
tings for the choice of L: the static instance setting,
where the same L number of instances per task are
used for training, and the random instance setting,
where a changing number of instances are used for
each task. Because in real life, it is hard to guaran-
tee that the same number of instances are available
for each task, the random instance setting may be
considered more realistic. In the random instance
setting, we use a random integer value between 1
and L for each train task.

The primary objective of the lifelong learn-
ing process is to gradually improve the trained
model’s instance- and task-level generalization
performance, as more train tasks are visited by
F . To measure the instance-level generaliza-
tion performance, we leave out 100 instances
in each train task for evaluation process and
treat them as test instances within train tasks:
t̃itr = {(x̃i1, ỹi1), ..., (x̃i100, ỹi100)}. To measure
the task-level generalization performance, we uti-
lize 100 test instances in each one of 119 eval-
uation tasks (Teval = [t̃ieval]

119
i=1, where t̃ieval =

{(x̃i1, ỹi1), ..., (x̃i100, ỹi100)}).

3.2 Evaluation Metrics

All metrics are measured with the Rouge-L
score (Lin, 2004), which quantifies the sentence-

level structural similarity; thus, a high Rouge-L
score corresponds the to improved performance of
a language model. The Rouge-L score is used as
the default metric in the original Sup-NatInst paper
as well. We denote the Rouge-L score of the j-th
task after training on the k-th task as: Ak(t

j).
GENInst measures the degree of instance-level gen-
eralization and is formulated as: 1

k

∑k
i=1Ak(t̃

i
tr).

This is equivalent to the Rouge-L score averaged
across test instances of observed train tasks.
GENTask measures the degree of task-level gener-
alization and is formulated as: 1

119

∑119
i=1Ak(t̃

i
eval).

This is equivalent to the Rouge-L score averaged
across test instances of unseen evaluation tasks.

4 Methodology

We introduce DYNAINST, our approach to lifelong
in-context instruction learning. DYNAINST is a
hybrid method that combines parameter regular-
ization and experience replay. In Section 4.1, we
elaborate on the use of wide local minima-inducing
regularizer for lifelong instruction learning. Then,
in Section 4.2, we describe how instances and tasks
are dynamically stored and replayed through Dy-
namic Instruction Replay. The lifelong instruc-
tion learning process with DYNAINST is illustrated
in Figure 2. We also provide line-by-line descrip-
tion of DYNAINST in Algorithm 1.

4.1 Wide Local Minima

Promoting wide local minima in neural net-
works has been widely accepted as an effective
way of achieving improved generalization perfor-
mance (Pereyra et al., 2017). In addition, in (Cha

12576

et al., 2020), it is shown that not only does wide
local minima help with generalization performance,
but it can also be used to combat task distribution
shifts in a sequential learning process. The multi-
faceted benefits of wide local minima are well-
aligned with the objectives of lifelong instruction
learning. Therefore, we incorporate an implemen-
tation of wide local minima-inducing regularizer
proposed in Cha et al. (Cha et al., 2020) by modi-
fying the plain cross entropy loss as follows:

LDyna = Lce + γ · Lwlm,

where Lwlm =
1

L
·

L∑

i=1

DKL(ŷi || Unif.).
(1)

ŷi is the softmax output of the model (F (xi)), and
γ is the coefficient used to control the strength
of Lwlm. DKL and Unif. are the Kullback-Leiber
(KL) divergence of two distributions and the uni-
form distribution, respectively. Essentially, Lwlm

is designed to drive ŷi closer to the uniform dis-
tribution. By doing so, Lwlm effectively discour-
ages the model output from becoming overcon-
fident. Because penalizing overconfident model
outputs allows F to avoid overfitting, the result-
ing F trained with LDyna becomes more robust to
distribution shifts and thus obtains higher gener-
alization (Pereyra et al., 2017). In practice, this
regularization term is implemented by maximizing
the entropy of the model predictions. We addition-
ally discuss its relationship to maximum entropy
regularization used in Soft Actor-Critic from rein-
forcement learning in Section A2 of Appendix.

4.2 Dynamic Instruction Replay
Dynamic instruction replay (DIR) can largely be
divided into two processes: Dynamic Instance Se-
lection (DIS) and Dynamic Task Selection (DTS).
To implement DIS and DTS, we introduce Replay
Bank that consists of N number of task-specific In-
stance Banks with known task boundaries. The size
of Replay Bank N is thus equal to the number of
task-specific Instance Banks. Each Instance Bank
of size M in Replay Bank contains M number of
train instances per task. The maximum cap on the
size of each memory bank is enforced to limit the
memory consumption of DYNAINST.
DIS: Storing all the train instances within each task
in Instance Bank leads to an excessive amount of
memory consumption. Therefore, after learning
each task, it is preferable to selectively store in-
stances that will be revisited later down the task

Algorithm 1: DYNAINST

Require: Target model F , Number of Tasks
K, Instance Bank of Size M , Replay Bank
of Size N , Number of Replayed Tasks Rt,
Number of Replayed Instances RI ,
Number of Train Epochs per Task E

for k = 1 : K do
if k == 1 then

Train F on tk with Lce + Lwlm for
E epochs → WLM

else
Select Rt most difficult tasks from

Replay Bank → DTS

Sample RI number of instances
from each selected task

Finetune F on the sampled instances
of selected tasks and tk with
Lce + Lwlm for E epochs → WLM

Replay Bank.push(tk)
Select M/2 instances with lowest H
Select M/2 instances with highest H
Store the selected instances in Instance

Bank of tk → DIS

if | Replay Bank | > N then
Replay Bank.pop(tk−N−1)

stream. In DYNAINST, the stored instances are
1) used to determine which tasks must be priori-
tized for replay and 2) replayed with future tasks.
As a criterion for instance selection, we adopt the
entropy of model predictions as defined below:

H(ŷi) = −
∑

i

p(ŷi|xi;F) log(p(ŷi|xi;F)) (2)

From here on, we refer to this quantity as the
model’s predictive entropy. Predictive entropy is
commonly adopted for sample selection across var-
ious research fields (e.g., active learning (Gal et al.,
2017) and neural architecture search (Na et al.,
2021) that can benefit by identifying a subset of
instances that best represents the dataset as a whole.

After finetuning F on the k-th task, DYNAINST

first measures H of all train instances in the k-th
task. Based on H, DYNAINST stores a mixture of
high and low entropy instances in the task-specific
Instance Bank. Given Instance Bank of size M,
we split it into two and allocate each half to high
and low entropy instances. This hybrid approach
to DIS allows easier and more difficult examples
to be represented evenly in Instance Bank within
a fixed memory budget. After determining which

12577

Number of Train Tasks
100 200 300 400 500

Number of Train Tasks
100 200 300 400 500

R
ou

ge
-L

 S
co

re
(a) GENInst under Static Setting (c) GENTask under Static Setting(b) GENInst after T500 (d) GENTask after T500

Naiv
e

EWC

LA
MOL 0.5

Ins
tSpe

ak

Dyn
aIn

st

LA
MOL 0.0

2

Naiv
e

EWC

LA
MOL 0.5

Ins
tSpe

ak

Dyn
aIn

st

LA
MOL 0.0

2

Figure 3: (a) and (c) visualize instance- and task-level generalization performances throughout the lifelong in-context
instruction learning process under the static instance setting. (b) and (d) report means and standard deviations of
final performances computed over five different random seeds under the static instance setting.

(a) GENInst under Random Setting (c) GENTask under Random Setting(b) GENInst after T500 (d) GENTask after T500

Number of Train Tasks
100 200 300 400 500

Number of Train Tasks
100 200 300 400 500

Naiv
e

EWC

LA
MOL 0.5

Ins
tSpe

ak

Dyn
aIn

st

LA
MOL 0.0

2

Naiv
e

EWC

LA
MOL 0.5

Ins
tSpe

ak

Dyn
aIn

st

LA
MOL 0.0

2

R
ou

ge
-L

 S
co

re

Figure 4: (a) and (c) visualize instance- and task-level generalization performances throughout the lifelong in-context
instruction learning process under the random instance setting. (b) and (d) report means and standard deviations of
final performances computed over five different random seeds under the random instance setting.

instances to store in Instance Bank, Instance Bank
of the k-th task is added to Replay Bank. Once the
number of Instance Banks exceeds the pre-set size
of Replay Bank N , Instance Bank of the oldest task
is removed from Replay Bank.
DTS: Instead of replaying all stored tasks in Re-
play Bank, we only replay the more difficult tasks
that the model struggles to learn. To quantify the
difficulty of a task, we rely on the instances stored
in the corresponding Instance Bank. Based on the
Rouge-L score of a task measured using the stored
instances, Rt number of tasks with bottom Rouge-
L scores are replayed with the current task. When
replaying a task, we randomly sample Ri number
of instances from its Instance Bank to replay. In
essence, within DYNAINST, DIS and DTS com-
plement each other to identify which tasks and
instances should be replayed to maximize the gen-
eralization performance of the target model in a
memory- and compute-efficient manner.

5 Experiments

5.1 Experimental Set-up

For all experiments, BART-base model (Lewis
et al., 2020) is used as the target model F . All
of the implementation is done through Hugging-
face (Wolf et al., 2019) and PyTorch (Paszke et al.,
2019), and NVIDIA V100 GPU is used to run
the experiments. The following hyperparameters
are shared across all baselines and DYNAINST:
AdamW optimizer with the learning rate of 5e-5
and constant learning rate scheduling, 2 epochs of
training per task, and effective batch size of 16. As
for the hyperparameters specific to DYNAINST, the
Replay Bank size (N) is set to 50, and the Instance
Bank size (M) is adjusted to store 50% of train
instances depending on the value of L. The val-
ues of Rt and Ri are set to 10 and 2, respectively.
All approaches are run using five different random
seeds to create different task and instance streams.

12578

Setting Method
Evaluation Categories

TE CEC CR DAR AC WA OE KT QR TG DT GEC

Static
DYNAINST 35.29 54.13 34.52 27.63 49.45 8.48 17.62 36.63 52.16 21.44 28.17 78.66

Joint 34.98 53.39 39.32 32.14 52.57 10.74 25.96 43.29 58.49 24.29 30.95 80.56

Random
DYNAINST 38.72 53.06 33.34 30.22 50.69 8.10 15.41 37.15 50.34 19.13 27.24 73.59

Joint 36.22 53.70 41.16 35.96 52.26 10.46 24.31 43.72 56.43 23.79 32.56 78.89

Table 2: Comparison of DYNAINST vs. Joint on 12 separate evaluation categories. We run each method on 5
different random seeds under the static and random instance settings and report the average Rouge-L score.

5.2 Baselines

• Naive: sequentially finetunes the target model
on a stream of tasks with no additional technique.
• Elastic Weight Consolidation (EWC) (Kirk-
patrick et al., 2017): is a benchmark parameter
regularization method for continual learning. EWC
retains past knowledge by preventing significant
changes in important parameters.
• LAMOL0.5,0.02 (Sun et al., 2019): is a bench-
mark continual learning method in NLP that re-
lies on experience replay. The sampling ratio in
LAMOL (0.5, 0.02) denotes the percentage of in-
stances replayed from each one of previous tasks.
• InstructionSpeak (Yin et al., 2022): is a con-
tinual learning method designed for the ConTinTin
framework. InstructionSpeak consists of two main
processes: History Training and Negative Training.
History Training replays the past two tasks with the
current task, and Negative Training utilizes nega-
tive samples as if they were positive ones.

5.3 Main Results

In Figure 3, we compare GENInst and GENTask of
compared approaches under the static setting. Like-
wise, in Figure 4, we report the results of using
random number of instances. The default number
of instances for the static setting is set to 100, and
for the random setting, the number of instances per
task is randomly sampled from 1 to 100. In addition
to the lifelong learning approaches, we visualize
the performance obtained by jointly training on all
of the tasks, equivalent to the upper bound perfor-
mance for lifelong in-context instruction learning,
with pink dotted lines with star markers.

In both figures, (a) and (c) show visualize how
mean GENInst and GENTask averaged over five dif-
ferent random seeds change over time. Under the
static setting, DYNAINST outperforms all baselines
no matter how many tasks are used for lifelong
learning. Under the random setting, DYNAINST

comes in as a close second to LAMOL0.02 in the
beginning when only 100 tasks are used, but soon
outperforms all baselines as more tasks are added.
These results clearly demonstrate that DYNAINST

better utilizes the increased number of train tasks.
DYNAINST appears to be particularly effective
at improving the task-level generalization perfor-
mance, outperforming the second-best baseline by
a significant margin on the Rouge-L score under
both settings.

In (b) and (d), we report means and standard
deviations of GENInst and GENTask after observing
all 500 train tasks. Changes in random seeds seem
to have a similar amount of effect on all compared
methods, with no single method having a particu-
larly small or large error bar. Under the random
setting, we observe a slight increase in performance
variation. We believe that this occurs because in the
random setting, there are two sources of variation:
changing number of instances and task ordering.

In Table 2, we report the performance of the
model trained with DYNAINST and that trained
with joint training on separate evaluation categories.
The evaluation categories as defined by Wang et al.
(2022) are in Section A1 Appendix. Due to the
page constraint, from here on, we only report the
results after training on all 500 tasks. It appears
that the models trained with DYNAINST and joint
training struggle with similar evaluation categories.
Thus, it is reasonable to assume that the perfor-
mance discrepancy among tasks is caused by the
inherent task distribution skew within Sup-NatInst.

In Section A3 of Appendix, we report the re-
sults of using up to 20 instances per task. Once
again, DYNAINST achieves the highest Rouge-L
score, closest to the upper bound performance. In
addition, we provide forgetting and intransigence
analyses and an example of instances identified
through hybrid DIS in Sections A4 and A5 of Ap-
pendix, respectively.

12579

Static Random
GENInst GENTask GENInst GENTask

Naive 33.66 34.08 30.08 32.39
+ WLM 33.02 34.98 32.22 33.12
+ DIR 33.24 35.48 32.17 35.31
DYNAINST 34.44 35.85 34.51 36.14

Table 3: Effect of separately applying each technical
component in DYNAINST to the “Naive" baseline ap-
proach. Both the WLM regularizer and DIR process
lead to a significant improvement in performance.

Static Random
GENInst GENTask GENInst GENTask

γ = 0.3 33.85 35.55 32.02 34.86
γ = 0.7 34.03 34.92 32.89 34.01
Rt = 15 33.86 32.74 33.30 35.88
Rt = 20 34.09 35.06 32.88 35.69
M = 10 33.94 36.32 33.83 36.87
Default 34.44 35.85 34.51 36.14

Table 4: Sensitivity of DYNAINST to changes in various
hyperparameters. Default refers to DYNAINST imple-
mented with the default set of hyperparameters.

6 Ablation Studies

6.1 Separate Components

To validate the efficacy of each technical compo-
nent in DYNAINST, we perform a component-wise
analysis of DYNAINST and report the results in Ta-
ble 3. It is apparent that parameter regularization
with Lwlm and experience replay with DIR each
contributes to improving the generalization perfor-
mance of the target model trained with DYNAINST.

6.2 Hyperparameter Sensitivity

We now analyze the sensitivity of DYNAINST to the
following hyperparameters: the strength of Lwlm

(γ), the number of replayed tasks (Rt), and the
size of the Instance Bank (M). We test out one
hyperparameter at a time and fix the rest of them as
default values. The results are reported in Table 4.
What is particularly noteworthy is that reducing
M to 10 preserves the performance of DYNAINST;
this result indicates that DYNAINST is capable of
achieving high generalization performance even
with a limited number of stored instances.

In addition, we observe that increasing Rt does
not necessarily improve the performance of DY-

Static Random
GENInst GENTask GENInst GENTask

DIS

Rand 33.08 34.70 32.44 34.08
Min 33.86 33.36 33.12 34.51
Max 33.76 34.69 34.19 35.89
Hyb 34.44 35.85 34.51 36.14
All 34.69 36.45 34.44 37.18

DTS
Rel 33.65 34.71 32.91 34.04
Abs 34.44 35.85 34.51 36.14

Table 5: Effect of altering the main design choices in
DIS and DTS. The default settings used in DYNAINST
(hybrid DIS and DTS with the absolute Rouge-L score)
achieve the best performance out of potential choices.

NAINST. We conjecture that the reason behind this
phenomenon is that replaying relatively easier tasks
by increasing Rt may hinder the target model from
learning more difficult tasks. On the contrary, joint
training, which uses all train tasks at once, does not
experience performance degradation as the number
of train tasks increases. Note that in joint training,
all instances are shuffled in a task-agnostic manner,
effectively blurring the task boundaries. Therefore,
we would expect the discrepancy in task difficul-
ties to have less influence on the generalization
performance of the model.

6.3 DIS and DTS Design Choices

Lastly, we study how different design choices for
DIS and DTS influence the pefroamcne of DY-
NAINST. The results can be found in Table 5. For
DIS, we investigate three additional entropy-based
instance selection methods - random, minimum,
and maximum instance selection - as well as the
upper bound performance obtained by storing all
of the train instances. It is clear that the hybrid DIS
best approximates the upper bound performance.
Such a result validates that the hybrid selection
is most capable of identifying instances that are
representative of the task as a whole.

The default criterion for task selection in DTS
is the absolute Rouge-L score per task. One alter-
native approach to DTS is to utilize the relative
change in the Rouge-L score, effectively replaying
the tasks that are forgotten the most by the target
model. The results in Table 5 show that using the
relative change in the Rouge-L score leads to a
meaningful degree of performance drop compared
to default DTS, consolidating the effectiveness of
DTS based on the absolute Rouge-L score.

12580

7 Conclusion

In this work, a fully lifelong learning of in-context
instructions was investigated for the first time. We
proposed DYNAINST, a novel hybrid approach to
lifelong in-context instruction learning, and veri-
fied its superiority to existing baselines under vari-
ous experimental scenarios. Potential directions for
future research include extending our investigation
to blurred or unknown task boundaries and analyz-
ing whether DYNAINST outputs biased predictions.

Acknowledgements

This work was supported in part by the In-
stitute of Information & communications Tech-
nology Planning & Evaluation (IITP) and the
National Research Foundation of Korea (NRF)
grants funded by the Korean government (MSIT)
(2022-0-00959, No. 2022R1A3B1077720, No.
2022R1A5A708390811).

Limitations and Potential Risks

The two limitations of DYNAINST are that it re-
quires known task boundaries, and that it does not
concern with corrupted or noisy training instances.
In a realistic industry setting where the task def-
inition is quite ambiguous, and a non-negligible
amount of human bias and noise are introduced
during the data collection process, these limitations
of DYNAINST may degrade its performance. How-
ever, considering that this is the first time lifelong
instruciton learning has been studied, these limita-
tions can be considered interesting directions for
future research.

Like any language model, the model trained
with DYNAINST may output unfair and/or offen-
sive predictions due to the bias embedded in the
dataset. Improving the fairness of instruction-tuned
language models is beyond the scope of this paper;
nonetheless, if these problems remain neglected,
we will risk deploying language models that are
heavily biased and discriminatory.

References
Rahaf Aljundi, Francesca Babiloni, Mohamed Elho-

seiny, Marcus Rohrbach, and Tinne Tuytelaars. 2018.
Memory aware synapses: Learning what (not) to for-
get. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 139–154.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Sungmin Cha, Hsiang Hsu, Taebaek Hwang, Flavio
Calmon, and Taesup Moon. 2020. Cpr: Classifier-
projection regularization for continual learning. In
International Conference on Learning Representa-
tions.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam
Ajanthan, and Philip HS Torr. 2018a. Riemannian
walk for incremental learning: Understanding forget-
ting and intransigence. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages
532–547.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus
Rohrbach, and Mohamed Elhoseiny. 2018b. Effi-
cient lifelong learning with a-gem. In International
Conference on Learning Representations.

Zhiyuan Chen and Bing Liu. 2018. Lifelong machine
learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 12(3):1–207.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh,
and Tinne Tuytelaars. 2021. A continual learning sur-
vey: Defying forgetting in classification tasks. IEEE
transactions on pattern analysis and machine intelli-
gence, 44(7):3366–3385.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. 2017.
Deep bayesian active learning with image data. In In-
ternational Conference on Machine Learning, pages
1183–1192. PMLR.

Dan Goldwasser and Dan Roth. 2014. Learning from
natural instructions. Machine learning, 94(2):205–
232.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen,
George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar,
Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al.
2018. Soft actor-critic algorithms and applications.
arXiv preprint arXiv:1812.05905.

Kasidis Kanwatchara, Thanapapas Horsuwan, Piyawat
Lertvittayakumjorn, Boonserm Kijsirikul, and Peer-
apon Vateekul. 2021. Rational lamol: A rationale-
based lifelong learning framework. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 2942–2953.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

12581

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Zhizhong Li and Derek Hoiem. 2017. Learning without
forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947.

Bill Yuchen Lin, Sida I Wang, Xi Lin, Robin Jia, Lin
Xiao, Xiang Ren, and Scott Yih. 2022. On continual
model refinement in out-of-distribution data streams.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3128–3139.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Xialei Liu, Marc Masana, Luis Herranz, Joost Van de
Weijer, Antonio M Lopez, and Andrew D Bagdanov.
2018. Rotate your networks: Better weight con-
solidation and less catastrophic forgetting. In 2018
24th International Conference on Pattern Recogni-
tion (ICPR), pages 2262–2268. IEEE.

David Lopez-Paz and Marc’Aurelio Ranzato. 2017.
Gradient episodic memory for continual learning. Ad-
vances in neural information processing systems, 30.

Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou, Se-
ungwhan Moon, Paul Crook, Bing Liu, Zhou Yu,
Eunjoon Cho, Pascale Fung, and Zhiguang Wang.
2021. Continual learning in task-oriented dialogue
systems. In EMNLP 2021-2021 Conference on Em-
pirical Methods in Natural Language Processing,
Proceedings.

Arun Mallya and Svetlana Lazebnik. 2018. Packnet:
Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pages
7765–7773.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of learn-
ing and motivation, volume 24, pages 109–165. Else-
vier.

Fei Mi, Liangwei Chen, Mengjie Zhao, Minlie Huang,
and Boi Faltings. 2020. Continual learning for natu-
ral language generation in task-oriented dialog sys-
tems. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 3461–3474.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3470–3487.

Byunggook Na, Jisoo Mok, Hyeokjun Choe, and
Sungroh Yoon. 2021. Accelerating neural archi-
tecture search via proxy data. arXiv preprint
arXiv:2106.04784.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow in-
structions with human feedback. arXiv preprint
arXiv:2203.02155.

Gabriele Paolacci, Jesse Chandler, and Panagiotis G
Ipeirotis. 2010. Running experiments on amazon
mechanical turk. Judgment and Decision making,
5(5):411–419.

German I Parisi, Ronald Kemker, Jose L Part, Christo-
pher Kanan, and Stefan Wermter. 2019. Continual
lifelong learning with neural networks: A review.
Neural Networks, 113:54–71.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz
Kaiser, and Geoffrey Hinton. 2017. Regularizing
neural networks by penalizing confident output dis-
tributions. arXiv preprint arXiv:1701.06548.

Chengwei Qin and Shafiq Joty. 2021. Lfpt5: A unified
framework for lifelong few-shot language learning
based on prompt tuning of t5. In International Con-
ference on Learning Representations.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. 2017. icarl: In-
cremental classifier and representation learning. In
Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 2001–2010.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
et al. 2021. Multitask prompted training enables
zero-shot task generalization. In International Con-
ference on Learning Representations.

Joan Serra, Didac Suris, Marius Miron, and Alexandros
Karatzoglou. 2018. Overcoming catastrophic forget-
ting with hard attention to the task. In International
Conference on Machine Learning, pages 4548–4557.
PMLR.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon
Kim. 2017. Continual learning with deep generative
replay. Advances in neural information processing
systems, 30.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee. 2019.
Lamol: Language modeling for lifelong language
learning. In International Conference on Learning
Representations.

12582

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, et al. 2022.
Super-naturalinstructions:generalization via declara-
tive instructions on 1600+ tasks. In EMNLP.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M
Dai, and Quoc V Le. 2021. Finetuned language mod-
els are zero-shot learners. In International Confer-
ence on Learning Representations.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Wenpeng Yin, Jia Li, and Caiming Xiong. 2022. Con-
tintin: Continual learning from task instructions. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3062–3072.

12583

A Appendix

A1 Sup-NatInst Instruction Schema and
Evaluation Categories

A1.1 Instruction Schema
The instructions in Sup-NatInst are contributions
of 88 NLP practitioners, and the collected instruc-
tions are reviewed through Amazon Mechanical
Turk (AMT) (Paolacci et al., 2010). All instruc-
tions in the Sup-NastInst dataset follow the same
instruction schema that consists of: task defini-
tion, positive examples, negative examples, and
explanation. The description and example of each
component can be found in Figure A1.

A1.2 Evaluation Categories
All of the evaluation tasks in the Sup-NatInst
dataset fall into one of the following 12 categories:
Textual Entailment (TE), Cause Effect Classifi-
cation (CEC), Coreference Resolution (CR), Dia-
logue Act Recognition (DAR), Answerability Clas-
sification (AC), Word Analogy (WA), Overlap Ex-
traction (OE), Keyword Tagging (KT), Question
Rewriting (QR), Title Generation (TG), Data to
Text (DT), and Grammar Error Correction (GEC).

A2 Similarities in DYNAINST and Soft
Actor-Critic

Soft Actor-Critic (Haarnoja et al., 2018) from re-
inforcement learning and DYNAINST both employ
maximum entropy regularization. Interestingly
enough, while DYNAINST and Soft Actor-Critic
are used in two different domains, their motivations
behind utilizing maximum entropy regularization
bear some resemblance. By maximizing the ex-
pected reward and the entropy of the actor simul-
taneously, Soft Actor-Critic incentives the actor to
improve exploration in the exploration-exploitation
trade-off. The resulting model becomes more ro-
bust against estimation errors. Similarly, with the
WLM regularizer, DYNAINST drives the target
model towards a flatter or wider minima, effec-
tively making the model more robust against task
and data distribution shifts.

A3 Results of Using 20 Instances (L = 20)

The instance- and task-level generalization per-
formance of models trained by using up to 20 in-
stances per task are reported in Table A3 (static)

and Table A4 (random). Even with fewer train
instances, DYNAINST achieves the best generaliza-
tion performance among compared approaches.

A4 Forgetting and Intransigence
Analyses for 100 Instances (L = 100)
and 20 Instances (L = 100)

In this section, we analyze the lifelong learning
process through the following measures borrowed
from the continual learning literature (Chaudhry
et al., 2018a). For these measures, it is preferable
to obtain lower numbers.
Forgetting measures the stability of the lifelong
learning process by quantifying the degree of catas-
trophic forgetting. When Sk(t

j) is the stability of
j-th task after training on k-th task, Sk(t

j) is de-
fined as: Sk(t

j) = maxl∈j,...k−1Al(t
j)−Ak(t

j).
Intransigence measures how much knowledge
from past tasks is utilized by the model when
learning the current task. Otherwise known as
plasticity, the intransigence measure of j-th task
is defined as: Ij = A∗(tj)−Aj(t

j) where A∗(tj)
denotes the Rouge-L score of F trained only on
the j-th task.

The forgetting and intransigence analyses when
using L = 100 instances can be found in Table A1
(static) and Table A2 (random). The intransigence
measure seems to have little correlation with the
generalization performance of the model. For in-
stance, EWC achieves relatively high intransigence
under both settings but exhibits poor generalization
performance. Such results may imply that a high
level of forward transfer could be preventing the
model from learning to generalize across tasks be-
cause it only promotes rapid learning of the current
task, thus overfitting the target model to a single
task. While the forgetting measure seems to be in-
dicative of the model’s generalization performance
under the static instance setting, it again becomes
less reliable under the random instance setting.

We conjecture that this conflict between the gen-
eralization metrics and continual learning metrics
is a result of the difference in learning objective be-
tween conventional continual learning and lifelong
in-context instruction learning. The objective of
conventional continual learning is to battle catas-
trophic forgetting within observed train tasks, and
thus forgetting and intransigence metrics focus on
quantifying how much knowledge is retrained and
transferred among train instances. On the contrary,

12584

lifelong in-context instruction learning wishes to
improve instance- and task-level generalization per-
formance on unobserved instances and tasks. Be-
cause the two learning paradigms and their eval-
uation metrics prioritize different aspects of the
trained model, the two sets of metrics end up show-
ing little correlation with each other. The forgetting
and intransigence analyses under the 20-shot set-
ting in Table A5 (static) and Table A6 (random)
show similar tendencies.

A5 Analysis of Stored Instances

Here, we analyze which examples are being stored
in Instance Bank and whether the difficulty of an
instance quantified with the predictive entropy is
aligned with human perception of difficulty. In
Toxic Language Classification task, which is a bi-
nary classification task that identifies whether a
tweet contains toxic language or not, the following
examples were selected by DIS. Prior to discussing
the examples, we apologize for their vulgarity.
• High-entropy (difficult) instance: Input: “Mon-
key see monkey doo,” | Output: “No.” It appears
that the model found this example to be difficult
to classify because of the following reasons. First,
it does not contain explicitly toxic language. Al-
though the word “monkey” may be used as a
derogatory term against certain races, within the
above input sentence, it appears innocuous. Sec-
ond, it is difficult to determine the intent of the
writer in the first place. Because the input, which is
an idiomatic expression, reads rather incoherently,
the intent of the writer remains rather ambiguous
without more context.
• Low-entropy (easy) instance: Input: "Then
the Mexican bitch wanna speak some other fuckin
language & then give attitude. Can’t speak right
ass! Tf" | Output: “Yes.” It is rather clear why
the model found this to be an easy example. The
input sentence contains explicitly negative words
such as “bitch, “fucking,” and “ass," and is openly
expressing the writer’s racist views.

12585

Component Description Example

Definition Defines the scope of the target
task in natural language and
provides a complete description
of how an input should be
mapped to an output.

"Given an utterance and recent dialogue context containing past 3
utterances (wherever available), output ‘Yes’ if the utterance contains
the small-talk strategy, otherwise output ‘No’. Small-talk is a
cooperative negotiation strategy. It is used for discussing topics apart
from the negotiation, to build a rapport with the opponent”

Positive
Example

Samples of correct input-output
pairs.

• Input: “Context: … ‘That's fantastic, I'm glad we came to something
we both agree with.’ Utterance: ‘Me too. I hope you have a
wonderful camping trip.’”
• Output: “Yes”

Negative
Example

Samples of incorrect or invalid
input-output pairs.

• Input: “Context: … ‘Sounds good, I need food the most, what is your
most needed item?!’ Utterance: ‘My item is food too’.”
• Output: “Yes”

Explanation Short explanation for why an
example falls under the positive
or negative example category.

• Positive: “The participant engages in small talk when wishing their
opponent to have a wonderful trip.”
• Negative: “The utterance only takes the negotiation forward and
there is no side talk. Hence, the correct answer is ‘No’.”

Instance Additional nstances for training
and/or evaluation.

• Input: “Context: … ‘I am excited to spend time with everyone from
camp!’ Utterance: ‘That’s awesome! I really love being out here with
my son. Do you think you could spare some food?’ ”
• Output: “Yes”

Figure A1: Description of Sup-NatInst (Wang et al., 2022) instruction schema and sample instance.

Methods Forgetting Intransigence
T100 T200 T300 T400 T500 T100 T200 T300 T400 T500

Naive 49.24 51.66 52.95 52.84 52.68 -3.57 -4.44 -4.32 -4.38 -4.18
EWC 49.26 51.34 52.85 53.01 52.92 -3.58 -4.26 -4.29 -4.79 -4.98
LAMOL0.5 51.99 55.49 55.49 54.87 54.42 -2.50 -4.36 -4.11 -3.61 -3.35
LAMOL0.02 52.43 56.26 55.99 55.24 54.81 -4.83 -6.88 -6.45 -5.89 -5.76
InstSpeak 51.14 53.34 53.49 53.19 53.02 -3.56 -4.94 -4.66 -4.49 -4.48
DYNAINST 46.29 50.89 51.85 52.36 51.59 -2.88 -3.37 -2.69 -2.18 -1.63

Table A1: Forgetting and intransigence analysis when using L = 100 instances per task. Unlike generalization
performance, it is preferable to achieve lower numbers for both forgetting and intransigence metrics. The best and
second-best metrics in each column are marked in bold and underline, respectively.

Methods Forgetting Intrasigence
T100 T200 T300 T400 T500 T100 T200 T300 T400 T500

Naive 49.19 52.63 53.39 53.49 53.56 -8.48 -9.31 -8.89 -8.34 -8.46
EWC 48.17 52.34 52.98 52.65 53.16 -7.59 -8.64 -7.68 -6.89 -7.28
LAMOL0.5 50.46 54.06 54.34 53.96 53.88 -7.66 -8.16 -7.22 -6.08 -6.14
LAMOL0.02 52.01 55.69 56.18 55.39 55.15 -7.15 -7.95 -7.52 -6.07 -6.23
InstSpeak 49.46 53.45 54.13 53.60 53.44 -5.63 -6.89 -6.08 -5.55 -5.43
DYNAINST 50.75 52.30 53.25 53.27 53.34 -3.41 -4.63 -4.02 -2.81 -3.32

Table A2: Forgetting and intransigence analysis when using L ∈ [1, 100] instances per task. Unlike generalization
performance, it is preferable to achieve lower numbers for both forgetting and intransigence metrics. The best and
second-best metrics in each column are marked in bold and underline, respectively.

12586

Methods GENInst GENTask

T100 T200 T300 T400 T500 T100 T200 T300 T400 T500

Naive 23.73 28.60 31.77 30.25 33.09 25.01 30.85 37.63 34.96 36.59
EWC 24.48 27.48 31.71 30.87 32.27 25.78 29.62 36.88 34.40 35.14
LAMOL0.5 24.52 30.42 30.39 30.66 32.05 27.20 33.85 35.02 35.43 37.56
LAMOL0.02 27.12 29.62 32.78 30.65 33.34 28.27 31.71 34.85 32.75 32.17
InstSpeak 24.62 26.49 30.98 30.62 33.68 26.84 25.85 34.17 34.51 35.09
DYNAINST 29.36 31.09 32.95 32.64 34.55 31.23 34.35 37.79 35.75 37.96

Joint 29.93 36.29 39.62 42.50 43.41 32.28 34.44 37.49 38.93 38.25

Table A3: Comparison of zero-shot instance- and task-level generalization performance when using L = 20
instances per task (static instance setting). The best and second-best Rouge-L scores in each column are marked in
bold and underline, respectively.

Methods GENInst GENTask

T100 T200 T300 T400 T500 T100 T200 T300 T400 T500

Naive 20.07 26.07 30.58 29.68 30.56 20.11 26.26 33.60 31.73 32.12
EWC 23.74 26.48 30.78 29.61 31.04 25.17 27.76 35.74 34.25 32.07
LAMOL0.5 26.38 29.05 31.62 30.51 33.43 28.63 31.53 35.83 35.12 36.09
LAMOL0.02 26.12 29.95 31.99 32.05 31.44 30.92 33.25 35.04 34.48 36.65
InstSpeak 24.11 25.89 31.37 30.81 32.55 25.89 27.01 35.23 33.25 34.53
DYNAINST 25.28 30.29 32.45 33.00 33.44 31.29 34.09 36.99 36.07 37.55

Joint 27.33 31.76 34.51 34.93 35.79 30.34 34.61 37.68 37.24 38.58

Table A4: Comparison of zero-shot instance- and task-level generalization performance when using L ∈ [1, 20]
instances per task (random instance setting). The best and second-best Rouge-L scores in each column are marked
in bold and underline, respectively.

Methods Forgetting Intransigence
T100 T200 T300 T400 T500 T100 T200 T300 T400 T500

Naive 43.88 46.89 49.99 51.02 50.89 -11.44 -10.39 -12.20 -11.53 -11.73
EWC 44.20 47.09 49.38 50.25 50.48 -11.73 -10.19 -11.65 -10.81 -11.35
LAMOL0.5 47.27 49.01 50.77 50.88 51.16 -7.84 -5.64 -7.76 -6.99 -7.58
LAMOL0.02 49.11 51.25 52.38 52.60 52.55 -14.03 -10.96 -12.17 -10.37 -10.55
InstSpeak 46.11 49.18 50.69 51.18 51.25 -8.74 -8.19 -9.49 -9.01 -9.36
DYNAINST 42.69 45.36 46.53 47.07 47.64 -9.71 -8.05 -9.31 -8.16 -8.56

Table A5: Forgetting and intransigence analysis when using L = 20 instances per task (static instance setting).
Unlike generalization performance, it is preferable to achieve lower numbers for both forgetting and intransigence
metrics. The best and second-best metrics in each column are marked in bold and underline, respectively.

Methods Forgetting Intrasigence
T100 T200 T300 T400 T500 T100 T200 T300 T400 T500

Naive 48.38 51.45 52.25 52.14 52.57 -15.12 -15.45 -15.49 -14.53 -15.65
EWC 50.97 54.61 57.11 58.25 58.72 -17.82 -17.99 -17.83 -17.31 -18.91
LAMOL0.5 50.33 53.25 54.30 55.76 56.31 -10.85 -10.64 -10.42 -10.32 -11.89
LAMOL0.02 49.22 54.57 55.94 56.01 56.56 -7.63 -8.09 -9.17 -8.70 -9.42
InstSpeak 50.69 55.99 56.56 56.90 57.25 -12.42 -14.75 -14.78 -14.50 -15.69
DYNAINST 43.19 53.56 55.45 55.56 56.07 -4.70 -8.22 -9.16 -8.27 -8.69

Table A6: Forgetting and intransigence analysis when using L ∈ [1, 20] instances per task (random instance setting).
Unlike generalization performance, it is preferable to achieve lower numbers for both forgetting and intransigence
metrics. The best and second-best metrics in each column are marked in bold and underline, respectively.

12587

ACL 2023 Responsible NLP Checklist

A For every submission:
� A1. Did you describe the limitations of your work?

Left blank.

� A2. Did you discuss any potential risks of your work?
Left blank.

� A3. Do the abstract and introduction summarize the paper’s main claims?
Left blank.

� A4. Have you used AI writing assistants when working on this paper?
Left blank.

B � Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
Left blank.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Left blank.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C � Did you run computational experiments?
Left blank.

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Left blank.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

12588

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Left blank.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Left blank.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Left blank.

D � Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Left blank.

12589

