
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 12590–12616

July 9-14, 2023 ©2023 Association for Computational Linguistics

Controllable Text Generation via Probability Density Estimation
in the Latent Space

Yuxuan Gu†, Xiaocheng Feng†‡, Sicheng Ma†, Lingyuan Zhang†, Heng Gong†,
Weihong Zhong†, Bing Qin†‡

†Harbin Institute of Technology ‡ Peng Cheng Laboratory
{yxgu,xcfeng,scma,lyzhang,hgong,whzhong,qinb}@ir.hit.edu.cn

Abstract

Previous work on controllable text generation
has explored the idea of control from the latent
space, such as optimizing a representation with
attribute-specific classifiers or sampling one
from relevant discrete samples. However, they
cannot effectively model a complex space with
diverse attributes, high dimensionality, and
asymmetric structure, leaving subsequent con-
trols unsatisfying. In this work, we propose a
novel control framework using probability den-
sity estimation in the latent space. Our method
utilizes an invertible transformation function,
the Normalizing Flow, that maps the complex
distributions in the latent space to simple Gaus-
sian distributions in the prior space. Thus, we
can perform sophisticated and flexible controls
in the prior space and feed the control effects
back into the latent space owing to the bijection
property of invertible transformations. Exper-
iments on single-attribute and multi-attribute
control reveal that our method outperforms sev-
eral strong baselines on attribute relevance and
text quality, achieving a new SOTA. Further
analysis of control strength adjustment demon-
strates the flexibility of our control strategy1.

1 Introduction

Controllable text generation, a fundamental issue
in natural language generation, refers to generat-
ing fluent and attractive sentences conditioned on
target attributes (Zhang et al., 2022a). With the
development of pre-trained language models (Zhao
et al., 2023), early work explores converting gen-
erative language models to conditional models by
altering their parameters via fine-tuning (Ziegler
et al., 2019; Keskar et al., 2019) or reinforcement
learning (Khalifa et al., 2020). Due to the high
cost of modifying parameters (Brown et al., 2020;
Zhang et al., 2022b), current control approaches
prefer leaving pre-trained language models fixed
(Dathathri et al., 2020; Krause et al., 2021).

1 https://github.com/HappyGu0524/MultiControl.

Figure 1: Illustration of methods controlling in Latent
Space. Orange background denotes the latent space.
Blue and red represent two attributes. Prefix-Tuning
represents attributes with points in latent space and com-
poses them by interpolation. LatentOps uses classifiers
to estimate continuous distributions of attributes and
control by optimizing in latent space. Discrete maps
sentences to discrete samples in latent space and con-
trols with direct searching. Our method deploys proba-
bility density estimation by transforming the complex
latent space into a well-formed prior space, where com-
mon control strategies can be more effective. See §A
for more details of the latent space’s defects.

Recent studies perform impressive control by
influencing the fixed language model from the la-
tent space (Yu et al., 2021; Qian et al., 2022) with
prefix-tuning (Li and Liang, 2021). However, in-
efficient and unreliable modeling of the complex
latent space remains a problem that plagues control
performance. As shown in the left part of Figure
1, Gu et al. (2022b) reveal that distributions of at-
tributes in high dimensional latent space are usually
asymmetric and even non-convex, making simple
control strategies inefficient, including interpola-
tion methods like Prefix-Tuning (Qian et al., 2022)
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and optimization approaches like LatentOps (Liu
et al., 2022). For example, interpolation may ex-
ceed the support set of distributions, making gener-
ated sentences unable to acquire desired attributes.
Besides, the optimization process can stuck in the
saddle or local optimal points. Although mitigat-
ing the problem by discrete modeling and direct
searching, Discrete (Gu et al., 2022b) introduces a
more complicated control process, where searching
for the intersection of attributes is vulnerable to the
high-dimensionality of space and noise in samples.

In this paper, we alleviate problems above by
better modeling the latent space. As shown in the
right of Figure 1, we propose probability density
estimation in latent space by invertible transforma-
tion, where complex distributions of attributes in
latent space are mapped (bijection between con-
tinuous spaces) to simple ones, such as Gaussian
distributions, in prior space. Thus, traditional con-
trol strategies such as interpolation can be tractable
and explainable in this normalized prior space. In
the inference stage, our paradigm becomes: control
attributes in prior space, then activate the language
model in latent space. Furthermore, we explore
the relationship between the latent space and our
prior space and attempt to prove under what cir-
cumstances the control in the prior space can be
effectively fed back into the latent space.

We conduct experiments on single-attribute con-
trol and multi-attribute control. Datasets we use
are IMDb movie reviews (Maas et al., 2011) for
Sentiment, AGNews (Zhang et al., 2015) for Topic,
and Jigsaw Toxic Comment Classification Chal-
lenge Dataset for Detoxification. We measure the
control ability of our method using the correlation
of generated sentences with each attribute. For
text generation quality, we evaluate sentences with
perplexity and distinctness concerning fluency and
diversity. Results show that our method can signifi-
cantly outperform baseline models and analytical
experiments on control strength adjustment reveal
our flexibility. The main contributions of our work
are summarized as follows:

• We propose a novel framework that introduces
a well-formed prior space for effective and
flexible control via invertible transformation.

• We theoretically explore approaches to exploit
invertibility to feed control in the prior space
back into the latent space.

• We experimentally reveal the effectiveness of
our method compared to previous SOTA.

2 Related Work

2.1 Controllable Text Generation
Variational autoencoders are often used for con-
trollable text generation (Hu et al., 2017; Duan
et al., 2020; Mai et al., 2020) before the prosperity
of large-scale pre-trained language models (Rad-
ford et al., 2019). Traditional control approaches
like fine-tuning (Ficler and Goldberg, 2017; Ziegler
et al., 2019; Keskar et al., 2019) and reinforcement
learning (Khalifa et al., 2020) gradually become
infeasible with the rapid increase of language mod-
els’ parameters. Recent methods investigate con-
trol with fixed language models, including biasing
the token distribution during decoding (Dathathri
et al., 2020; Krause et al., 2021; Yang and Klein,
2021; Liu et al., 2021a; Gu et al., 2022a; Meng
et al., 2022), optimization in the language space
(Kumar et al., 2021; Qin et al., 2022; Mireshghallah
et al., 2022; Kumar et al., 2022), and optimization
in the latent space (Yu et al., 2021; Qian et al., 2022;
Carlsson et al., 2022; Yang et al., 2022; Liu et al.,
2022; Lu et al., 2022; Zhang and Song, 2022; Gu
et al., 2022b). Another work trains a denoising dif-
fusion language model before controlling sentence
attributes in the denoising process (Li et al., 2022).

2.2 Normalizing Flow
The Normalizing Flow (Dinh et al., 2014, 2016;
Kingma and Dhariwal, 2018; Kingma et al., 2016;
Papamakarios et al., 2017), consisting of a se-
quence of invertible transformations for continu-
ous variables, is a powerful deep generative model
(Kingma and Welling, 2013; Goodfellow et al.,
2020; Ho et al., 2020) that enables capturing the in-
ner probabilistic distribution of complex and high-
dimensional data (Oussidi and Elhassouny, 2018),
including images and text. In natural language
processing, Normalizing Flows are often used as
enhanced prior distributions in VAE structures (Ma
et al., 2019; Ding and Gimpel, 2021) or as deep gen-
erative language models (Tran et al., 2019; Ziegler
and Rush, 2019; Tang et al., 2021). Besides, Wu
et al. (2022) uses the Normalizing Flow as prefix-
tuning for controllable image generation. However,
previous work usually treats Normalizing Flow as
an ordinary generative model, easily replaced by
stronger models like the denoising diffusion model
(Ho et al., 2020), while ignoring its invertible prop-
erty. In this work, we will explore the potential for
the flexible application of the Normalizing Flow’s
invertible feature in controllable text generation.
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Figure 2: An overview of our framework. Part (1) represents the process of estimating Latent Space, which trains an
autoencoder framework by prefix-tuning on the fixed language model. Part (2) denotes the invertible transformation
from Latent Space to Prior Space at the training stage. Part (3) consists of two steps: we first operate in Prior Space
for control and then feed the effect back into Latent Space to activate the language model.

3 Methodology

As illustrated in Figure 2, our framework is divided
into three parts, where the former two are training
phases, and the latter is the generation phase.

3.1 Estimating the Latent Space

Given sentence and attribute pairs {(si, ai)}, we
use a learnable encoder to map each sentence to
a sample point xi ∈ Rn×1, which can activate
the fixed language model to reconstruct the same
sentence afterward via prefix-tuning. We denote
the training loss of this reconstruction target as:

LR =−
∑

i
log pLM(si|Prefixi)

Prefixi = MLPϕ(xi)

xi = Encodeϕ(si),

(1)

where we can regard each point xi as being sam-
pled from a continuous Latent Space. It’s worth
noting that estimating the Latent Space can be a
pre-processing phase that is compatible with any
pre-trained auto-encoding structure.

3.2 Invertible Transformation

Normalizing Flow, denoting as z = fK ◦ · · · ◦
f1(x) = Fθ(x), maps a point xi in a complex
distribution to the one zi ∈ Rn×1 in a simple dis-
tribution, such as the Gaussian distribution, with
a series of invertible transformations {fi(·)}. The
probability density function p(x) can be derived

as p(x) = π(z)
∣∣∣detdFθ(x)

dx

∣∣∣ and the correspond-
ing training target is: L = −∑

x log p(x) =

−∑
x

[
log π(Fθ(x)) + log

∣∣∣detdFθ(x)
dx

∣∣∣
]
. See §B

for details about Normalizing Flows.
For controllable text generation, we have to

model the conditional probability p(x|a). There-
fore, we can decompose the probability as:

p(x) =
∑

a
p(x|a)p(a)

π(z) =
∑

a
π(z|a)p(a),

(2)

where
∑
a
p(x|a)p(a)=∑

a
π(z|a)p(a)

∣∣∣detdFθ(x)
dx

∣∣∣.
This means distributions p(x|a) in Latent Space
are mapped to the distributions π(z|a) in Prior
Space through the same invertible transformation
Fθ(x). When each sentence possesses labels of
all attributes, which is an ideal supervised situa-
tion, we can obtain attribute distributions p(a) and
their correlations. However, we usually encounter
a semi-supervised situation where a sentence be-
longing to multiple attributes only has a single at-
tribute label. As a result, we bypass the modeling
of p(a) and set a stricter transformation constraint
that p(x|a) = π(z|a)

∣∣∣detdFθ(x)
dx

∣∣∣. Our target is
L=− ∑

(x,a)

log p(x|a), which equals to:

L=−
∑

(x,a)

[
log π(Fθ(x)|a) + log

∣∣∣∣det
dFθ(x)

dx

∣∣∣∣
]
.

(3)
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In this case, we train each attribute independently
under the same spatial mapping, where attribute
correlations in Latent Space can still be revealed
by operation in Prior Space. It’s worth noting that
the amount of training data for different attributes
should be consistent as possible to ensure the bal-
ance of the transformation. Besides, for the con-
venience of control, we set covariance matrices
Σ ∈ Rn×n of prior distributions as diagonal matri-
ces σ2 = σσT I, where π(z|a) = N (µa, σ

2
a).

3.3 Control in the Prior Space

In this part, we first prove three significant proper-
ties that bridge the Prior and Latent Spaces. Then
we introduce how to conduct flexible control in
the Prior Space. The three properties ensure that
control effect can be fed back into the Latent Space.

3.3.1 Theoretical Support for Control
It’s worth noting that although the Prior Space is
connected to Latent Space with sample-level invert-
ible transformation, the relationship between dis-
tributions in the two spaces has not been revealed.
Next, we provide three important properties to en-
sure the effectiveness of controls across the space.

Attribute Preservation We define z possesses
the attribute a as in the support set of π(z|a), noted
as z ∈ supp(πa). The support of πa is supp(πa)=
{π(z|a) > 0, ∀z}. Therefore, we have:

∃x, x = F−1
θ (z), z ∈ supp(πa)

⇒ p(x|a) = π(z|a)
∣∣∣∣∣det

dF−1
θ (z)

dz

∣∣∣∣∣

−1

> 0

⇒ x ∈ supp(pa),

(4)

which means that sampling from π(z|a) in Prior
Space is equivalent to sampling from p(x|a) in
Latent Space, which ensures the effectiveness of
single-attribute control in Prior Space.

Intersection Invertibility The intersection area
of multiple attributes a1, · · · , ad, d≤n+1, can be
defined as the overlapping of their probability den-
sity functions {z|min {π(z|a1),· · ·, π(z|ad)}>0}.
In addition, the point where attributes are most
tightly combined is considered center of the inter-
section: z∗= argmaxz min{π(z|a1),· · ·, π(z|ad)}.
Though there does not necessarily exist a mapping
from z∗ to the intersection center in Latent Space,
we can restrict the region of this mapping to an up-
per bound. Since z∗ lies in the n-d+1 dimensional

z0

z1

p(z0, z1)

µa

µā

z∗

π(z∗|a)

Figure 3: Intersection of two distributions. In the case of
isotropy, the intersection of two Gaussian distributions
is also a Gaussian distribution, where interpolation of
two distribution centers can lie at the intersection center.

subspace I={z|π(z|a1)= · · ·=π(z|ad)}, named
as Intersection Subspace, we can have:

∀ẑ ∈ I, ∃x̂ = F−1
θ (ẑ),

p(x̂|ai) = π(ẑ|ai)
∣∣∣∣∣det

dF−1
θ (ẑ)

dẑ

∣∣∣∣∣

−1

= π(ẑ|aj)
∣∣∣∣∣det

dF−1
θ (ẑ)

dẑ

∣∣∣∣∣

−1

= p(x̂|aj), 1≤ i≤d, 1≤j≤d,

(5)

which means that the intersection subspace, where
attributes combine most tightly, in Prior Space cor-
responds to the subspace in Latent Space via bijec-
tion, making multi-attribute control effective.

Inequality Maintenance We define the discrep-
ancy between two attributes concerning the control
strength as d(x|a1,a2) = p(x|a1)− p(x|a2), mea-
suring the degree of their mutual exclusion. Thus:

d(x|a1,a2) = p(x|a1)− p(x|a2)

= (π(z|a1)− π(z|a2))
∣∣∣∣∣det

dF−1
θ (z)

dz

∣∣∣∣∣

−1

= d(z|a1,a2)
∣∣∣∣∣det

dF−1
θ (z)

dz

∣∣∣∣∣

−1

⇒
{
∀z, d(z|a1,a2)>0 ⇒ d(x|a1,a2)>0

∀z, d(z|a1,a2)<0 ⇒ d(x|a1,a2)<0
,

(6)
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which means inequality of two attributes in Prior
Space is also true in Latent Space. Besides, Inter-
section Subspace of attributes will divide the over-
lapping of their support sets into two parts, where
points in the same part have the same inequality.
This is the support for our flexible control strategy.

3.3.2 Details for Control
Single-Attribute Control Given the Attribute
Preservation property, sampling a point xa related
to attribute a in the Latent Space is equivalent to
first sampling in Prior Space za ∼ N (µa, σ

2
a) and

then transforming as xa = F−1
θ (za). We con-

vert the sampling strategy to za = µa+σaϵ, ϵ ∼
N (0, λ2I), where λ is a hyperparameter2.

Control Strength Adjustment Given two mu-
tually exclusive attributes, such as positive a and
negative ā sentiment, sampling an α-weighted in-
terpolated point z̃ in Prior Space is z̃ = αza+ ᾱzā,
where α+ ᾱ = 1. This linear combination is:

z̃ = (αµa + ᾱµā) + (ασaϵa + ᾱσāϵā)

= (αµa + ᾱµā) +
√
(ασa)2 + (ᾱσā)2 · ϵ,

(7)

which is z̃ ∼N ((αµa+ᾱµā), (ασa)
2+(ᾱσā)

2I).
As illustrated in the upper left of Figure 3, interpola-
tion between µa and µā is a line in Prior Space that
passes through the Intersection Subspace3, where
the intersection point is ẑ=α∗µa+ᾱ∗µā. There-
fore, sampling with ẑ as the center has a great op-
portunity to sample from the Intersection Subspace
in Prior Space, approximate to sampling from the
Intersection Subspace in Latent Space based on
Intersection Invertibility. It is worth noting that
when distributions are isotropic, there is ẑ=z∗ as
in Figure 3, which improves the effect of interpola-
tion. The Inequality Maintenance further ensures
that α > α∗ ⇐⇒ p(F−1

θ (z̃)|a) > p(F−1
θ (z̃)|ā),

which means that positive sentiment is guaranteed
to be more powerful than negative in Latent Space
as long as our weight is larger than α∗. Our experi-
ment in §5.1 demonstrates that the control strength
can be monotonic at a coarse granularity. When
trading off control strength between two polari-
ties, α is usually ranging from 0 to 1. Besides, we
can extend the control strength by increasing α to
slightly larger than 1, which equals staying away
from attribute ā, as long as it can be guaranteed that
points sampled are still within their distribution.

2We will discuss how λ influences control strength in §5.1.
3See §C for the calculation of ẑ.

Multi-Attribute Control Due to the spatial sym-
metry of Gaussian distributions, our trained distri-
butions are approximately isotropic when we con-
strain the covariance matrices to diagonal matrices.
This means we can simply deploy the interpolation
of each attribute’s distributional center as:

zi = µi + σiϵi,
∑

i
αi = 1, 1≤ i≤d

z̃ = N ((
∑

i
(αiµi),

∑
i
(αiσi)

2I)
(8)

Besides, our Prior Space is compatible with op-
timization methods. Our optimization process is
constrained and the target can be defined as:

max
(∑

i
αi log π(z|ai)

)

s.t. ∀i ̸=j, π(z|ai)=π(z|aj),
(9)

which is approaching the intersection center z∗ in
the Intersection Subspace I. We use Lagrange
multipliers to handle constraints and sampling with
ordinary differential equations as Liu et al. (2022).

dz =
1

2
β(t)

[∑
i
αi∇z log π(z|ai)−

∑

i ̸=j

δij∇z

(
log π(z|ai)− log π(z|aj)

)]
dt

δij =

{
Ω, log π(z|ai)− log π(z|aj) > τ

ω, log π(z|ai)− log π(z|aj) ≤ τ,

(10)
where Ω>>ω are two hyperparameters and τ >
0 is a threshold. If |log π(z|ai)−log π(z|aj)| ≤
τ , |δij−δji| = 0. If |log π(z|ai)−log π(z|aj)| >
τ , |δij−δji| = Ω−ω. β(t) = β0+(βT −β0)t/T
is a linear time-variant coefficient, where time t
flows forward from 0 to T and dt is an infinitesimal
positive time step. We provide details about the
isotropy of Prior Space and optimization in §F.

4 Experimtents

4.1 Tasks and Baselines

Tasks All our experimental setups, including
datasets, evaluation metrics, and generation con-
figurations, follow Discrete (Gu et al., 2022b) for
fair comparisons. There are IMDb movie reviews
(Maas et al., 2011), AGNews dataset (Zhang et al.,
2015), and Jigsaw Toxic Comment Classification
Challenge Dataset4 for 2 sentiments, 4 topics, and
1 detoxification, respectively. It’s worth noting that

4 https://www.kaggle.com/c/jigsaw-toxic-comme
nt-classification-challenge/
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Methods Sentiment↑ (%) Topic↑ (%) Detox.↑ PPL.↓ Dist.-1/2/3↑Avg. Neg. Pos. Avg. W. S. B. T. (%)
Biasing during Decoding

PPLM 80.0 97.2 62.7 70.6 74.9 46.5 62.4 98.6 93.2 63.2 31.1 / 70.9 / 85.9
GeDi 82.3 93.9 70.7 83.2 73.4 85.7 75.7 98.0 94.9 81.6 38.1 / 74.0 / 78.4
GeDi raw 88.4 96.6 80.2 90.8 84.3 92.6 87.1 99.2 95.4 134.1 47.5 / 88.9 / 93.0

Optimization in the Language Space
MUCOCO 75.4 95.5 55.3 73.5 56.9 67.3 72.3 97.5 94.8 381.7 22.5 / 49.9 / 64.3
Mix&Match 82.8 99.2 63.3 75.6 79.5 57.4 69.6 99.3 96.9 65.2 31.5 / 74.8 / 88.8

Optimization in the Latent Space
Prefix 81.6 86.8 76.4 82.4 72.2 81.1 84.9 91.5 88.3 20.8 16.3 / 43.8 / 67.5
Con. Prefix 89.5 88.4 90.6 86.7 74.5 85.3 93.5 93.6 93.8 37.7 17.3 / 47.0 / 71.1
LatentOps 91.1 88.3 93.9 69.4 54.3 61.1 72.4 89.6 94.6 58.8 13.5 / 48.3 / 62.8
Discrete 92.5 99.1 85.9 90.4 84.5 95.0 84.6 97.5 90.1 46.2 36.9 / 76.3 / 87.0
PriorControl 97.1 99.9 94.3 95.9 95.5 99.3 90.2 98.7 90.7 54.3 29.1 / 70.1 / 86.9

+ extend 99.7 99.9 99.5 97.8 97.9 99.4 94.0 99.8 95.7 54.6 29.8 / 70.5 / 86.8

Table 1: Automatic Results on Single-Attribute Control. We control on Sentiment (Negative and Positive), Topic
(World, Sports, Business, and Science/Technology), and Detoxification independently.

Discrete randomly samples 10k sentences from
each dataset, constituting a minor subset, to balance
the data scale for the latent space construction. We
directly use this latent space to make a fair compari-
son. To evaluate the attribute relevance, we use clas-
sifiers trained by Discrete for sentiment and topic,
and we utilize the Google Perspective API5 for
detoxification. We also measure text quality with
Perplexity and Distinctness(Li et al., 2016). For hu-
man evaluation, each sentence is rated by three pro-
fessional evaluators for attribute relevance and text
fluency. Evaluators rate each item on a scale of 1 to
5, with 5 representing text highly related to the de-
sired attribute or very fluent. There are 35 prompts
used for text generation, as in PPLM (Dathathri
et al., 2020). For single-attribute control, models
will generate 5 completions for each attribute and
each prompt, which are 35×(2+4+1)×5 = 1225
sentences. For multi-attribute control, each model
generates 35× (2× 4× 1)× 5 = 1400 sentences.

Baselines (I) Biasing during Decoding: PPLM
(Dathathri et al., 2020) accumulates gradients from
classifiers as bias signals to influence the language
model. GeDi (Krause et al., 2021) biases the de-
coding process with small conditional generative
models. (II) Optimization in Language Space:
MUCOCO (Kumar et al., 2021) converts the de-
coding process to multi-objective optimization in
language space. Mix&Match (Mireshghallah et al.,
2022) discretely optimizes the sentence in lan-
guage space by token-level masking and resam-
pling. (III) Optimization in Latent Space: Pre-
fix (Liu et al., 2021b) is the original Prefix-Tun-

5 https://www.perspectiveapi.com

Methods Avg.↑ Sent.↑ Topic↑ Detox.↑ Fluency↑
GeDi raw 3.28 2.66 3.40 4.08 2.81
Discrete 3.42 3.28 3.42 3.68 3.47
PriorControl 4.13 4.05 4.10 4.38 3.61

Table 2: Human Evaluation on Single-Attribute Control.

ing method which activates the language model to
generate attribute-relevant sentences with tunable
prefixes. Contrastive Prefix (Qian et al., 2022)
enhances the prefixes through contrastive learning.
LatentOPs (Liu et al., 2022) optimizes in latent
space with classifiers. Discrete (Gu et al., 2022b)
uses discrete samples to represent the distribution
of attributes in latent space and controls the gener-
ation by sampling in relevant areas6.

4.2 Single-Attribute Control

We demonstrate the automatic evaluation results on
single-attribute control in Table 1. In addition to
the degree of each independent attribute relevance,
we compute their average for Sentiment and Topic.
Models are grouped with their types of approaches.

We mainly compare the control methods in the
latent space, and the other two technical routes
serve as supplementary references. Biasing meth-
ods can achieve decent control at the cost of some
fluency. The diversity of their generated sentences
is almost the same as the language model, owing
to their plug-and-play property during decoding.
Besides, we illustrate the raw GeDi without re-
training, which is trained on the superset of our
dataset. Results show that its performance is af-
fected by the amount of data to some extent. Op-

6We provide an extra comparison with ChatGPT in §H.
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P(d(z|a,ā)>0)
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Ẽ(z|a,ā)
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Figure 4: The probability density function of two exclu-
sive attributes. (A) represents the original situation. (B)
indicates the sampling distribution is slightly away from
the undesired one. (C) denotes sampling with a smaller
λ. We measure the control effect by the probability of
blue surpassing red P (d(z|a,ā)>0) and the expectation
of the difference between blue and red E(z|a,ā).

timization methods in language space, elegant in
theory, are often troubled by high dimensionality
when implemented. Optimization in latent space is
a compromise strategy where the space dimension
is relatively reduced, making the control process
more effective but with lower diversity.

Our method not only enhances the existing latent
space optimization method at the level of control
strength, with at least 5.0% and 7.3% significant
improvement over baselines on sentiment and topic.
For text quality, our model, sampling points from
a Gaussian distribution, can also exceed the orig-
inal prefix tuning method by 20.5 in the average
distinctness. Our method performs comparable on
detoxification because we directly use Discrete’s
latent space, which is not good at this task. Com-
pared with Discrete, which assigns the same weight
to different sample points, our method can be seen

as sampling from the area with higher weights,
making our control of higher strength. Although in
a continuous space, our sampling will concentrate
in a small area with higher probability but similar
semantics, making the diversity slightly inferior
to Discrete with completely random sampling. In
addition, we show results of human evaluation for
single-attribute control in Table 2, which are al-
most consistent with automatic evaluation. The
agreement of annotators is 0.31 in Fleiss’ κ.

Besides, our performance can be further im-
proved by the extend control strategy. We can
achieve opposite control, as in contrastive learn-
ing, by using negative weights when interpolating.
Figure 4(A) denotes a typical situation where we
sample blue points with their probability density
function. One reason for the suboptimal control
effect is that exclusive attributes, denoted as the red
distribution, interfere with desired ones, the blue.
We can use the probability of blue surpassing red
P (d(z|a,ā)>0) and the expectation of the differ-
ence between blue and red E(z|a,ā) to measure the
anti-interference ability in the sampling process7.
Figure 4(B) shows when our new blue sampling dis-
tribution, π̂(z|a), is slightly away from the red, sur-
passing probability and expectation of difference
will both increase. This means the sampling center
farther away from interference sources possesses
better confidence. Results of this extend control
feeding back to the attribute relevance are 2.6, 1.9,
and 5.0 improvements on Sentiment, Topic, and
Detoxification, respectively.

4.3 Multi-Attribute Control

Automatic evaluation results on multi-attribute con-
trol are demonstrated in Table 3. We group meth-
ods in the same way as single-attribute control,
and we add an extra average score for all control
combinations. Besides, we demonstrate their stan-
dard deviations, which denote the stability of mod-
els among different attribute combinations. Multi-
attribute control is more challenging compared to
single-attribute control as all models suffer a drop
in overall performance. There are at least 6.3% and
5.1% drops in the attribute relevance for Sentiment
and Topic. There is little drop in detoxification
because this attribute is generally compatible with
others. On one hand, biasing models such as GeDi
suffer from a drop not only in control strength but
also in the fluency of the generated text, as mul-

7See §D for more details of the two metrics.
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Methods Average↑ (%) Sentiment↑ (%) Topic↑ (%) Detoxification↑ (%) PPL.↓ Dist.↑
Biasing during Decoding

PPLM 71.0 ± 21.4 64.7 ± 24.8 63.5 ± 22.7 84.9 ± 6.5 62.6 62.0
GeDi 81.4 ± 14.7 76.1 ± 17.2 73.8 ± 11.3 94.2 ± 1.9 116.6 75.1

Optimization in the Language Space
MUCOCO 73.9 ± 24.1 65.0 ± 33.7 67.2 ± 18.3 89.5 ± 3.5 405.6 49.7
Mix&Match 79.7 ± 21.8 73.5 ± 25.9 69.9 ± 21.1 95.8 ± 1.9 63.0 61.8

Optimization in the Latent Space
Contrastive Prefix

concatenation 77.2 ± 18.5 67.3 ± 20.7 71.8 ± 16.5 92.6 ± 2.9 54.6 39.9
semi-supervised 81.3 ± 16.5 74.4 ± 19.6 76.9 ± 16.7 92.7 ± 3.5 31.9 43.3

LatentOps 81.6 ± 15.1 82.9 ± 9.3 67.6 ± 14.7 94.2 ± 3.5 52.2 45.4
Discrete 87.4 ± 10.9 86.7 ± 10.5 84.8 ± 14.2 90.7 ± 7.4 28.4 49.5
PriorControl 89.9 ± 8.7 88.0 ± 10.6 87.4 ± 8.5 94.3 ± 3.2 34.7 55.5

+ optim 92.2 ± 8.6 92.5 ± 8.5 89.3 ± 11.0 94.9 ± 3.4 29.6 51.6

Table 3: Automatic Results on Multi-Attribute Control.

tiple biasing signals may conflict. On the other
hand, optimization approaches undergo an extra
loss in diversity, even including our model, since
we have to shrink the variance of the sampling
to cut down the decline of the control effect. As
observed in Discrete (Gu et al., 2022b), this gap
between single-attribute control and multi-attribute
control is reasonable because different attributes
usually combine at sparse edges of their distribu-
tions. It can also be observed in our mapped prior
space that the probability density of the attribute
combination region is relatively small. Compared
with Discrete, in addition to control strength, our
model possesses better stability according to lower
standard deviations. Besides, we outperform the
Discrete in diversity because they can only obtain
a small number of points in intersection regions,
while we can sample from a continuous area.

5 Analysis

5.1 Influence of λ

During the sampling stage ϵ ∼ N (0, λ2I), we of-
ten anticipate that the obtained points have a higher
probability density, which is influenced by λ. As
mentioned in Figure 4, exclusive attributes can in-
terfere with the control effect, and decreasing λ
is another optional strategy to reduce the interfer-
ence. We plot the probability density function for
λ = 0.8 in Figure 4(C). The probability of blue
surpassing red and the expectation of their differ-
ence are both larger than the original scores. Table
4 shows the results of λ’s influence fed back into
the latent and language space. Consistent with the
situation in the prior space, attribute relevance in-
creases as λ decreases. Besides, since smaller λ
means concentrating on a smaller area with higher

Control on Sentiment
λ P̃(d(z|a,̄a)>0) Ẽ(z|a,̄a) Neg./Pos. PPL. Dist.

1.0 0.773 0.161 99.1 / 78.7 85.0 64.9
0.9 0.798 0.171 99.4 / 83.0 74.7 64.6
0.8 0.826 0.181 99.4 / 88.5 64.9 64.2
0.7 0.858 0.192 99.4 / 92.7 59.9 63.1
0.6 0.894 0.205 99.9 / 94.3 53.9 62.0
0.5 0.933 0.218 99.9 / 97.4 49.5 61.3
0.4 0.970 0.232 99.9 / 99.0 45.1 60.0
0.3 0.994 0.246 99.9 / 99.0 40.3 58.2
0.2 0.999 0.259 99.9 / 99.0 37.1 54.9
0.1 1.000 0.267 99.9 / 99.9 34.8 52.3
0.0 1.000 0.269 99.9 / 99.9 34.3 49.9

Table 4: Results on the λ’s influence.

probability density, fluency grows while diversity
drops. In addition, we analyze the theoretical influ-
ence of λ via a toy example of interference between
two one-dimensional Gaussian distributions. As
in Figure 4 and 8, we let π(z|a) = N (0, 1) and
π(z|ā) = N (1.5, 1). As the λ gets smaller, we
can see that the probability of the desired attribute
surpassing the undesired one P (d(z|a,ā) > 0)
and the expectation of the difference between the
two E(z|a,ā) increase, which is consistent to the
change of attribute relevance. Therefore, narrowing
the sampling area (decreasing λ) in the prior space
will theoretically alleviate the interference from
undesired attributes, which can also be reflected
in language space, enhancing the control effect in
generated sentences.

5.2 Control Strength Adjustment
We directly adjust the control strength with α-
interpolation over distribution centers under the
approximately isotropic situation. As illustrated in
§3.2, the loss function of invertible transformation
is the combination of probability density and Jaco-
bian determinant. Although higher probability in
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α Neg → Pos (%) Toxic → NonTox (%)
1.0 99.2 / 0.8 79.5 / 20.5
0.9 97.1 / 2.9 69.4 / 30.6
0.8 93.5 / 6.5 56.2 / 43.8
0.7 88.5 / 11.5 49.3 / 50.7
0.6 77.7 / 22.3 44.2 / 55.8
0.5 66.4 / 33.6 31.7 / 68.3
0.4 49.7 / 50.3 23.6 / 76.4
0.3 38.1 / 61.9 22.0 / 78.0
0.2 26.5 / 73.5 13.1 / 86.9
0.1 19.1 / 80.9 9.7 / 90.3
0.0 13.7 / 86.3 7.4 / 92.6

Table 5: Control Strength Adjustment (λ=1).

latent space will also tend to be mapped to a higher
probability in prior space during the training stage,
this tendency is not always guaranteed since the Ja-
cobian determinant can compensate for some loss
in probability to obtain a better form of the mapped
distribution. Therefore, there is no strict monotonic
relationship between the control strength and the
parameter α. Fortunately, as shown in Table 5, we
can observe that the influence of α is approximately
monotonic at the coarse-grained level8.

6 Conclusion

In this work, we present a novel control framework
by introducing a well-formed prior space converted
from latent space via invertible transformation. We
further provide some theoretical support to ensure
that controls in the prior space can be fed back into
the latent space. This allows our framework the po-
tential to generalize to similar situations bothered
by high-dimensional and complex latent spaces.
Experimental results confirm the superiority of our
model on control effectiveness, control flexibility,
and generation quality.

Limitations

Our method requires balanced data because all at-
tributes share the same Normalizing Flow. This
means that when the training data for one attribute
is much larger than others, we need additional train-
ing steps to make up such a gap to prevent the Jaco-
bian part of the Normalizing Flow from too much
in favor of that attribute. In addition, although we
can achieve good results on the data scale of 2.5k
or 5k per attribute, our model does not fit well in
few-shot scenarios. We can alleviate this problem
by obtaining a sufficient amount of single-attribute
labeled data from the style transfer tasks. In our
experiments, each attribute is considered equally

8See more analyses in §D, F, and G.

important, which may be different from the prac-
tical situation. Fortunately, our control strategy
is flexible and can be customized for different de-
mands.

Ethics Statement

We are fully aware of the potential dangers that text
generation techniques may present, such as gener-
ating fake, toxic, or offensive content. However,
controllable text generation technology is a pow-
erful weapon against harmful information hidden
in pre-trained language models, where our study
includes text detoxification specifically. We be-
lieve it is beneficial to carry forward research on
controllable text generation.
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A Defects of the Complex Latent Space

As discussed in Discrete(Gu et al., 2022b), high-
dimensional attribute spaces tend to be asymmetric,
anisotropic, and non-convex. Previous work often
oversimplifies the spaces of controls into an ideal
situation. As demonstrated in Figure 5, interpola-
tion or optimization on two symmetric, isotropic,
and convex Gaussian distributions can effortlessly
achieve their intersection area.

Figure 5: Interpolation and Optimization under the ideal
oversimplified situation.

However, it will be completely different when con-
sidering a more complicated situation. Figure 6
shows the situation when we just make the distribu-
tions asymmetric and anisotropic. Both interpola-
tion and optimization will obtain the worst control
effect, in which neither distributions are involved
nor their intersection. Especially, even if the ini-
tialization of the optimization is in the intersection,
after a period of iterations, the optimization posi-
tion will still stop at the saddle point between the
distributions, which is outside their support set. Gu
et al. (2022b) reveal that the Principal Component
Analysis (PCA) projections of attribute distribu-

Figure 6: Interpolation and Optimization under a more
complicated situation.

tions can sometimes be non-convex. Since the
PCA is an operation that preserves convexity, a
high-dimensional non-convex distribution may be
projected to be convex, but the high-dimensional
preimage of a non-convex projection must be non-
convex. This means controls in a high-dimensional
non-convex space will be even more intractable.

B Backgrounds for Normalizing Flows

The normalizing Flow, dated back to Non-linear
Independent Component Estimation (Dinh et al.,
2014), is based on the idea that a good representa-
tion is one in which the data has an easy-to-model
distribution. Since unsupervised learning studies
how to capture complex data distributions that have
unknown structures, the Normalizing Flow consid-
ers a trainable transformation z = Fθ(x) of data
into a less complicated new space. Following the
log-likelihood target in unsupervised learning, this
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transformation is required to be invertible and the
training criterion is derived based on the change of
variable rule:

∫
p(x)dx =

∫
π(Fθ(x))dFθ(x) = 1

=⇒ p(x) = π(Fθ(x))

∣∣∣∣det
dFθ(x)

dx

∣∣∣∣

log p(x) =

[
log π(Fθ(x)) + log

∣∣∣∣det
dFθ(x)

dx

∣∣∣∣
]
,

where dFθ(x)
dx is the Jacobian matrix of function Fθ

at x. The log-likelihood objective maximizes p(x)
for each x in the training data, which approximates
simultaneously maximizing the probability density
π(Fθ(x)) and the determinant

∣∣∣detdFθ(x)
dx

∣∣∣.
Since the absolute value of the determinant can

be regarded as a scaling factor for the probability
density, there is a trade-off between π(Fθ(x)) and∣∣∣detdFθ(x)

dx

∣∣∣ during training. This means a sample
point xi with a high probability density p(xi) will
not always be mapped to a high probability density
π(Fθ(xi)) because the transformation Fθ(·) needs
to consider the smoothness of mapping where the
determinant

∣∣∣detdFθ(xi)
dx

∣∣∣ will compensate for this
gap of probability density. This situation has little
effect when the Normalizing Flow is used as a
generative model, however, it is critical to maintain
the ratio of the probability density before and after
the mapping when performing control. That’s why
our §3.3.1 makes sense.

In addition, the key reason for using the Normal-
izing Flow rather than other generative models is in-
vertibility. Among the current popular generative
models, only the Normalizing Flow can achieve the
invertible transformation (bijection), which forms
the cornerstone of our control framework. For ex-
ample, the variational autoencoder will construct
a fuzzy match between the latent distribution π(z)
and the sample distribution p(x), and the sample
x will randomly correspond to a different z in the
same distribution π(z) at each training time. This
can only be used for single-attribute control, and it
will collapse when performing multi-attribute con-
trol since we need to decompose and reconstruct
attribute distributions from samples that highly rely
on bijection. The denoising diffusion probability
model shares a similar problem in that a sample x
will correspond to an uncertain point z in the latent
distribution π(z). The generative adversarial net-
work is different in that a latent point z can connect

to a determined sample x via the generator. How-
ever, the connection can not be reversed, making
our control unattainable.

C Calculation of ẑ

Interpolation of two distribution centers is a line
(one-dimensional subspace) where the probabil-
ity density functions in this subspace are still two
Gaussian distributions. That is: Our target goes
back to solve the equation π(ẑ|a) = π(ẑ|ā) under
one-dimensional situation.

Given: π(ẑ|a) = π(ẑ|ā)
⇒N (ẑ;µa, σ

2
a) = N (ẑ;µā, σ

2
ā)

⇒ log
exp(− (ẑ−µa)2

2σ2
a

)
√
2πσa

= log
exp(− (ẑ−µā)2

2σ2
ā

)
√
2πσā

⇒ 1

2

[
log(

σ2
ā

σ2
a

)− (ẑ − µa)
2

σ2
a

+
(ẑ − µā)

2

σ2
ā

]
= 0

⇒





A(ẑ)2 +Bẑ + C = 0

A = − 1

σ2
a

+
1

σ2
ā

B = 2(
µa

σ2
a

− µā

σ2
ā

)

C = log(
σ2
ā

σ2
a

)− µ2
a

σ2
a

+
µ2
ā

σ2
ā

⇒

∆ = B2 − 4AC

=
4

σ2
aσ

2
ā

[
(µa − µā)

2 + (σ2
a − σ2

ā) log(
σ2
a

σ2
ā

)

]

≥ 0

⇒





if σa = σā, ẑ = −C

B
=

µa + µā

2

if σa ̸= σā, ẑ =
−B ±

√
∆

2A

According to the derivation above and Figure 7,
when σa = σā, the ẑ is simply the midpoint of µa

and µā. When σa ̸= σā, there are usually two solu-
tions for ẑ, and the one we expect needs to be in the
interval min(µa, µā) to max(µa, µā). It is worth
noting that there may be cases where solutions of
ẑ are both outside this interval, which is caused by
the distance between µa and µā being too small.
In this case, the interval of the two solutions of ẑ
becomes the region where two attributes intersect.

As illustrated in Figure 7, it is complicated to
accurately calculate the point where two attributes
intersect, even in a one-dimensional case. Fortu-
nately, we can observe that ẑ is always between µa

and µā. This means we can find an approximate
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z

π(z)

ẑ

z

z1

ẑ

z

z1

z2
ẑ

Figure 7: Different cases of intersection in one-
dimensional subspace.

intersection point by adjusting the interpolation
parameter in practical use.

D Measuring Exclusive Attributes

As illustrated in Figure 8, given two exclusive at-
tributes a and ā, attribute ā will interfere with the
effectiveness of a attribute’s control. We measure
the control effect by the probability of the blue
attribute surpassing the red distribution:

P (d(z|a, ā)>0)=

∫ z∗

-∞
π(z|a)dz

P̂ (d(z|a,ā)>0)=

∫ z∗

-∞
π̂(z|a)dz

P̃ (d(z|a,ā)>0)=

∫ z∗

-∞
π̃(z|a)dz

and the expectation of the difference between the

P(d(z|a,ā)>0)

E(z|a,ā)

z

π(z|a) π(z|ā)

π(z|a)π(z|a)

π(z|ā)π(z|a)

z∗

(A)

z

P̂(d(z|a,ā)>0)

Ê(z|a,ā)

π̂(z|a) π(z|ā)

π(z|a)π̂(z|a)

π(z|ā)π̂(z|a)

z∗

(B)

P̃(d(z|a,ā)>0)

Ẽ(z|a,ā)

z

π̃(z|a)

π(z|ā)

π(z|a)π̃(z|a)

z∗

π(z|ā)π̃(z|a)

(C)

Figure 8: The probability density function of two ex-
clusive attributes. (A) represents the original situa-
tion, where the blue distribution is π(z|a) = N (0, 1)
and the red is π(z|ā) = N (1.5, 1). (B) indicates the
sampling distribution is slightly away from the un-
desired one, where the new sampling distribution is
π̂(z|ā) = N (-0.2, 1). (C) denotes sampling with a
smaller λ, π̃(z|a)=N (0, 0.82).

blue distribution and the red distribution:

E(z|a,ā)=
∫ z∗

-∞
π(z|a)(π(z|a)−π(z|ā))dz

Ê(z|a,ā)=
∫ z∗

-∞
π̂(z|a)(π(z|a)−π(z|ā))dz

Ẽ(z|a,ā)=
∫ z∗

-∞
π̃(z|a)(π(z|a)−π(z|ā))dz.

It’s worth noting that due to the symmetry of the
Gaussian distribution, when the red distribution
is on the left side of the blue, it will only affect
the integral’s starting point and end point rather
than the result. In Figure 8, part (A) is the orig-
inal situation where P (d(z|a,ā) > 0) ≈ 0.773
and E(z|a,ā) ≈ 0.161. Part (B) is the extending
trick in §3.3.2 that keeps the sampling distribution
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slightly away from the exclusive distribution by a
distance of 0.2, where P̂ (d(z|a,ā) > 0) ≈ 0.829
and Ê(z|a,ā)≈ 0.171. Note that the offset needs
to be balanced between staying away from inter-
ference and maintaining the original sampling area.
Part (C) is concentrating the sampling area with
a smaller λ, where P̃ (d(z|a,ā)> 0)≈ 0.826 and
Ẽ(z|a,ā) ≈ 0.181. It’s apparent that these two
sampling strategies are compatible and follow the
same principle: reallocate higher weights to more
reliable regions which possess higher probability
density and less noise.

Next, we analyze the effect of these strategies fed
back into the latent space. For part (B), we assume
the offset is s<0, which means π̂(z|a)=π(z−s|a).
Therefore, we can prove that P̂ (d(z|a,ā) > 0) >
P (d(z|a,ā)>0):

P̂ (d(z|a,ā)>0) =

∫ z∗

-∞
π̂(z|a)dz

=

∫ z∗

-∞
π(z−s|a)dz =

∫ z∗−s

-∞
π(z|a)dz

=

∫ z∗

-∞
π(z|a)dz +

∫ z∗−s

z∗
π(z|a)dz

>

∫ z∗

-∞
π(z|a)dz.

Based on the Inequality Maintenance, there ex-
ists no x < x∗ that can make Fθ(x) > Fθ(x

∗).
This means points in the interval (-∞, x∗] from
the latent space have a one-to-one correspon-
dence with points in (-∞, z∗] from the prior
space. Therefore, when mapping to latent space,
we have

∫ x∗

-∞ p(x|a)dx =
∫ z∗

-∞ π(z|a)dFθ(x)
dx dx =∫ z∗

-∞ π(z|a)dz. Thus, we have
∫ z∗

-∞ π̂(z|a)dz =∫ x∗

-∞ p(x|a)dx+
∫ z∗−s
z∗ π(z|a)dz >

∫ x∗

-∞ p(x|a)dx.
It’s worth noting that interval [z∗, z∗−s] is not guar-
anteed to correspond to interval [x∗,F -1

θ (z∗−s)].
As a result, points sampled from π̂(z|a) possess
higher probability density in the latent space. For
part (C), which is similar, we have P̃ (d(z|a,ā)>
0)>P (d(z|a,ā)>0):

P̃ (d(z|a,ā)>0) =

∫ z∗

-∞
π̃(z|a)dz

=

∫ z∗

-∞

π( zλ |a)
λ

dz =

∫ z∗
λ

-∞
π(z|a)dz

=

∫ z∗

-∞
π(z|a)dz+

∫ z∗
λ

z∗
π(z|a)dz

>

∫ z∗

-∞
π(z|a)dz.

Therefore, we have
∫ z∗

-∞ π̃(z|a)dz=
∫ x∗

-∞ p(x|a)dx+
∫ z∗

λ
z∗ π(z|a)dz >

∫ x∗

-∞ p(x|a)dx, which means the
probability of sampled points in latent space is
monotonically increasing as λ decreases. We can
also observe the same phenomenon from the per-
spective of E(z|a,ā). However, their proof requires
the integration of Gaussian distributions, which is
complex that we skip here.

E Hyperparameters and Details

We directly leverage the latent space provided by
Discrete (Gu et al., 2022b), which is implemented
on the Huggingface Transformers package9. The
encoder is initialized with Bert-base-uncased, and
the fixed decoder uses GPT2-medium. Each train-
ing sentence will be tokenized with WordPiece tok-
enizer from Bert and Byte-Pair Encoding tokenizer
from GPT2 before input to encoder and decoder,
respectively. As in Discrete, we perform mean
pooling on outputs of the encoder and convert them
to 768-dimensional latent representations, which
are points in the latent space. Afterward, latent
representations will be mapped to the prefix with
a dimension of 20 × 24 × 2 × 1024, where 20 is
the prefix sequence length, 24 is the number of
hidden layers in GPT2-medium, 2 represents one
key and one value, and 1024 is the size of hidden
states in GPT2-medium. Our invertible transfor-
mation works like a plug-and-play module on the
latent space and we implement it with the FrEIA
package10. The normalizing flow contains 8 layers,
each of which is composed of two linear layers
and one activation layer. Normalization flows pre-
serve the dimensionality of the input vectors, which
means that our prior space has the same dimension
as the latent space of 768. In addition, we follow
LatentOps (Liu et al., 2022) and utilize the torchd-
iffeq package11 for solving the ordinary differential
equations in the prior space.

During the training stage, the parameters of the
encoder, decoder, and prefix mapping module are
fixed and initialized with ones from Discrete. We
only train the parameters of the Normalizing Flow
with half-precision mode on one NVIDIA A100
80GB GPU, where the batch size is 100. In our set-
ting, the random seed is 0, the optimizer is AdamW
with a learning rate of 1e-4, all 8 attributes are

9 https://github.com/huggingface/transformers
10 https://github.com/vislearn/FrEIA
11 https://github.com/rtqichen/torchdiffeq
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trained together in different batches, and the train-
ing steps are 300000 which spends about 9 hours.

Combination Weight wi λ

Neg. & World & NonTox. 2 : 12 : 1 0.5
Neg. & Sports & NonTox. 2 : 6 : 1 0.5
Neg. & Business & NonTox. 2 : 16 : 1 0.5
Neg. & Sci./Tech. & NonTox. 2 : 1 : 5 0.5
Pos. & World & NonTox. 14 : 16 : 0.2 0.2
Pos. & Sports & NonTox. 28 : 20 : 0.2 0.2
Pos. & Business & NonTox. 20 : 26 : 0.2 0.1
Pos. & Sci./Tech. & NonTox. 6 : 1 : 1 0.5

Table 6: Hyperparameters for Multi-Attribute Control.

During the inference phase for single-attribute
control, we choose λ=0.6 to balance the control
strength, fluency, and diversity. In extend mode,
our sampling center is slightly away from the ad-
versarial attribute by a distance of 0.2. We can
move away from the interpolation center for as-
pects with more than two attributes, such as the
topic aspect. For multi-attribute control, we uti-
lize a specialized list of hyperparameters, weight
wi and λ, for each combination of attributes in
Table 6, where αi =

wi∑
j wj

. Our customized hy-
perparameters are aimed at balancing the control
effect among attributes and the trade-off between
diversity and attribute relevance. After mapping
samples back to the latent space, the text generation
process is the same as Discrete, where the sequence
length is set to 50. The entire evaluation process
for each attribute combination takes less than 1
minutes, allowing us to fine-grain the search for
satisfying hyperparameters, where the maximum
trial number for each attribute combination is 10.
For constrained optimization in Intersection Sub-
space, the hyperparameters are Ω=0.3, ω=0.01,
τ=8e-5, β0 = 20, βT = 0.1, and T = 1.

Same as Discrete, 35 prompts we used in the
inference stage are following the PPLM setting
with 20 from its bag-of-word setting and 15 from
its discriminator setting:

• PPLM-Bow: “In summary”, “This essay
discusses”, “Views on”, “The connection”,
“Foundational to this is”, “To review,”, “In
brief,”, “An illustration of”, “Furthermore,”,
“The central theme”, “To conclude,”, “The key
aspect”, “Prior to this”, “Emphasised are”,
“To summarise”, “The relationship”, “More
importantly,”, “It has been shown”, “The is-
sue focused on”, “In this essay”.

• PPLM-Discrim: “Once upon a time”, “The

book”, “The chicken”, “The city”, “The coun-
try”, “The horse”, “The lake”, “The last time”,
“The movie”, “The painting”, “The pizza”,
“The potato”, “The president of the country”,
“The road”, “The year is 1910.”.

Detailed setting of baselines: (I) Biasing during
Decoding: For PPLM, we only retrain its classi-
fier heads on our datasets while keeping all other
original settings. For GeDi, we provide two ver-
sions. One is retrained on our dataset and another
uses the raw parameters since their dataset is the
superset of ours. (II) Optimization in Language
Space: MUCOCO provides a solution for custom
classification constraints, and thus we train these
classifiers on our dataset. Mix&Match is relatively
complex as it can not generate long sentences from
scratch with the mask language model Bert. Worse
still, as a method based on sampling, it is some-
what dependent on initialization. Therefore, we use
sentences generated by PPLM as the starting sen-
tences and let Mix&Match slowly polish the text
by itself in iterations. (III) Optimization in La-
tent Space: We reproduce Contrastive Prefix and
achieve comparable results. For LatentOps, we re-
train both their VAE structure and the classifiers for
optimization. We directly use Discrete as we fol-
low their settings. For a fair comparison, we unify
the pre-trained language model to GPT2-medium
(345M parameters) except for Mix&Match using
Bert-large (340M parameters).
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Attribute σi

max min avg std
Negative 0.886 0.756 0.800 0.018
Positive 0.889 0.760 0.801 0.018
World 0.848 0.737 0.782 0.018
Sports 0.837 0.728 0.776 0.018
Business 0.851 0.738 0.783 0.018
Sci./Tech. 0.853 0.737 0.784 0.018
Toxic 0.853 0.740 0.783 0.017
NonTox. 0.853 0.747 0.790 0.017

Table 7: σ of Different Attributes.

z0

z1

p(z0, z1)

µa

µā

ẑ

z∗

µa

µā

ẑ z∗

Figure 9: Intersection of two anisotropic distributions.

F Statistics of Prior Space

F.1 Isotropic and Anisotropic

We analyze σ of different attribute’s Gaussian dis-
tribution N (µa, σ

2
a) in Table 7. We demonstrate

the maximum, minimum, average, and standard
deviation values among all dimensions for each σ.
The maximum differences of σs are around 0.1,
and the standard deviations are all less than 0.02,
in which case we consider the distributions to be
approximately isotropic.

Furthermore, we plot the situation in Figure 9
when two 2-dimensional anisotropic distributions
intersect. We set up an example: µa=(0, 0)T , σa=
(1.3, 0.9)T , µā = (1, 1)T , σā = (0.8, 1.5)T . At
this time, the intersection subspace is still a one-
dimensional subspace, but it becomes a hyperbola
rather than a straight line. Besides, the interpo-
lation method can only obtain a suboptimal inter-
section point ẑ, where the optimal point lies in z∗.
As shown in §3.3.2, optimization methods are ex-
pected to achieve z∗ with ẑ as the initialization,

higher probability density as the target, and Inter-
section Subspace as constraints.

Next, we provide the derivation for the intersec-
tion of two distributions in 2-dimensional space.

Given: π(ẑ|a) = π(ẑ|ā)
⇒N (ẑ;µa, σ

2
a) = N (ẑ;µā, σ

2
ā)

⇒ log
exp(− (ẑ1−µa,1)2

2σ2
a,1

− (ẑ2−µa,2)2

2σ2
a,2

)

2π · σa,1 · σa,2

= log
exp(− (ẑ1−µā,1)2

2σ2
ā,1

− (ẑ2−µā,2)2

2σ2
ā,2

)

2π · σā,1 · σā,2

⇒ log(
σ2
a,1 ·σ2

a,2

σ2
ā,1 ·σ2

ā,1

)

+

[
(ẑ1 − µa,1)

2

σ2
a,1

− (ẑ1 − µā,1)
2

σ2
ā,1

]

+

[
(ẑ2 − µa,2)

2

σ2
a,2

− (ẑ2 − µā,2)
2

σ2
ā,2

]
= 0

⇒ log(
σ2
a,1 ·σ2

a,2

σ2
ā,1 ·σ2

ā,1

) +
A1ẑ

2
1+B1ẑ1 + C1

σ2
a,1 · σ2

ā,1

+
A2ẑ

2
2+B2ẑ2 + C2

σ2
a,2 · σ2

ā,2

= 0,





Ai = σ2
ā,i − σ2

a,i

Bi = 2(µā,i · σ2
a,i − µa,i · σ2

ā,i)

Ci = µ2
a,i · σ2

ā,i − µ2
ā,i · σ2

a,i

⇒

(
ẑ1 +

B1
2A1

)2

σ2
a,1 ·σ2

ā,1/A1
+

(
ẑ2 +

B2
2A2

)2

σ2
a,2 ·σ2

ā,2/A2
= K,

K = log(
σ2
ā,1 ·σ2

ā,1

σ2
a,1 ·σ2

a,2

) +
B2

1 − 4A1C1

4A1 · σ2
a,1 ·σ2

ā,1

+
B2

2 − 4A2C2

4A2 · σ2
a,2 ·σ2

ā,2

⇒ (ẑ1 −M1)
2

P1
+

(ẑ2 −M2)
2

P2
= 1,





Mi = − Bi

2Ai

Pi =
σ2
a,i · σ2

ā,i

Ai ·K
When A1 = 0 and A2 = 0, the Intersection Sub-

space is a straight line as in the isotropic situation.
When A1 = 0, A2 ̸= 0 or A1 ̸= 0, A2 = 0, the
Intersection Subspace becomes a parabola. When
A1 ̸= 0, A2 ̸= 0 and A1 × A2 > 0, the Intersec-
tion Subspace is an ellipse. As in Figure 9, when
A1 ̸= 0, A2 ̸= 0 and A1 × A2 < 0, it becomes a
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Methods Average↑ (%) Sentiment↑ (%) Topic↑ (%) Detoxification↑ (%) PPL.↓ Dist.↑
Discrete 87.4 ± 10.9 86.7 ± 10.5 84.8 ± 14.2 90.7 ± 7.4 28.4 49.5
PriorControl 89.9 ± 8.7 88.0 ± 10.6 87.4 ± 8.5 94.3 ± 3.2 34.7 55.5

+ uncons optim 91.8 ± 9.7 89.7 ± 11.9 90.1 ± 10.4 95.5 ± 3.0 29.9 52.1
+ optim 92.2 ± 8.6 92.5 ± 8.5 89.3 ± 11.0 94.9 ± 3.4 29.6 51.6

Table 8: Automatic Results on Multi-Attribute Control for Different Optimization Strategies.

hyperbola. When multiple distributions intersect in
a high-dimensional space, the formula of Intersec-
tion Subspace can be generalized according to the
conic section above.

F.2 Optimize in Prior Space
We demonstrate in Table 8 the effect of optimizing
in the prior space. Unconstrained Optimization
represents a simplified target which drops the con-
straints as: dz = 1

2β(t) [
∑

i αi∇z log π(z|ai)] dt.
Compared with PriorControl, the improvement
brought by optimization mainly comes from two
parts: one is the large sampling area of PriorCon-
trol leads to some low-probability samples, and the
other is the interpolation of PriorControl cannot
perfectly achieve the optimal point z∗. This means
although our model is approximately isotropic, it
cannot completely ignore the influence of differ-
ences in various dimensions. Furthermore, the
marginal improvement from constraints means that
optimization does not need to worry about prob-
lems such as saddle points, which means the shape
of our prior space is satisfyingly simple.

In addition, we illustrate the detailed results of
multi-attribute combinations in Table 9. It is rare
for the attribute relevance to degrade after optimiza-
tion when constrained in the intersection subspace.
However, without these constraints, the optimiza-
tion process becomes unstable and more likely
to decay. Since these degradations are usually
marginal, we consider that dropping constraints
can improve optimization speed when the prior
space is simple and regular.

F.3 Distance between Distributions
We also analyze the distances between distribu-
tions in Tables 10 to 12, which are automatically
learned without human guidance. The distance is
calculated as the absolute difference for each cor-
responding dimension between two distributions.
Table 10 and Table 11 show the average and max-
imum values of the distance in each dimension,
respectively. The large discrepancy between the
average and maximum values indicates that the dis-
tances in most dimensions are small. And the differ-

ences between distributions are mainly determined
by the few dimensions with the largest distances.
Therefore, we additionally show the average value
of the top-5 dimensions in Table 12. Consistent
with the intuition, we can observe that the distance
between two mutually exclusive attributes is rela-
tively large, such as negative-positive sentiments
and toxic-nontoxic. Furthermore, topics are gen-
erally farther from the positive sentiment than the
negative one, which is in line with our experimental
results in Table 9. The business topic is a counterex-
ample that performs better on control strength with
negative sentiment than positive while its distribu-
tion stays closer to the positive one. Compared to
the performance in Discrete, we assume that this
may be due to our probability density estimation
on the business topic not being very good.

G Optimize in Different Latent Spaces

As demonstrated in Table 13, we analyze how the
optimization method performs in different spaces.
LatentOps (Liu et al., 2022) utilizes ordinary dif-
ferential equations to optimize sampling points in
simple latent spaces constructed by the VAE struc-
ture. Their latent spaces only require the dataset
of the corresponding aspect each time for single-
attribute control. Therefore, they perform well in
aspects with only two attributes, like sentiment and
detoxification, while they are mediocre in complex
aspects, such as topic. We migrate the optimization
method to the complex latent space of Discrete,
named as DiscreteOps. Discrete’s space is spe-
cially designed for the combination of multiple
attributes, where there exist eight attributes. For
single-attribute control, we randomly sample a set
of points in the corresponding attribute’s training
data as prefixes for text generation. We experi-
ment with several random seeds and pick the best
one for each attribute as the upper bound, Discrete
best. Since optimization requires good initializa-
tion, as described in LatentOps, we use a random
seed with average performances, i.e., Discrete, as
DiscreteOps’s initialization. It’s interesting to ob-
serve that optimization is more likely to improve
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Methods Sentiment (%) Topic (%) Detox. (%)Neg. Pos. World Sports Business Sci./Tech.

Discrete

69.7 - 71.7 - - - 84.1
78.6 - - 80.0 - - 80.2
99.9 - - - 96.7 - 96.8
92.8 - - - - 98.0 81.7

- 80.5 58.0 - - - 95.1
- 84.7 - 86.6 - - 94.5
- 87.6 - - 91.7 - 98.1
- 99.7 - - - 96.1 95.4

PriorControl

94.6 - 90.2 - - - 90.1
96.5 - - 97.4 - - 93.0
91.4 - - - 88.5 - 97.6
99.6 - - - - 97.1 88.8

- 79.5 80.1 - - - 94.8
- 82.4 - 79.5 - - 95.7
- 65.6 - - 72.5 - 98.2
- 94.3 - - - 93.8 96.2

PriorControl
+ uncons optim

97.7↑ - 99.2↑ - - - 92.4↑
97.9↑ - - 98.5↑ - - 95.1↑
97.9↑ - - - 96.7↑ - 98.6↑
99.9↑ - - - - 98.1↑ 89.2↑

- 83.2↑ 75.7↓ - - - 95.8↑
- 75.6↓ - 83.7↑ - - 97.0↑
- 67.1↑ - - 72.2↓ - 98.2↓
- 89.7↓ - - - 90.1↓ 97.3↑

PriorControl
+ optim

97.9↑ - 98.3↑ - - - 90.5↑
98.4↑ - - 98.5↑ - - 93.4↑
97.3↑ - - - 96.9↑ - 98.5↑
99.9↑ - - - - 99.7↑ 89.1↑

- 89.5↑ 79.4↓ - - - 95.4↑
- 84.5↑ - 73.7↓ - - 96.8↑
- 74.2↑ - - 73.1↑ - 98.4↑
- 98.0↑ - - - 95.2↑ 97.3↑

Table 9: Detailed Combination Results on Multi-Attribute Control.

Average Sentiment Topic Detox.
Neg. Pos. W. S. B. T. Tox.

Positive 0.199 -
World 0.135 0.156 -
Sports 0.166 0.203 0.184 -

Business 0.176 0.131 0.176 0.224 -
Sci./Tech. 0.163 0.142 0.166 0.248 0.128 -

Toxic 0.130 0.178 0.124 0.149 0.178 0.192
NonTox. 0.161 0.124 0.153 0.207 0.116 0.100 0.187

Table 10: Average of |µai
−µaj

| between Attributes.

performance when there is a large gap between
Discrete and Discrete best. On the contrary, when
Discrete is close to the upper bound, optimization
may degrade the attribute relevance. We think this
is because classifiers are not good tools for proba-
bility density modeling, where most region of the
space is not in the classifier’s domain of defini-
tion, making the optimization process coarse. This
phenomenon can also be observed after migrating
to the prior space. PriorControl we use in the
main experiment sets λ=0.6, and we let the points
sampled when λ=1.0 as the initialization of Pri-
orOps. When the energy function composed of the

Max Sentiment Topic Detox.
Neg. Pos. W. S. B. T. Tox.

Positive 0.776 -
World 0.544 0.620 -
Sports 0.571 0.735 0.651 -

Business 0.751 0.452 0.798 0.794 -
Sci./Tech. 0.565 0.645 0.857 0.848 0.620 -

Tox. 0.525 0.639 0.493 0.559 0.632 0.733 -
NonTox. 0.637 0.504 0.635 0.697 0.458 0.439 0.702

Table 11: Maximum of |µai
−µaj

| between Attributes.

classifier is used as the optimization target in the
prior space, the attribute correlation of generated
text cannot surpass the performance of Discrete.
However, when we keep λ= 1.0 and replace the
optimization target with the Gaussian distribution
of corresponding attribute in the prior space, which
is PriorControl + optim, the control strength can
exceed the + extend method at the cost of diver-
sity. This reveals that our work provides not only
a better conditional probability density estimation
method but also a better control framework that is
compatible with current control strategies.

12609



Top-5 Sentiment Topic Detox.
Neg. Pos. W. S. B. T. Tox.

Positive 0.700 -
World 0.529 0.572 -
Sports 0.533 0.670 0.624 -

Business 0.617 0.438 0.699 0.750 -
Sci./Tech. 0.541 0.557 0.686 0.795 0.545 -

Toxic 0.491 0.605 0.472 0.535 0.607 0.709 -
NonTox. 0.561 0.464 0.600 0.666 0.404 0.365 0.630

Table 12: Top-5 of |µai
−µaj

| between Attributes.

H Compare with ChatGPT

Based on the principle of a fair comparison, we
use gpt2-medium as the language model, which
is consistent with baselines. In this section, we
briefly test the controllability of ChatGPT (early
version before January 1, 2023), which is the most
powerful conditional generative language model at
present. The magic spell we use to activate Chat-
GPT is “Generate 5 sentences containing 50 words
with [ATTRIBUTE] and start with ‘[PROMPT]’.”
The [ATTRIBUTE] is selected from negative senti-
ment, positive sentiment, world topic, sports topic,
business topic, technology topic, and non-toxicity.
The [PROMPT] is from the 35 prompts we used in
the experiments. As illustrated in Table 14, Chat-
GPT can accurately identify the task of attribute
control and achieve impressive performance, es-
pecially on sentiment and detoxification. Because
there are a large number of training datasets for
both aspects. When facing attributes such as topics,
which possess a relatively small amount of data,
ChatGPT can only make limited associations based
on keywords of the topic while can not control
from a more abstract level. It is obvious that text it
generated has a strong fluency that almost reaches
the human level. However, although deliberately
replacing words during decoding, it still lacks di-
versity in the scenario of large-scale open-ended
text generation. We also show some cases in Table
15 and Table 16. For negative sentiment control,
ChatGPT can generate fluent sentences with high
attribute strength. Interestingly, it is insensitive to
structural controls such as sentence length. For
world topic control, ChatGPT tends to associate
some keywords from the word world, such as eco-
nomic, community, and global, while cannot gen-
erate sentences that feel like something happened
somewhere in the world. Compared to our GPT2-
based framework, ChatGPT can generate sentences
with better quality and fewer factual inconsistency
issues.

I Cases Study

We demonstrate generated sentences of single-
attribute control and multi-attribute control in Table
17 and Table 18, respectively.
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Methods Sentiment↑ (%) Topic↑ (%) Detox.↑ PPL.↓ Dist.-1/2/3↑Avg. Neg. Pos. Avg. W. S. B. T. (%)
Optimization in Simple Latent Space

LatentOps 91.1 88.3 93.9 69.4 54.3 61.1 72.4 89.6 94.6 58.8 13.5 / 48.3 / 62.8
Optimization in Complex Latent Space

Discrete 88.2 98.5 77.8 89.7 84.5 95.0 84.5 94.7 88.7 46.4 35.5 / 77.7 / 89.2
DiscreteOps 89.2 97.7↓ 80.7↑ 89.6 84.0↓ 95.0↓ 84.2↓ 95.2↑ 90.3↑ 47.5 35.8 / 79.1 / 90.0
Discrete best 92.5 99.1 85.9 90.4 84.5 95.0 84.6 97.5 90.1 46.2 36.9 / 76.3 / 87.0

Optimization in Prior Space
Prior (λ=1.0) 88.9 99.1 78.7 81.4 70.2 92.4 66.9 96.2 91.8 85.0 31.6 / 73.9 / 89.2
PriorOps 87.9 97.8↓ 77.9↓ 84.2 74.3↑ 92.2↓ 72.3↑ 97.9↑ 91.7↓ 85.2 31.2 / 73.6 / 89.1
PriorControl 97.1 99.9 94.3 95.9 95.5 99.3 90.2 98.7 90.7 54.3 29.1 / 70.1 / 86.9

+ extend 99.7 99.9 99.5 97.8 97.9 99.4 94.0 99.8 95.7 54.6 29.8 / 70.5 / 86.8
+ optim 99.8 99.9 99.6 99.6 99.9 99.7 98.9 99.9 94.3 34.8 23.1 / 57.4 / 75.8

Table 13: Results on Single-Attribute Control for the Optimization in Different Spaces.

Methods Sentiment↑ (%) Topic↑ (%) Detox.↑ PPL.↓ Dist.-1/2/3↑Avg. Neg. Pos. Avg. W. S. B. T. (%)
ChatGPT 99.9 99.8 99.9 77.5 60.7 72.2 78.7 98.5 98.4 14.3 21.4 / 46.8 / 56.9
PriorControl 97.1 99.9 94.3 95.9 95.5 99.3 90.2 98.7 90.7 54.3 29.1 / 70.1 / 86.9

+ extend 99.7 99.9 99.5 97.8 97.9 99.4 94.0 99.8 95.7 54.6 29.8 / 70.5 / 86.8

Table 14: Automatic Results on Single-Attribute Control compared with ChatGPT.

ChatGPT PriorControl
Generate 5 sentences containing 50 words with negative sentiment and start with ‘The movie’.
The movie explores the growing sense of despair
and hopelessness that is taking hold of our society.

The movie was terrible. It’s a shame that such bla-
tant disregard of genre conventions was so preva-
lent in this movie. The plot was ridiculous, the
dialogue was cliched, and the sound quality was
poor.

The movie discusses the increasing levels of stress
and anxiety that are affecting our mental health
and well-being.

The movie is one of the worst I have ever seen.
The plot is a bit like that of a scam involving some
of the female characters. There should be no such
film for this week.

The movie examines the growing sense of disillu-
sionment and frustration with our political system
and its inability to address the pressing issues of
the day.

The movie is so bad, I could hardly believe what I
saw. The plot is ridiculous, the direction is terrible
and there are no lessons in this movie.

The movie looks at the mounting evidence that
our society is becoming increasingly divided and
unequal, with negative consequences for all of us.

The movie was horrific. Even though most people
are just trying to avoid leaving home in the Gaza
Strip, they have no reason to dislike him. The
scenes were so scripted and acted like a joke.

The movie explores the pervasive sense of dis-
content and dissatisfaction with the state of our
society, and the urgent need for action to address
these issues.

The movie is so bad that it almost got caught on
TV. The characters are terrible, the plot contrived,
and utterly hopeless to watch. There is no connec-
tion between the stars, the actual history of this
movie, or the countless pointless deaths.

Table 15: ChatGPT’s cases for negative sentiment control.
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ChatGPT PriorControl
Generate 5 sentences containing 50 words with world topic and start with ‘The city’.
The city, as a hub of economic activity, cultural ex-
change, and technological innovation, is discussed
as a potential model for global development and
progress.

The city of Abu Dhabi has declared independence
from Iraq, amid a furious Islamist rally on Mon-
day and an increasingly provocative UN official.
"It is such vile political propaganda," said the Is-
lamic cleric-turned politician quoted by Reuters
yesterday.

The city, with its diverse and often marginalized
communities, is examined as a potential site for
the protection and promotion of human rights.

The city of Afghanistan completed a test for its
constitution, according to an official statement.
Related videos: A suicide bomber killed a soldier
in the Iraq war.

The city, with its complex and interconnected sys-
tems, is considered as a potential laboratory for ad-
dressing global challenges such as climate change
and pandemics.

The city of Cheuba entered a marathon fundrais-
ing campaign Saturday, amid an international out-
cry. Provided by Reuters.

The city, with its potential for both growth and
decline, is explored as a potential site for the study
of global economic and social trends.

The city of Afghanistan set up a temporary mora-
torium on violence and the UN Security Council’s
approval of a draft pact. About 200 people died in
the country during the war, including some who
were killed by soldiers.

The city, with its rich and varied histories, is dis-
cussed as a potential source of inspiration and
lessons for global governance and cooperation.

The city of London rocked the world today as an
international panel investigating the deaths of two
Palestinians in Iraq presented a stunning array of
medical services for both sides.

Table 16: ChatGPT’s cases for world topic control.
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Attribute PriorControl
Negative Furthermore, this movie is a complete waste of time and money. It makes sense to see an

effort at making a memorable plot and characters but it doesn’t get any better than that.
The script is riddled with holes and the direction was crudely edited.

Positive In summary, this movie is very well written. One of the best movies ever made. This
movie is filled with comedy and love. The cast is fantastic, especially those who love
one particular piece of popular mythology.

World Foundational to this is a promise of enhanced security, the U.S. military said Monday.
The U.S. military has sought a chance to free up some Palestinian leader-elect Omar
Fatman’s loose agent.

Sports More importantly, Atlanta United will continue to stand behind its record-breaking
double-header. The United States has been through a difficult season with a disastrous
effort at the Stadium of Champions.

Business An illustration of how the world economy fell in 2003, another year after an unexpected
surge in solar energy, suggests the primary driver of global corporate cash reserves is
unlikely to be investor confidence alone.

Sci/Tech The country’s micro-phone technology is designed for use in conjunction with Apple
Computer, a new source said. The technology used in conjunction with the open-source
software Sericon OS was originally designed for cell phones.

NonToxic The book is not an archive, but rather a revision to the article itself, so why don’t you
join discussions with the contributor to see where they’re supposed references?

Table 17: PriorControl’s cases for single-attribute control.
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Attribute PriorControl
Negative
World
NonToxic

This essay discusses a troubling situation involving an Islamic leader and his associates
in the United States. The issue is highlighted by the fact that President Bush was forced
to resign on Friday after repeated attempts failed to convince him of the importance of
keeping track of people.

Negative
Sports
NonToxic

The relationship between Mike and Tony Duke is one of the worst ones in baseball. Not
only did he have a bad shot at the championship, but there were signs of him being
involved in some serious dispute.

Negative
Business
NonToxic

The chicken industry is turning out to be a very different product than it previously
thought, according to the US Treasury Department. In an indication of how much money
they are losing, Federal Reserve officials announced Wednesday that its quarterly profit
was zero.

Negative
Sci/Tech
NonToxic

Once upon a time I thought this would be an interesting article in the website. Unfor-
tunately, it is not. As I mentioned above, the source is not credible and the editing is
extremely sloppy.

Positive
World
NonToxic

The issue focused on the possibility of establishing a permanent peace settlement in Iraq,
an indication that President Bush is keen to do it.

Positive
Sports
NonToxic

The road ahead of the Olympic Games is steep, but David Beckham has been in a mood
for more serious thinking since last week. The man who has made famous his own love
story and whose career is dominated by explosions, smiles at all the other players.

Positive
Business
NonToxic

The potato industry has gained a foothold in the United States as well as elsewhere,
according to a new report. The company is expected to bring up its share of world
marketplaces after long struggling to reach higher levels.

Positive
Sci/Tech
NonToxic

To conclude, this film is an excellent example of how a modern internet user can become a
great person and enjoy the world’s greatest television show. In fact, it is quite remarkable
to see someone in a different life than you are.

Table 18: PriorControl’s cases for multi-attribute control.
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