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Abstract

In-context learning (ICL) improves language
models’ performance on a variety of NLP tasks
by simply demonstrating a handful of examples
at inference time. It is not well understood why
ICL ability emerges, as the model has never
been specifically trained on such demonstra-
tions. Unlike prior work that explores implicit
mechanisms behind ICL, we study ICL via in-
vestigating the pretraining data. Specifically,
we first adapt an iterative, gradient-based ap-
proach to find a small subset of pretraining data
that supports ICL. We observe that a continued
pretraining on this small subset significantly im-
proves the model’s ICL ability, by up to 18%.
We then compare the supportive subset con-
strastively with random subsets of pretraining
data and discover: (1) The supportive pretrain-
ing data to ICL do not have a higher domain rel-
evance to downstream tasks. (2) The supportive
pretraining data have a higher mass of rarely
occurring, long-tail tokens. (3) The support-
ive pretraining data are challenging examples
where the information gain from long-range
context is below average, indicating learning to
incorporate difficult long-range context encour-
ages ICL. Our work takes a first step towards
understanding ICL via analyzing instance-level
pretraining data. Our insights have a potential
to enhance the ICL ability of language models
by actively guiding the construction of pretrain-
ing data in the future.

1 Introduction

In-context learning in NLP has drawn tremendous
attention recently (Dong et al., 2022). Unlike tra-
ditional learning paradigms that rely on training
or finetuning models, in-context learning only pro-
vides a handful of demonstration examples to lan-
guage models as a prefix to the test input, without
any parameter updates. In-context learning has
shown superior performance on a range of NLP
tasks (Brown et al., 2020; Zhang et al., 2022b;

∗Work done during an internship at Meta AI.

Pretraining 
data

I can't think of any scenario where the Chiefs don't win that game if 
Charles doesn't go down. What's that? Need to chew clock with the 
run game? How convenient that we have an All Pro running back! 
While I agree that Charles going down definitely affected the 
outcome of the game, it's not like their back-up crapped the bed 
either.  Knile Davis did end up with 2 TDs, so while he's not going 
to be mistaken for Charles, he played a great game ...

In-context 
learning data

Input: Microsoft may invest OpenAI if ... 
Category: Tech. 
Input: On Thursday, the White House said ... 
Category: Politics. 
Input: On Friday, Apple will introduce a new ... 
Category: [MASK]

Figure 1: An example from the pretraining data of OPT
(Zhang et al., 2022b) and an illustrative in-context learn-
ing example of topic classification. The in-context learn-
ing task data can be drastically different from pretraining
instances, both in content and format.

Chowdhery et al., 2022; Hoffmann et al., 2022),
but the origin and reason of this emergent ability
remain under-investigated. In-context learning is
surprising since language models have not been
explicitly trained to learn from demonstration ex-
amples (Xie et al., 2022). As shown in an illus-
trative scenario in Figure 1, a typical pretraining
data instance is highly different from an in-context
learning example for downstream tasks, in both
content and format.

Prior work have attempted to answer what in-
context learning is, through empirically investigat-
ing useful and irrelevant attributes of the demon-
stration examples (Min et al., 2022; Zhang et al.,
2022a), or theoretically proving certain synthetic
language models implicitly do Bayesian inference
with demonstrations (Xie et al., 2022). Further-
more, recent work have drawn connections between
the mechanism of in-context learning and standard
learning algorithms, such as regression, nearest
neighbor, and gradient descent (Olsson et al., 2022;
Akyürek et al., 2022; Dai et al., 2022; von Oswald
et al., 2022).

Differently, in this work we are interested in
understanding from where the in-context learning
ability is acquired, through a perspective of pre-
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training data. Although not many, some recent
work have investigated this direction. For instance,
Shin et al. (2022) pretrain a variety of language
models on different corpora. They study corre-
lations between attributes of pretraining datasets
and in-context learning performance, at a relatively
coarse dataset-level. Chan et al. (2022) construct
pretraining data with different attributes and dis-
cover that some distributional properties of the data
drive the emergence of in-context learning. How-
ever, their experiment is limited to synthetic data
of image-label pairs.

In this work, we investigate a large language
model OPT (Zhang et al., 2022b) and its pretrain-
ing data. We first hypothesize that there exists some
specific pretraining data instances that are partic-
ularly helpful to the model’s in-context learning
ability. As an attempt to find such instances, we
adapt an iterative, gradient-based method ORCA
(Han and Tsvetkov, 2022) to search within OPT’s
pretraining corpus. The process is guided by the
gradients of the in-context learning data from down-
stream tasks, and we refer to the identified subset
as supportive pretraining data to in-context learn-
ing following Han and Tsvetkov (2022). Further-
more, we quantitatively verify through a pertur-
bative continued pretraining, that the supportive
subset does improve the model’s in-context learn-
ing performance on downstream tasks, while not
affecting a spurious zero-shot performance (§2).

We then analyze the identified supportive data
in contrast to the general pretraining data, to ob-
tain data features particularly relevant to in-context
learning. We specifically approach from three as-
pects: the domain relevance to downstream tasks,
the token frequency distribution, and the informa-
tion gain of incorporating long-range pretraining
context. Our major findings include: (1) Compared
to general pretraining data, the supportive data do
not have a higher domain relevance to the down-
stream tasks. (2) The supportive pretraining data
contain a relatively higher amount of rarely occur-
ring, long-tail tokens. (3) The supportive pretrain-
ing data are challenging examples in incorporating
long-range context for language modeling (§3).

Our work offers a first step towards interpret-
ing in-context learning in NLP tasks via analyzing
instance-level pretraining data. We believe it can
help improve the transparency and interpretability
of language models’ in-context learning behavior.
Our analysis can also pave the way to improved

in-context learning in the future by informing pre-
training data construction.

2 Finding supportive pretraining data for
in-context learning

Han and Tsvetkov (2022) propose an iterative,
gradient-based method ORCA to find supportive
pretraining data of BERT (Devlin et al., 2019) un-
der a vanilla zero-shot prompting setup. In this
section, we provide some background and adapt
ORCA for large language models in a setting of in-
context learning (ICL), finding supportive pretrain-
ing data for downstream tasks with demonstration
examples.1

2.1 Methodology
Assume we have a pretrained language model (LM)
θ and data pairs (x,y) representing the inputs and
ground truth outputs of task Dtask. Both x and y
are in natural language. For classification tasks, the
target labels can be converted to natural language
via verbalizers (Schick and Schütze, 2021).

Zero-shot prompting A pretrained language
model can be applied to perform downstream
tasks via zero-shot prompting (e.g., Petroni
et al., 2019). For classification tasks, the lan-
guage model θ outputs a candidate answer with
top probability, argmaxy′∈Y pθ(y

′ | x) =

argmaxy′∈Y
∏t<|y′|

t=0 pθ(y
′
t | x,y′

<t), where Y
contains all candidate answers y′. For generation
tasks, outputs can be obtained by sampling autore-
gressively from θ conditioned on x (e.g., Holtzman
et al., 2019). This is a zero-shot scenario with no
demonstration examples.

In-context learning Instead of modeling pθ(y |
x), ICL estimates pθ(y | {(xdemo,ydemo)},x),
prepending the original model input with sev-
eral demonstration examples (xdemo,ydemo) sam-
pled from the target task Dtask. The language
model θ is never trained on the task data with
demonstrations. However, we can form a loss
on the in-context data as a surrogate for θ’s

1Identifying important training data for an inference time
model output is an estabilished topic in model interpretability,
with various prior work measuring data importance via vari-
ants of gradient similarity (Koh and Liang, 2017; Pruthi et al.,
2020). However, these methods are prohibitively expensive
to be applied to large-scale pretraining data. Concurrent to
our work, Guu et al. (2023) propose an interesting method
to model the importance of individual training examples by
simulating training runs, but it is also on a scale of finetuning
instead of pretraining.
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ICL performance, which will be used for a
later guidance step, LICL

θ (x,y) = − log pθ(y |
{(xdemo,ydemo)},x) = − log

∏t<|y|
t=0 pθ(yt |

{(xdemo,ydemo)},x,y<t).

Pretraining The pretraining data of θ often con-
sists of texts w from large, general-domain cor-
pora. During pretraining, the LM θ is updated
via stochastic gradient descent with a loss to re-
construct w given a prefixing context, LPT

θ (w) =

− log
∏t<|w|

t=0 pθ(wt | w<t).

Supportive pretraining data Our goal is to lo-
cate what pretraining data w if upweighted would
be most helpful to the LM θ’s ICL ability. Fol-
lowing ORCA (Han and Tsvetkov, 2022), we use
the similarity between gradients ∇θL

PT
θ (w) and

∇θL
ICL
θ (x,y) iteratively to find such supportive

pretraining data. We show details of our adapted al-
gorithm ORCA-ICL in Figure 2. The algorithm
finds pretraining data that exert a gradient to θ
similarly as a group of guidance ICL task data
would. ∇θL

ICL
θ (x,y) provides a guidance for the

direction the model parameters should be updated
towards to be better at ICL, while ∇θL

PT
θ (w) ap-

proximates how the direction the model parameters
would be updated based on individual pretraining
instances. We conduct a multi-iteration process
(a total of M iterations each selecting k support-
ive instances) to mitigate noise.2 SGD denotes an
one-pass stochastic gradient descent to mimick an
incremental upweight to the selected data, with a
minimum number of steps to prevent overfitting.
The resulting supportive set S has a very small size
(under 2000 in this work).3

Verifying supportiveness To quantitatively eval-
uate the supportiveness of the selected set of pre-
training data, we perform an one-pass gradient de-
scent on the original LM with the selected set S,
which mimics a perturbative continued pretrain-
ing with a minimum number of updates: θM ←
SGD

S
(θ0). We then benchmark this perturbed

model (θM ) with the original model (θ0) and a
model perturbed with a random set of pretraining
data. We expect the perturbed model using our
selected supportive pretraining data to achieve a
better ICL performance.

2Additionaly according to Han and Tsvetkov (2022), this
may prevent selecting examples associated with only one class
of the task, a case of poor calibration.

3More details of the ORCA algorithm can be found in Han
and Tsvetkov (2022).

Algorithm 1 ORCA-ICL
1: Load a pretrained language model as θ0
2: for i← 1,M do
3: if i = 1 then
4: S1 ← argtop-k

w∈DPT

[cos(∇θL
PT
θ0
(w),∇θ

∑
Dtask

LICL
θ0

(x,y))]

5: θ1 ← SGD
S1

(θ0)

6: else
7: Si ← argtop-k

w∈DPT

[cos(∇θL
PT
θ0
(w),∇θ

∑
Dtask

LICL
θi−1

(x,y))]

8: θi ← SGD
∪i
j=1Sj

(θ0)

9: end if
10: end for
11: Return supportive pretraining data S ← ∪M

i=1Si

Figure 2: ORCA-ICL, an iterative gradient-based selec-
tion of supportive pretraining data for ICL.

2.2 Setup

Language model Throughout the work, we use a
pretrained, autoregressive OPT-6.7B (Zhang et al.,
2022b) as our LM θ.

Tasks In this work, we focus on classification
problems and first retrieve 48 classification-based
tasks from Natural Instructions v2 (NI-v2, Wang
et al., 2022). We apply the LM on the tasks with
both a zero-shot and in-context learning setup. We
extract tasks that achieve at least 10% better perfor-
mance with in-context demonstrations. We group
17 tasks that satisfies the constraint and further se-
lect 6 typical tasks among them:

SST-2: Movie review sentiment classification
(Socher et al., 2013). AG News: News topic clas-
sification (Zhang et al., 2015). Story Cloze Test:
Story coherence classification (Mostafazadeh et al.,
2017). SMS Spam Collection: Spam classification
(Almeida et al., 2011). Sentiment 140: Tweet sen-
timent classification (Go et al., 2009). TweetQA:
Answer verification (Xiong et al., 2019).

For each task, we randomly sample 500 exam-
ples with a balanced class distribution as Dtask,
guiding the ORCA-ICL algorithm. The quanti-
tative evaluation is performed on the full dataset.
For ICL, for each instance in the task data, we
randomly sample 4 demonstration examples under
each candidate class defined in the task.4 The or-
der of demonstration examples in the context is
randomly shuffled. The template and verbalizer
of each task follows the original NI-v2 dataset,
though we did not include the task instructions, as

4The sampling of demonstration examples is independent
across test instances to mitigate potential spurious correlations.
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the focus of this work is in-context learning with
demonstration examples.

Pretraining Considering the size of pretraining
data DPT, we include an as large portion of OPT’s
pretraining data as possible under a reasonable bud-
get. Specifically, in this work we use a total of
2.5M pretraining instances each consists of 2048
tokens.5 For computing efficiency, we use intra-
layer model parallelism (Shoeybi et al., 2019) and
fully sharded data parallel (Ott et al., 2021).6

Implementation Details We run ORCA-ICL
with a maximum of M = 5 iterations. In each
iteration we extract k = 400 pretraining instances
with top gradient similarity with the ICL task data.
We use a batch size of 16 and learning rate of 2e-5
for the one-pass gradient descent with an Adam
optimizer (Kingma and Ba, 2014). This results in
a total of 125 updates7 to the original LM after all
iterations as the perturbative continued pretraining.

2.3 Results

Perturbative continued pretraining As the
main evaluation of the supportive pretraining data
obtained by ORCA-ICL, we perform perturbative
continued pretraining on both the selected support-
ive data and random pretraining data as a con-
trol. Table 1 shows the main results of task ac-
curacy. The leftmost column shows a source task
Dtask guiding the selection of supportive pretrain-
ing data. At each row, we evaluate the perturbed
model (SGD

S
(θ0)) on all 6 tasks. The ICL perfor-

mance of the original LM is reported in the headers
of the table.

In each cell of the table, the top number shows
the continued pretraining result with the support-
ive data we identified. We consider M ∈ [1, 5]
iterations as a hyperparameter and report result
with a best M . We want to know at a same size
of selection, how our identified subset performs
compared to random pretraining data. We there-
fore run random selection with 5 seeds, and the
bottom number of the cell shows the continued pre-
training result with random data at a same size of
our selection, accompanied by a standard deviation.
The performance of our selection is bolded when

5The total 5B tokens are about 3% of OPT’s 180B full
pretraining data.

6This groups 4 input data for each backward pass in our
setup. The 4 instances receive a same gradient similarity score,
equivalent to an aggregated instance 4 times of the length.

7The one-pass descent has M∗k
batch size steps.

the performance difference with random selection
exceeds one standard deviation.

The diagonal cells show the performance of per-
turbed models on the same task used for selecting
supportive data. We observe on 4 of the 6 source
tasks, our selection of supportive pretraining data
is effective. For the cross-task performance, we
observe on 5 of the 6 source tasks, our selection
is effective for at least three tasks.8 We conclude
that our identified supportive pretraining data
is overall effective for ICL, though the cross-task
results show a portion of the ICL behavior can be
task-specific and not universal across tasks.

Control evaluation on zero-shot data Being ef-
fective on the ICL data does not necessarily mean
a direct support for a model’s ICL ability, which
is to learn from the demonstration examples. The
test input can be a confounding factor: if our se-
lection is effective as well on zero-shot test input
without demonstrations, then the selection is not
specific to the ICL ability. Therefore, we further
confirm the supportiveness of our selected support-
ive pretraining data to ICL, contrastively in a zero-
shot setup. We evaluate our models after perturba-
tive continued pretraining in Table 1 on the same
tasks but without the in-context demonstrations.
We present the results in Table 2. The two columns
show the zero-shot prompting performance of the
original LM and the model after continued pre-
training with our ICL-supportive selection, respec-
tively. We do not observe performance gain for
most tasks, indicating our selection is specific to
the ICL ability without benefiting the zero-shot,
no-demonstration task performance.

3 Analyzing supportive pretraining data
for in-context learning

In the previous section, we identify a small sub-
set of pretraining data that supports the ICL abil-
ity of language models. In this section, we an-
alyze the selected supportive pretraining data to
understand what makes them useful to ICL. Specif-
ically, we compare the supportive pretraining data
contrastively with randomly sampled pretraining
instances, investigating three aspects of the pre-
training data: the domain relevance to downstream

8Negative result is observed with TweetQA, on which
we conjecture the patterns in the demonstration examples
are more difficult to transfer to the test input (e.g., factual
knowledge instead of sentiment indicators).
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Source
Eval SST-2 AG News Story

Cloze
SMS
Spam

Sentiment
140

TweetQA

75.47 74.12 66.09 45.07 67.23 62.36

SST-2 83.15
75.87± 1.64

74.91
73.24± 1.24

67.76
66.24± 1.25

52.48
49.82± 4.50

69.03
66.23± 1.24

62.20
61.75± 0.26

AG News 79.04
74.99± 0.77

75.40
73.77± 0.41

68.34
66.38± 0.69

59.24
46.55± 4.24

68.96
66.23± 1.24

61.86
62.02± 0.55

Story Cloze 75.33
72.50± 2.53

74.12
73.77± 0.41

67.47
65.25± 1.52

51.36
47.15± 4.90

69.92
66.23± 1.24

62.33
62.02± 0.55

SMS Spam 73.88
75.87± 1.64

72.78
73.77± 0.41

67.25
65.25± 1.52

64.69
46.55± 4.24

63.70
66.33± 1.34

62.13
61.75± 0.26

Sentiment 140 77.56
73.49± 2.33

72.78
73.77± 0.41

66.78
66.38± 0.69

51.64
44.52± 2.45

66.66
66.00± 1.41

62.93
61.64± 0.21

TweetQA 75.22
72.50± 2.53

71.52
73.01± 1.42

66.27
64.91± 2.01

43.09
44.52± 2.45

66.76
66.33± 1.34

61.31
61.33± 0.80

Table 1: Evaluation of supportive pretraining data to ICL. We obtain supportive pretraining data using the guidance
of a source task and evaluate ICL on all tasks. In the headers, we show the ICL performance of the original LM.
We perform perturbative continued pretraining with both our selected supportive data (top number in cells) and an
equal number of randomly sampled pretraining data (bottom number in cells). Diagonal cells indicate same-task
evaluation and are marked purple. Our performance is bolded when the difference exceeds one standard deviation.
On 4 of 6 tasks, the same-task ICL performance gain is observed (diagonal). On 5 of 6 tasks, the corresponding
supportive pretraining data improves ICL on at least three tasks (rows).

Zero-shot Eval Original +ICL-supportive

SST-2 46.82 46.83
AG News 46.14 44.05
Story Cloze 50.43 51.39
SMS Spam 44.41 43.84
Sentiment 140 55.84 54.90
TweetQA 50.44 50.32

Table 2: Control evaluation. We report the zero-shot
prompting performance of the original LM and the per-
turbed LM after trained on our selected supportive pre-
training data. No significant performance gain is ob-
served for most tasks, showing our selected supportive
pretraining data is specific to ICL without improving
the zero-shot, no-demonstration task performance.

tasks, the token frequency distribution, and the in-
formation gain of incorporating long-range context.

3.1 Domain relevance

Xie et al. (2022) and Min et al. (2022) imply that
in-context demonstration is useful since it helps
locate a particular domain or concept of the test in-
put the LM already learned through the pretraining

data. On the other hand, Olsson et al. (2022) imply
that in-context demonstration is useful because the
decision over the test input may be done through a
soft-copy mechanism from the demonstration ex-
amples. These lead to two different expectations of
the role of supportive pretraining data: (1) Inferred
from Xie et al. (2022) and Min et al. (2022), the
supportive pretraining data should be from a same
domain as the demonstration and test examples,
providing direct supporting knowledge to solve the
downstream task. (2) Inferred from Olsson et al.
(2022), the supportive pretraining data should be
beneficial to the soft-copy mechanism, providing
meta support for the abstract ability, unconstrained
with the concrete data domain.9 We aim to measure
the domain relevance between supportive pretrain-
ing data and downstream tasks.

Method To quantify domain relevance, we use
MAUVE score (Pillutla et al., 2021) to measure an
information divergence between two text distribu-
tions. We compute two MAUVE scores, between
the target task data and our selected supportive
pretraining data, and between the task data and ran-

9This view of supportive data will be revisited in §3.3.
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Figure 3: The MAUVE score between the supportive
pretraining data and target task data, subtracted by the
MAUVE score between random data and target task
data. The error bars indicate the 95% confidence inter-
val. No tasks show the supportive data has a significant
higher domain relevance compared to random data.

dom pretraining data. We then compute and report
their difference. A positive MAUVE difference in-
dicates a higher domain relevance of our supportive
pretraining data.10 We use RoBERTa (Liu et al.,
2019) as MAUVE’s embedding model following
He et al. (2022).

Results We show the difference of MAUVE
scores in Figure 3. The error bar shows the 95%
confidence interval using 32 random seeds. We
find that for 5 of the 6 tasks, there is no signif-
icant difference between the MAUVE scores of
supportive pretraining data and random data. For
SST-2, the supportive pretraining data even shows
a lower MAUVE score. Therefore, the supportive
pretraining data to ICL do not have a higher do-
main relevance to the task, compared to general
pretraining data. This result aligns with the do-
main relevance finding in Shin et al. (2022) where
dataset-level analyses were performed. This im-
plies the improved ICL behavior of our models
may be a meta ability, aided by pretraining data
unrelated to the specific domain knowledge for
solving the task, but related to a domain-invariant
mechanism to learn from a data’s context. §3.3
continues this discussion.

3.2 Token frequency distribution

Providing demonstrations to a task input under an
ICL setup creates repetitions (e.g., of label tokens),
which changes the token frequency distribution of
the ICL task data. Therefore, we are interested in

10Pillutla et al. (2021) also shows higher MAUVE indicates
higher generation quality, but we skip that aspect since all of
our data are naturally occuring text.

Figure 4: The difference in average Zipf’s coefficients
of the token frequency distribution of supportive pre-
training instances and random examples. The error bars
indicate the 95% confidence interval. We find a lower
Zipf’s coefficient for supportive pretraining data, indi-
cating a flatter frequency distribution, with a relatively
higher mass on the rare, long-tail tokens.

whether the supportive pretraining data possess a
different token frequency distribution from general
pretraining data. Experimented with sequences of
image-label pairs, Chan et al. (2022) find that a
skewed class distribution (high burstiness) and a
large number of rarely occurring classes in training
data promote the ICL ability of Transformer mod-
els (Vaswani et al., 2017). However, it is unknown
whether the findings on the synthetic image-label
data can transfer to the natural language pretraining
data, a gap we address in this subsection.

Method We fit a Zipfian distribution over each
supportive and random pretraining instance that
consists of 2048 tokens. The Zipf’s coefficient
is the negative slope of a linear regression over
the tokens’ log-rank v.s. log-frequency. A higher
Zipf’s coeffcient indicates a higher mass on the
frequent tokens (i.e., more skewed distribution). A
lower Zipf’s coefficient indicates a higher mass on
the rare, long-tail tokens (i.e., flatter distribution).

Results In Figure 4, we show the difference in
average Zipf’s coefficients between supportive and
random pretraining data, each with a group size
of 2000. The error bar shows the 95% confidence
interval with 32 random seeds. We find that for
all tasks, the Zipf’s coefficient of the supportive
pretraining data is significantly lower than that of
the random pretraining data. This indicates a flatter
Zipfian distribution with a relatively higher mass
over the long-tail tokens. In other words, though
the overall burstiness of data is lower, there is a rel-
atively higher amount of rarely occurring, long-
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tail tokens in the supportive pretraining data
for ICL. Flatter frequency distribution also indi-
cates higher entropy over the tokens, presumably
making the supportive pretraining data challenging
examples to fit by the model, a concept we explore
further in the next subsection.

3.3 Information gain from long-range context
In §3.1, we find that the domain relevance of the
supportive pretraining data to downstream tasks
is not higher than that of random pretraining data.
This is comprehendible if we follow the aforemen-
tioned perspective of Olsson et al. (2022), hypoth-
esizing that there exists a soft-copy mechanism
between the in-context demonstrations and test in-
put. The supportive pretraining data may provide
meta support for the abstract soft-copy mechanism
rather than task-specific knowledge. We further hy-
pothesize that to facilitate such meta support, the in-
corporation of long-range context during language
modeling in supportive pretraining data should be
different from random pretraining data, since the
demonstration examples in the ICL setup is a form
of long-range context. We propose a novel infor-
mation gain measure to quantify this feature of
incorporating long-range context.

Method Recall that the canonical definition of in-
formation gain (IG) is IG(T, a) = H(T )−H(T |
a), where T is a target variable, a is an attribute
conditioned on by T , and H(·) computes entropy.
It measures the decrease of entropy (thus the gain
of information) in T if conditioned on a. We adapt
the canonical IG to measure the decrease of cross
entropy for each token (wi) in a pretraining dataset
when conditioned on a long (l) context over a short
(s) context:

IG(l, s) = CE(wi | ctxs)− CE(wi | ctxl)

Ideally the length of long or short context should
remain constant across different tokens wi, but it
would be a very expensive computation due to a
lack of parallelism. We approximate the compu-
tation by splitting a full sequence of pretraining
tokens (e.g., 2048 tokens) to smaller blocks and cal-
culate cross entropy with the boundary of blocks:

IG(l, s) =− log pθ(wi | wi−(i mod 2s) : i)

+ log pθ(wi | wi−(i mod 2l) : i)

With the above definition, the average length of
context for all wi is s and l, respectively. In the

experiments below, we keep s = 128 for the length
of short context and increase the length of long
context at l = {256, 512, 1024}.

We report the difference in the average informa-
tion gain (across wi) of incorporating long-range
context for a language modeling objective, in sup-
portive pretraining data over random pretraining
data. Additionally, we want to use the defined in-
formation gain measure as a standalone feature of
data, so we use a different LM to compute the cross
entropy than the LM on which we perform ICL.
Below we report results using OPT-1.3B, while ex-
periments using OPT-350M shows a similar trend.

Results In Figure 5, we see for all of the exper-
imented tasks, there is a significant trend that in-
creasing the length l for the long-range context
for supportive pretraining data has a lower rela-
tive information gain compared to random pretrain-
ing data. Though seeming counterintuitive at first
glance, this suggests that the supportive pretrain-
ing data are more challenging examples in incor-
porating the long-range context information.11

A possible explanation for this is that such chal-
lenging examples contain confounding spans that
harms the information gain measure. The language
model has to learn to decide which part of the long-
range context is truly relevant to the prediction of
next tokens. This would resemble more and thus
helpful to the ICL task scenario where there are
multiple demonstrations from different classes.

3.4 Future work

Despite our aforementioned findings, we mainly
conduct correlational analyses throughout the work.
Despite the potential confounding factors, future
work can try converting the correlational findings to
causal ones. For example, to actively refine or con-
struct pretraining data to improve existing models’
ICL performance, with a metric of token frequency
distribution (i.e., find data with a higher mass of
long-tail tokens) or context information gain (i.e.,
find difficult examples in incorporating long-range
context). Additionally, we only investigate classifi-
cation tasks in this work. However, the ORCA-ICL
method can be applicable to generation tasks as
well in the future, if the ICL loss is defined over a
sequence probability of the generation.

11Note that a reverse of the statement may not hold nec-
essarily, since an example’s long-range context can also be
irrelevant by nature and challenging in a useless way.
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Figure 5: The difference between supportive pretraining instances and random examples in information gain of
incorporating long-range context for next-token prediction. We fix the average short context length (s) at 128
tokens and iterate through long context lengths (l) of {256, 512, 1024}. The shaded area shows the 95% confidence
interval. The results show that the long-range context in supportive pretraining data leads to a lower information
gain than random pretraining examples. Supportive pretraining data are challenging examples in incorporating their
long-range context.

4 Related Work

Demonstration examples Min et al. (2022) un-
derstand ICL through analyzing which aspects of
the demonstration examples contribute or are ir-
relevant to task performance. They find replacing
ground truth demonstration labels with random la-
bels would not hurt task performance, while ICL
still benefits from knowing the label space, distri-
bution of inputs, and sequence format specified in
demonstration examples.12 Zhang et al. (2022a)
further show on sequence labeling tasks, the length
of demonstrations and the relevance of their tokens
are important for ICL.

Learning mechanism Xie et al. (2022) explain
ICL as implicit Bayesian inference, occurring when
language models infer a shared latent concept from
demonstration examples at inference time. They
show language models exhibit such ICL behav-
ior by constructing synthetic pretraining data with
a controlled distribution of concepts. Garg et al.
(2022) empirically show that Transformer models
can be trained to learn unseen linear functions from
in-context demonstration examples. Olsson et al.
(2022) present evidence that multi-layer attention-

12Recent work like Wei et al. (2023) and Pan et al. (2023)
show the related findings would depend on model scales as
well.

based models form an induction head and perform
ICL by a pattern copying behavior from the pre-
fixing context. More recent work like Akyürek
et al. (2022), Dai et al. (2022), and von Oswald
et al. (2022) explain ICL in Transformer models
as a kind of standard learning algorithms over the
demonstration examples, such as gradient descent
and regression.

Pretraining data Razeghi et al. (2022) find on
numerical reasoning tasks, a language model’s ICL
performance is highly correlated with the term fre-
quency of the input data in the pretraining corpus.
Shin et al. (2022) investigate how ICL can be af-
fected when the pretraining dataset varies. They
discover that ICL heavily depends on the corpus do-
main source, but pretraining with a corpus related
to a downstream task does not always translate to
a competitive ICL performance on the task. Chan
et al. (2022) experiment on a synthetic image-label
pairs dataset. They show certain distributional prop-
erties of the synthetic pretraining data, such as the
burstiness of classes and large numbers of rarely
occurring classes, promote the emergence of ICL.
Our work belongs to this line of work, but offers
a first step towards understanding ICL in realistic
NLP tasks through analyzing instance-level pre-
training data. Additionally, concurrent to our work,
Gu et al. (2023) propose a method that groups pre-
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training data by their instrinsic tasks, enhancing
instead of interpreting existing language models’
ICL ability.

5 Conclusion

In-context learning has shown superior perfor-
mance on a range of NLP tasks, yet it remained
unclear from where language models acquired this
ability. We approach the problem by identifying
a small subset of pretraining data that particularly
supports language models to do in-context learning
on downstream tasks. We analyze common features
of the supportive instances in contrast to general
pretraining data and find that: (1) The supportive
pretraining data do not have a higher domain rele-
vance to the downstream tasks. (2) The supportive
data contain a relatively larger amount of rare, long-
tail tokens. (3) The supportive pretraining data are
more challenging instances in incorporating long-
range context in language modeling. Our findings
may be beneficial to future work that refine or con-
struct pretraining data, in order to actively improve
existing models’ in-context learning performance.

Limitations

It is worth noting that the supportive pretraining
data we investigated throughout the work is w.r.t.
the current LM, such that a perturbative continued
pretraining with the supportive data would improve
the final LM checkpoint deployed to downstream
tasks. It is possible that for some data which we did
not determine as supportive, they had been support-
ive w.r.t. early checkpoints of the LM. With more
computing resources, future work may investigate
the trend of supportive patterns across multiple
checkpoints of a LM throughout the pretraining
process.

Additionally, another significant limitation of
our work is the amount of involved computing re-
source. The ORCA-ICL method is gradient-based
that requires back-propagation. Since we iterate
through a large size of pretraining data, the cost
of computation is similar to training a language
model with a batch size of 1 on the considered
pretraining data. On our 4 nodes each consists of
8 Nvidia V100 GPUs, finding the supportive pre-
training data for each source task in our experiment
would take about a week. One mitigating aspect of
such computation is that the gradient calculation
can be done asynchronously, therefore enabling the
use of idle, leftover GPUs scattered across a cluster

of nodes. We plan to explore efficient computation
of gradient similarity or move from a paradigm of
extracting supportive data to generating supportive
data in future work.
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A Qualitative examples

In Table 3, we show some qualitative examples of
the supportive pretraining data to ICL and random
pretraining data. Note that these are illustrative
examples extracted from long pretraining instances
(each instance consists of 2048 tokens), for a bet-
ter understandability of our findings. A manual
examination of such data is difficult, and we thus
propose the quantitative analyses described in the
main paper.
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Supportive pretraining data to ICL

...
Samsung's new Odyssey+ headset could fix its
muddled VR vision
As one of the world's most technologically
innovative companies, Samsung should be
leading the pack in VR - one of the decade's
top transformative technologies. Instead, it
has largely let Microsoft and Facebook
determine its role in the VR space, leading to
its current situation as an also-ran.
If I was betting on whether that will change
anytime soon, an FCC leak of the company's new
Odyssey+ VR headset (discovered by RoadtoVR)
would point to "no." Most of the specs are
staying the same as its prior, Windows-
dependent Odyssey model: Each eye still gets a
3.5-inch screen with 1,440 by 1,600
resolution, combining for a 110-degree field
of view, and AMOLED technology will be used to
guarantee dark blacks and rich colors.
There's one mystery in the new specs, namely a
reference to the AMOLED screens now including
something called "SFS."
...

Random pretraining data

...
Bangladesh authorities and intelligence
officials have long been saying that many of
the refugees are involved in illicit drug
trade, smuggling, robbery and ransom-seeking.
Earlier Tuesday, the elite security agency
Rapid Action Battalion arrested nine refugees
suspected of being involved in various
criminal activities.
They had firearms, bullets and sharp weapons,
Islam said. Local media reported that Tuesday'
s chaos began after the arrest of the suspects
as one group blamed another for helping the
security agency in detaining them. Human
rights groups that are involved in the camps
acknowledge there are criminal elements among
the Rohingya refugees.
...

Table 3: Qualitative examples of the supportive pretrain-
ing data to ICL in the task of SMS spam detection. We
also show an example of random pretraining data for
comparison. As our finding on domain relevance sug-
gested, neither of the examples are about SMS spam,
so the language model may not learn direct knowledge
about the task from supportive pretraining data to ICL.
Compared to the random data, the supportive data to
ICL has some relatively low-frequency tokens appear
multiple times (e.g., VR, Odyssey, AMOLED) and the
language model may learn some meta-knowledge about
ICL (e.g., copying behaviors from the context) based on
them. However, such patterns are sparse, noisy, and hard
to analyze through manual inspections. We therefore
present the quantitative analyses in the main paper.
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