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Abstract

Extrapolation reasoning on temporal knowl-
edge graphs (TKGs) aims to forecast future
facts based on past counterparts. There are two
main challenges: (1) incorporating the complex
information, including structural dependencies,
temporal dynamics, and hidden logical rules;
(2) implementing differentiable logical rule
learning and reasoning for explainability. To
this end, we propose an explainable extrapola-
tion reasoning framework TEemporal logiCal
grapH networkS (TECHS), which mainly con-
tains a temporal graph encoder and a logical
decoder. The former employs a graph convo-
lutional network with temporal encoding and
heterogeneous attention to embed topological
structures and temporal dynamics. The latter in-
tegrates propositional reasoning and first-order
reasoning by introducing a reasoning graph that
iteratively expands to find the answer. A for-
ward message-passing mechanism is also pro-
posed to update node representations, and their
propositional and first-order attention scores.
Experimental results demonstrate that it outper-
forms state-of-the-art baselines.

1 Introduction

Knowledge Graphs (KGs) are widely used in in-
telligent systems (Ji et al., 2022; Mao et al., 2022;
Zhu et al., 2023), where knowledge is commonly
represented by triplets in the form of (s, r, o). The
limit of conventional KGs is that real-world knowl-
edge usually evolves over time. For example, a fact
(Donald Trump, presidentOf, USA) is incorrect now
because Joe Biden has been the new president of
the USA since 2021. For more comprehensive rep-
resentations of knowledge, Temporal Knowledge
Graphs (TKGs) (Liang et al., 2022) are proposed
by introducing time information (time point or in-
terval) via quadruplets, i.e., (s, r, o, t). Then, the
former example is defined as (Donald Trump, pres-
identOf, USA, 2017/01/20-2021/01/20).

∗ Corresponding author.

Figure 1: (a) Illustration of a TKG and extrapolation
reasoning. (b) An example of temporal rules that can be
applied to answer the query in (a). (c) An example of
the reasoning graph that is capable of modeling rule (b).

TKGs are usually incomplete (Cai et al., 2022;
Liang et al., 2022). Many studies predicted future
facts, based on past facts, namely TKG forecast-
ing or extrapolation reasoning. Figure 1a shows
the task that predicts facts at time ti with the
facts at ti−2 and ti−1. A model should not only
learn topology dependencies, i.e., the neighbor
information of an entity (like Barack Obama at
ti−2), but also learn temporal dynamics, i.e., the
variations of properties of an entity over time
(e.g., Angela Merkel evolves during ti−2 to ti−1).
Thus, temporal embedding methods, e.g., TNT-
ComplEx (Lacroix et al., 2020) and CyGNet (Zhu
et al., 2021) were proposed. However, these black-
box methods fail to explain their predictions. An
explainable method, xERTE (Han et al., 2021) con-
ducted instanced propositional reasoning. How-
ever, the model is not scalable, as the evidence is
entity-dependent, e.g., related to Barack Obama
and other entities in Figure 1a. If we can learn the
entity-independent rule in Figure 1b for the query
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(Barack Obama, makeStatement, ?, ti) in Figure 1a,
the correct answer South Korea will be easily ob-
tained after rule grounding.

Motivated by the fact that TKGs have many hid-
den logical rules to achieve explainable and accu-
rate predictions, TLogic (Liu et al., 2022) searched
first-order logical rules and used them for reason-
ing. However, this two-step pipeline method may
cause error propagation issues. Generally, there are
two main challenges for explainable extrapolation
reasoning on TKGs: (1) TKGs contain diverse in-
formation, e.g., structural dependencies, temporal
dynamics, and hidden logical rules that are difficult
to incorporate together and achieve full coverage;
(2) Logical rule representations are discrete and
symbolic, resulting in the natural gap between log-
ical rules and the continuous computation of neu-
ral networks. Thus, implementing differentiable
logical rule learning and reasoning is not directly
achievable (Yang et al., 2017).

To address above issues, we propose a unified
framework TEemporal logiCal grapH networkS
(TECHS). It first utilizes a graph convolutional net-
work (GCN) to embed topological structures and
temporal dynamics. To determine the weights of
different edges between entities, a generic time en-
coding and a heterogeneous attention mechanism
is introduced. Then, a logical decoder is proposed
to integrate propositional and first-order reasoning
to find the answer. A reasoning graph that contains
both query entity and entity-time pair nodes is used
to constantly expand over iterations. We update
propositional and first-order attention weights as
well as node representations via a novel forward
message-passing mechanism. Finally, nodes’ atten-
tion weights with the same entity are aggregated
as the answer indicator. Besides, first-order logical
rules can be induced by a novel Forward Attentive
Rule Induction (FARI) algorithm using learned
first-order attention weights.

Our contributions are summarized as follows: (1)
A unified framework TECHS is proposed to con-
duct explainable extrapolation reasoning on TKGs.
To our best knowledge, this is the first study to
jointly model structural dependencies, temporal
dynamics, and propositional and first-order reason-
ing. (2) We integrate propositional and first-order
reasoning in a logical decoder, where a forward
message-passing is proposed to update their atten-
tion weights and node representations to achieve
explainability. First-order logical rules are induced

by a novel FARI algorithm. (3) Extensive experi-
ments verify the effectiveness of each module and
the superiority over state-of-the-art baselines.

2 Related Work

The studies of extrapolation reasoning can be cate-
gorized into the following three trends.
Static Embedding. By omitting time information
in fact quadruplets, general KG embedding meth-
ods can be utilized for TKGs, such as TransE (Bor-
des et al., 2013), DistMult (Yang et al., 2015) and
ComplEx (Trouillon et al., 2016). However, these
methods simply consider the structural dependency
in TKGs and ignore the temporal dynamics.
Temporal Embedding. TTransE (Leblay and
Chekol, 2018) expanded TransE to the temporal
setting by fusing temporal information in rela-
tion embeddings. Similarly, TA-DistMult and TA-
TransE (García-Durán et al., 2018) learned rela-
tion representations with time information and cal-
culated quadruplet plausibility by DistMult and
TransE. Differently, DE-SimplE (Goel et al., 2020)
proposed diachronic entity embedding which con-
tained static segment and time-varying segment.
Upon ComplEx, TNTComplEx (Lacroix et al.,
2020) learned complex-valued embeddings for the
entity, relation and time. RE-Net (Jin et al., 2020)
learned the global representations of the time sub-
graph and the local representations of nodes on
it. CyGNet (Zhu et al., 2021) introduced a time-
aware copy-generation mechanism to model the
probability of existing facts, occurring in the future
and predicted whether new facts would emerge.
However, the aforementioned methods are all in
black-box fashion and lack of explainability.
Explainable Reasoning. xERTE (Han et al., 2021)
proposed a human-understandable reasoning strat-
egy, introducing an expanding query-relevant sub-
graph to achieve explainability. TITer (Sun et al.,
2021) conducted reasoning from a query node and
sequentially transferred to a new node related to
the prior on TKGs until the answer was founded.
Upon AnyBURL (Meilicke et al., 2019) that sam-
pled paths to learn first-order rules in static KGs,
TLogic (Liu et al., 2022) learned temporal logi-
cal rules with confidences via a temporal random
walk. The candidate scores were obtained by rule
applications in TKGs. However, xERTE and TITer
conducted propositional reasoning by an end-to-
end framework that had limited scalability, as its
reasoning process was query-specific. Although
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TLogic learned query-independent first-order log-
ical rules, its pipeline method might cause error
propagation and performance degradation.

3 Preliminaries

A TKG can be represented as G = {E ,R, T ,F},
where E , R and T denote the set of entity, relation
and time, respectively. F ⊂ E×R×E×T is the
fact collection. Each fact is a quadruplet, such as
(s, r, o, t) where s, o ∈ E , r ∈ R and t ∈ T . For
a query (s̃, r̃, ?, t̃) in testing, the model needs to
predict an answer entity õ, based on the facts that
occur earlier than t̃, i.e., t̃ > max(Ttrain).

Logical reasoning in KGs can be categorized as:
propositional and first-order. Propositional reason-
ing, generally known as multi-hop reasoning (Ren
and Leskovec, 2020; Zhang et al., 2021, 2022a), is
entity-dependent that usually reasons over query-
related paths to obtain an answer. First-order rea-
soning is entity-independent, using first-order logi-
cal (FOL) rules for different entities (Zhang et al.,
2022b), describing causal knowledge in the form
of body to head, e.g., premise⇒conclusion, where
new facts can be deduced, given observed ones.
For efficient and explainable reasoning on TKGs,
we define the FOTH rule and the reasoning graph.
Definition 1. First-order Temporal Horn
(FOTH) Rule: Based on Horn rules (Lin et al.,
2022) on static KGs, atoms in FOTH rule body are
connected transitively by shared variables. Mean-
while, rule body and rule head have the same start
and end variables. Time growth also needs to be sat-
isfied, i.e., time sequence is increasing and the time
in the rule head is the maximum. For example, the
following rule ϵ, ∃X,Y,Z r1(X,Y ) : t1∧r2(Y,Z) :
t2 ⇒ r(X,Z) : t is a FOTH rule with length 2 if
t1 ⩽ t2 < t. X , Y and Z are variables that can be
instantiated as entities of TKGs by rule grounding.
Noticeably, for rule learning and reasoning, t1, t2
and t are virtual time variables that are only used
to satisfy the time growth and do not have to be
instantiated. To represent the rule certainty, each
rule is assigned with a confidence value ϵ ∈ [0, 1].
Definition 2. Reasoning Graph: For a query
(s̃, r̃, ?, t̃), we introduce a reasoning graph G̃ =
{O,R, F̃} for propositional and first-order reason-
ing. O is a node set that consists of nodes in differ-
ent iteration steps, i.e., O=O0 ∪ O1 ∪ · · · ∪ OL.
O0 only contains a query entity s̃ and others con-
sist of nodes in the form of entity-time pairs.
(nl

i, r̄, n
l+1
j ) ∈ F̃ is an edge that links nodes at

two neighbor steps, i.e., nl
i∈Ol, nl+1

j ∈Ol+1 and
r̄∈R. The reasoning graph is constantly expanded
by searching for posterior neighbor nodes. For start
node n0= s̃, its posterior neighbors are N (n0)=
{(ei, ti)|(s̃, r̄, ei, ti) ∈ F ∧ ti < t̃}. For a node in
following steps nl

i = (ei, ti) ∈ Ol, its posterior
neighbors are N (nl

i) = {(ej , tj)|(ei, r̄, ej , tj) ∈
F∧ti ⩽ tj∧tj<t̃}. Its prior parents are Ñ (nl

i)=

{(nl−1
j , r̄)|nl−1

j ∈ Ol−1∧ (nl−1
j , r̄, nl

i) ∈ F̃}. An
example reasoning graph with two steps is shown
in Figure 1c. To take prior nodes into account at the
current step, an extra relation self is added. Then,
nl
i = (ei, ti) can be obtained at the next step as

nl+1
i = (ei, ti) (ti is the minimum time if l = 0).

4 Methodology

There are three key technical parts in TECHS: tem-
poral graph encoder, logical decoder, and extrapo-
lation prediction. Figure 2 shows its architecture.

4.1 Temporal Graph Encoder

Generally, GCNs follow an iterative message-
passing strategy to continuously aggregate infor-
mation from neighbor nodes. As conventional
GCNs cannot model time information, we propose
a temporal graph encoder. The generic time encod-
ing (Xu et al., 2020) is introduced to embed times
in TKGs as it is fully compatible with attention
to capture temporal dynamics, which is defined

as: et=
√

1
dt
[cos(w1t+ b1), · · · , cos(wdtt+ bdt)].

[w1, · · · , wdt ] and [b1, · · · , bdt ] are trainable pa-
rameters for transformation weights and biases. dt
is the dimension of time embedding. Based on it,
a temporal GCN is proposed by fusing neighbor
information with the heterogeneous attention:

hk+1
o =Wk

h1hk
o +

∑

(s,r,t)∈N̂ (o)

αk
s,r,o,tW

k
h2mk

s,r,t, (1)

where W denotes a transformation matrix. N̂ is the
neighbor set. mk

s,r,t is the message information of
neighbors that contains subject, relation and time
representations, which is given by:

mk
s,r,t=Wk

m1

[
(hk

s + et)⊙ (gkr + et)
]
. (2)

h and g are the entity and relation embeddings, re-
spectively. ⊙ is the element-wise product of two
embedding vectors. αk

s,r,o,t is a heterogeneous at-
tention value to determine the importance of a cur-
rent temporal edge. It is obtained by the correlation
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Figure 2: An overview of the TECHS. The temporal graph encoder utilizes temporal encoding and heterogeneous
attention for structural dependencies and temporal dynamics. The logical decoder combines propositional (PR) and
first-order (FO) reasoning by continuously conducting forward message-passing in the reasoning graph.

between time, relation and the current entities:

aks,r,o,t=σ
(
(αk)⊤Wk

a[et∥gkr∥(hk
s − hk

o)]
)
,

αk
s,r,o,t=

exp(aks,r,o,t)∑
(s′,r′,t′)∈N̂ (o)

exp(aks′,r′,o,t′)
,

(3)

where σ is LeakyReLU (Xu et al., 2015). ∥ is con-
catenation. αk is the attention vector to be learned.

Finally, the relation embedding is updated by
gk+1
r = Wk

rgkr . At the last layer K, the representa-
tion matrix H, G and E of entity, relation and time
are obtained, then feeding into the logical decoder.

4.2 Logical Decoder
For decoding the answer for query (s̃,r̃,?,t̃), we in-
troduce an iterative forward message-passing mech-
anism in a continuously expanding reasoning graph,
regulated by propositional and first-order reasoning.
In the reasoning graph, we set three learnable pa-
rameters for each node nl

i to guide the computation:
node embedding nl

i, hidden FOTH embedding onl
i

and reasoning attention βnl
i
. The start node n0=s̃

is initialized as its embedding hs̃. A hidden FOTH
representation on0 for n0 is initialized as a query
relation embedding gr̃. The attention weight βn0

for n0 is initialized as 1. The node ni=(ei, ti) are
firstly represented by the linear transformation of
GCN embeddings: ni=Wn[hei∥eti ]. Constant for-
ward computation is required in the reasoning se-
quence of the target, whether conducting multi-hop
propositional reasoning or first-order logic reason-
ing. Thus, forward message-passing is proposed
to pass information (i.e., representations and atten-
tion weights) from the prior nodes to their posterior

neighbor nodes. The computation of each node
is contextualized with prior information that con-
tains both entity-dependent and entity-independent
parts, reflecting the continuous accumulation of
knowledge and credibility in the reasoning process.

Specifically, to update node embeddings in step
l+1, its own feature and the information from its
priors are integrated:

nl+1
j =Wl

n1nj +
∑

(nl
i,r̄)∈Ñ (nl+1

j )

βnl
i,r̄,n

l+1
j

Wl
n2mnl

i,r̄,n
l+1
j

, (4)

where mnl
i,r̄,n

l+1
j

is the message from a prior node
to its posterior node, which is given by the node
and relation representations:

mnl
i,r̄,n

l+1
j

=Wl
m2[n

l
i∥gr̄∥nj ]. (5)

This updating form superficially seems similar to
the general message-passing in GCNs. However,
they are actually different as ours is in a one-way
and hierarchical manner, which is tailored for the
tree-like structure of the reasoning graph.

The attention weight βnl
i,r̄,n

l+1
j

for each edge in
a reasoning graph contains two parts: propositional
and first-order attention. As propositional atten-
tion is entity-dependent, we compute it by the se-
mantic association of entity-dependent embeddings
between the message and the query:

e1
nl
i,r̄,n

l+1
j

= SIGMOID(Wl
p[mnl

i,r̄,n
l+1
j

∥q]), (6)

where q = Wq[hs̃∥gr̃∥et̃] is the query embedding.
As first-order reasoning focuses on the interaction
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among entity-independent relations, we first obtain
the hidden FOTH embedding of an edge by fusing
the hidden FOTH embedding of the prior node and
current relation representation via a gated recurrent
unit (GRU) (Chung et al., 2014). Then, the first-
order attention is given by:

onl
i,r̄,n

l+1
j

=GRU(gr̄, onl
i
),

e2
nl
i,r̄,n

l+1
j

= SIGMOID(Wl
fonl

i,r̄,n
l+1
j

).
(7)

Furthermore, the overall reasoning attention can be
obtained by incorporating propositional and first-
order parts to realize the complementarity of these
two reasoning methods. Since the prior node with
high credibility leads to faithful subsequent nodes,
the attention of the prior flows to the current edge.
Then, the softmax normalization is utilized to scale
edge attentions on this iteration to [0,1]:

enl
i,r̄,n

l+1
j

=βnl
i
(e1

nl
i,r̄,n

l+1
j

+λe2
nl
i,r̄,n

l+1
j

),

βnl
i,r̄,n

l+1
j

=
exp(enl

i,r̄,n
l+1
j

)
∑

(nl
i′ ,r̄

′)∈Ñ (nl+1
j )

exp(enl
i′ ,r̄

′,nl+1
j
)
,

(8)

where λ is the weight for balancing the two reason-
ing types. Finally, the FOTH representation and
attention of a new node nl+1

j are aggregated from
edges for the next iteration:

onl+1
j

=
∑

(nl
i,r̄)∈Ñ (nl+1

j )

βnl
i,r̄,n

l+1
j

onl
i,r̄,n

l+1
j

,

βnl+1
j

=
∑

(nl
i,r̄)∈Ñ (nl+1

j )

βnl
i,r̄,n

l+1
j

.
(9)

Insights of FOTH Rule Learning and Reasoning.
In general, the learning and reasoning of first-order
logical rules on KGs or TKGs are usually in two-
step fashion (Galárraga et al., 2013, 2015; Qu and
Tang, 2019; Zhang et al., 2019; Qu et al., 2021;
Vardhan et al., 2020; Liu et al., 2022; Cheng et al.,
2022; Lin et al., 2023). First, it searches over whole
data to mine rules and their confidences. Second,
for a query, the model instantiates all variables to
find all groundings of learned rules and then aggre-
gates all confidences of eligible rules. For example,
for a target entity o, its score can be the sum of
learned rules with valid groundings and rule confi-
dences can be modeled by a GRU. However, this
is apparently not differentiable and cannot be opti-
mized by an end-to-end manner. Thus, our model
conducts the transformation of merging multiple

Figure 3: Illustration of insights of FOTH rule learning
and reasoning. (a) Learning rule confidence for a spe-
cific rule r1(X,Y1)∧r2(Y1, Y2)∧r3(Y2, Z) ⇒ r(X,Z)
(time information is omitted). (b) Rule learning and rea-
soning process in TECHS, which performs attention
aggregation of possible relations at each step to realize
differentiable computing.

rules by merging possible relations at each step,
using first-order attention as:

So=
∑

γ∈Γ
βγ

=
∑

γ∈Γ
f
[

GRU(gγ,h, gγ,b1 , · · · , gγ,b|γ|)]

≈
L∏

l=1

∑

nj∈Ol

f̄l
[

GRU(gr̄, olnj
))
]
.

(10)

βγ is the confidence of rule γ. gγ,h and gγ,bi are the
relation embeddings of head h and i-th body bi of
this rule. f̄l is for the attention calculation. In this
way, the differentiable process is achieved. This is
an extension and progression of Neural-LP (Yang
et al., 2017) and DURM (Sadeghian et al., 2019) on
TKGs. Figure 3 intuitively illustrates such transfor-
mation. Finally, the real FOTH rules can be easily
induced to constantly perform attention calculation
over the reasoning graph, which is summarized as
FARI in Algorithm 1.

4.3 Extrapolation Prediction

After attention weights for nodes in the last decod-
ing step L have been obtained, we can aggregate
node attentions with the same entity to get the entity
score: So=

∑
nL
i =(o,ti)

βnL
i

. All entity scores can

be normalized into [0,1] by ŷo=
So∑
p Sp

. Compared
with the true label yo, the model can be optimized
by a binary cross-entropy loss:

L=−
∑

o

yo log(ŷo)+(1−yo)(1−log(ŷo)). (11)

The number of nodes may explode in the logi-
cal decoder as it shows an exponential increase to
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Algorithm 1: FARI for FOTH rules.
Input: the reasoning graph G̃, attentions e2.
Output: the FOTH rule set Γ.

1 Init Γ = ∅, B(n0
s̃) = [0, []], D0[n

0
s̃] = [1, B(n0

s̃)];
2 for l=1 to L of decoder iterations do
3 Initialize node-rule dictionary Dl;
4 for node nl

j in Ol do
5 Set rule body list B(nl

j) = [] ;
6 for (nl−1

i , r̄) of Ñ (nl
j) in Ol−1 do

7 Prior e2i,l−1, B(nl−1
i ) = Dl−1[n

l−1
i ];

8 for weight ϵ, body γb in B(nl−1
i ) do

9 ϵ′ = e2i,l−1 · e2nl−1
i ,r̄,nl

j

;

10 γ′
b = γb.add(r̄),

B(nl
j).add([ϵ

′, γ′
b]) ;

11 e2j,l = sum{[ϵ ∈ B(nl
j)]} ;

12 Add nl
j : [e2j,l, B(nl

j)] to Dl ;

13 Normalize e2j,l of nl
j in Ol using softmax;

14 for nL
i in OL do

15 e2i,L, B(nL
i ) = DL[n

L
j ] ;

16 for ϵ, γb in B(nL
i ) do

17 Γ.add([ϵ, γb[1](X,Y1) : t1 ∧ · · · ∧
γb[L](YL−1, Z) : tL ⇒ r̃(X,Z) : t])

18 Return rule set Γ.

reach |N (ni)|L by iterations. For computational
efficiency, posterior neighbors of each node are
sampled with a maximum of M nodes in each itera-
tion. For sampling M node in the reasoning graph,
we follow a time-aware weighted sampling strategy,
considering that recent events may have a greater
impact on the forecast target. Specifically, for a
posterior neighbor node with time t′, we compute
its sampling weight by exp(t′−t̃)∑

t̄ exp(t̄−t̃)
for the query

(s̃,r̃,?,t̃), where t̄ denotes the time of all possible
posterior neighbor nodes for a prior node. After
computing attention weights for each edge in the
same iteration, we select top-N among them with
larger attention weights and prune others. As we
add an extra self relation in the reasoning graph,
the FARI algorithm can obtain all possible rules
(no longer than length L) by deleting existing atoms
with the self relation in induced FOTH rules.

5 Experiments and Results

5.1 Datasets and Experiment Setup

We conduct experiments on five common
TKG datasets for extrapolation reasoning, i.e.,
ICEWS14, ICEWS18, ICEWS0515, WIKI (Leblay
and Chekol, 2018) and YAGO (Mahdisoltani et al.,
2015), which are the union ones of model xERTE,
TITer and TLogic. The first three are all the

Dataset |E| |R| |T | |Ftrain| |Fvalid| |Ftest|
ICEWS14 7,128 230 365 63,685 13,823 13,222
ICEWS18 23,033 256 304 373,018 45,995 49,545
ICEWS0515 10,488 251 4,017 322,958 69,224 69,147
WIKI 12,554 24 232 539,286 67,538 63,110
YAGO 10,623 10 189 16,1540 19,523 20,026

Table 1: The statistics of five TKG datasets.

subsets of Integrated Crisis Early Warning Sys-
tem (O’brien, 2010). The last two contain massive
real facts that are distinguished by years. The statis-
tics of these five datasets are detailed in Table 1.

For training and testing, we add an inverse re-
lation for each relation in TKGs. Thus, for the
head entity prediction of query (?, r̃, õ, t̃), we can
predict results by its variant (õ, r̃−1, ?, t̃). For test-
ing, time-filter setting is used in which all correct
entities at the query time except for the true query
object are filtered out from answers. For entities
out of the final iteration of the reasoning graph, we
set their scores as 0. Mean reciprocal rank (MRR)
and Hits@k (H@k for abbreviation, k is 1, 3 or 10)
are selected as evaluation metrics, where larger val-
ues denote better performance. The above settings
are all in line with baselines for equal comparison.

We introduce fourteen baselines in three techni-
cal trends: (1) Static Embedding: TransE (Bor-
des et al., 2013), DistMult (Yang et al., 2015)
and ComplEx (Trouillon et al., 2016). (2)
Temporal Embedding: TTransE (Leblay and
Chekol, 2018), TA-DistMult (García-Durán et al.,
2018), TA-TransE (García-Durán et al., 2018), DE-
SimplE (Goel et al., 2020), TNTComplEx (Lacroix
et al., 2020), RE-Net (Jin et al., 2020) and
CyGNet (Zhu et al., 2021). (3) Explainable Rea-
soning: xERTE (Han et al., 2021), TITer (Sun
et al., 2021), AnyBURL (Meilicke et al., 2019)
and TLogic (Liu et al., 2022). When conducting
experiments, the default max number of sampled
nodes and selected edges are 600 and 100, respec-
tively. The learning rate, GCN layers, GCN di-
mensions, iteration steps, decoder dimensions and
first-order weight λ are set to 0.001, 2, 200, 3, 50
and 0.65 by default. Adam algorithm (Kingma and
Ba, 2015) is utilized to optimize the model param-
eters. When conducting experiments, out model is
implemented in DGL (Wang et al., 2019) and Py-
Torch (Paszke et al., 2019), and trained on a single
GPU of NVIDIA Tesla V100 with 32G memory.

5.2 Comparison Results
In each dataset, we run five times with different
random seeds and report their mean results in Ta-
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Model ICEWS14 ICEWS0515 ICEWS18
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE 22.48 13.36 25.63 41.23 22.55 13.05 25.61 42.05 12.24 5.84 12.81 25.10
DistMult 27.67 18.16 31.15 46.96 28.73 19.33 32.19 47.54 10.17 4.52 10.33 21.25
ComplEx 30.84 21.51 34.48 49.58 31.69 21.44 35.74 52.04 21.01 11.87 23.47 39.87
TTransE 13.43 3.11 17.32 34.55 15.71 5.00 19.72 38.02 8.31 1.92 8.56 21.89
TA-DistMult 26.47 17.09 30.22 45.41 24.31 14.58 27.92 44.21 16.75 8.61 18.41 33.59
TA-TransE 17.41 0.00 29.19 47.41 19.37 1.81 31.34 50.33 12.59 0.01 17.92 37.38
DE-SimplE 32.67 24.43 35.69 49.11 35.02 25.91 38.99 52.75 19.30 11.53 21.86 34.80
TNTComplEx 32.12 23.35 36.03 49.13 27.54 19.52 30.80 42.86 21.23 13.28 24.02 36.91
RE-Net 38.28 28.68 41.34 54.52 42.97 31.26 46.85 63.47 28.81 19.05 32.44 47.51
CyGNet 32.73 23.69 36.31 50.67 34.97 25.67 39.09 52.94 24.93 15.90 28.28 42.61
xERTE† 40.79 32.70 45.67 57.30 46.62 37.84 52.31 63.92 29.31 21.03 33.51 46.48
TITer† 41.73 32.74 46.46 58.44 – – – – 29.98 22.05 33.46 44.83
AnyBURL‡ 29.67 21.26 33.33 46.73 32.05 23.72 35.45 50.46 22.77 15.10 25.44 38.91
TLogic† 43.04 33.56 48.27 61.23 46.97 36.21 53.13 67.43 29.82 20.54 33.95 48.53
TECHS 43.88 34.59 49.36 61.95 48.38 38.34 54.69 68.92 30.85 21.81 35.39 49.82

Table 2: The experiment results (%) in ICEWS14, ICEWS0515 and ICEWS18. The optimal and suboptimal values
of each metric are marked in bold and underlined respectively. Results of “‡” are from Liu et al. (2022), “†” means
the results are from its original paper and others are all from Han et al. (2021).

Model WIKI YAGO
MRR H@10 MRR H@10

TTransE 29.27 42.39 31.19 51.21
TA-DistMult 44.53 51.71 54.92 66.71
DE-SimplE 45.43 49.55 54.91 60.17
TNTComplEx 45.03 52.03 57.98 66.69
CyGNet 33.89 41.86 52.07 63.77
RE-Net 49.66 53.48 58.02 66.29
xERTE 71.14 79.01 84.19 89.78
TITer 75.50 79.02 87.47 90.27
TECHS 75.98 82.39 89.24 92.39

Table 3: The experiment results (%) in WIKI and YAGO.
The baseline results are from Sun et al. (2021).

Ablation ICEWS14 ICEWS0515 ICEWS18
MRR H@10 MRR H@10 MRR H@10

TECHS 43.88 61.95 48.38 68.92 30.85 49.82
w/o time 43.44 60.74 47.61 67.16 30.11 48.96

∆ 0.44 1.21 0.77 1.76 0.74 0.86
w/o emd 42.45 60.21 46.57 66.68 29.87 48.34

∆ 1.43 1.74 1.81 2.24 0.98 1.48
w/o PR 42.57 58.41 46.1 65.36 28.84 46.93

∆ 1.31 3.54 2.28 3.56 2.01 2.89
w/o FO 42.84 60.06 46.27 65.49 29.78 47.59

∆ 1.04 1.89 2.11 3.43 1.07 2.23

Table 4: The ablation results (%). PR and FO denote
propositional and first-order respectively.

ble 2 and Table 3. As shown, our TECHS has
achieved advanced performance. Compared with
static embedding and temporal embedding mod-
els, e.g., the strongest RE-Net, our metrics have
been greatly improved by 5.6%, 5.91%, 8.02% and
7.43% in ICEWS14. The performance of TECHS
is also competitive with the explainable reason-
ing methods. It outperforms xERTE, TITer and
AnyBURL by 3.09%, 2.15% and 14.21% MRR in
ICEWS14, respectively. It demonstrates TECHS
makes up for the shortcomings of simply using

propositional reasoning or static first-order logi-
cal rules on TKGs. Finally, compared with the
state-of-the-art TLogic, TECHS also shows certain
improvements, i.e., achieving better performance
on all twelve metrics of ICEWS14, ICEWS0515
and ICEWS18 datasets. TECHS has an average
improvement of 0.92%, 1.65% and 1.26% on these
three datasets. Besides, TECHS yields 0.48%,
3.37%, 1.77% and 2.12% improvements in MRR
and Hits@10 metrics in WIKI and YAGO datasets,
compared with the state-of-the-art TITer. In sum-
mary, the results show the superiority of our model
that conducts temporal graph embedding as well as
integrates propositional and first-order reasoning.

5.3 Ablation Studies

To verify the effectiveness of each module in
TECHS, ablation studies are carried out in Table 4.
For “w/o time”, we remove the time embedding
in the GCN. “w/o emd” means we remove the
whole GCN encoder module and perform random
initialization for embeddings. For the logical de-
coder, “w/o PR” or “w/o FO” means that we re-
move propositional or first-order attention in Eq. 8
when computing nodes’ attention for the ablation
of the corresponding reasoning pattern. We an-
alyze the results from the following two aspects:
First, both topology structures and time dynamics
in GCN embeddings contribute to extrapolation
reasoning. When only removing time information,
the metrics decrease slightly compared with the
whole GCN ablation, e.g., 0.44% vs. 1.43% MRR
drops in ICEWS14. Second, for logical reasoning,
both propositional and first-order logic reasoning
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is important. Propositional reasoning has a big-
ger impact in ICEWS14 than first-order reasoning
(3.54% vs. 1.89% Hits@10 drops), while they
have roughly the same effect in ICEWS0515 and
ICEWS18 (3.56% vs. 3.43%, 2.89% vs. 2.23%
Hits@10 drops). This may be due to the different
topology structures of different datasets, resulting
in different logical reasoning patterns. In summary,
ablation studies show that structural dependencies
and temporal dynamics as well as propositional and
first-order reasoning all bring positive gains.

5.4 Hyperparameter Analysis

We run our model with different hyperparameters
to explore weight impacts in Figure 4. Figure 4a
shows the changes in the performance of models
with different sampling hyperparameters M and
N, where small values would lead to great perfor-
mance decline. This is because fewer nodes and
edges lead to insufficient and unstable training, re-
spectively. When increasing M and N, the GPU
memory of the model will increase rapidly in Fig-
ure 4b, especially for M. We also record the average
training time of one epoch with different M and N
in Figure 4c. Its overall trend is consistent with Fig-
ures 4a and 4b. In general, TECHS is time efficient
as the running time is between 0.2 and 1 hour.

Figure 4d shows the impact of different weights
when using first-order reasoning, where smaller
weights show worse results, generally. Thus, the
FOTH rule is functional for extrapolation reasoning
on TKGs. Different contextualized, e.g., vanilla
RNN, GRU, LSTM (Hochreiter and Schmidhu-
ber, 1997) for FOTH rule learning and reasoning
are compared in Figure 4e, where GRU outper-
forms the other two competitors. RNN performs
worst, showing that simple models are not compe-
tent enough for discrete structures of FOTH rules.

To explore the effects of decoder iterations on
model performance, we carry out experiments with
iteration L=1, 2, 3, 4 in ICEWS14, ICEWS0515
and ICEWS18. As Figure 4f shows, the perfor-
mance generally improves with the iteration in-
creasing. The metrics of L=3 and L=4 are similar,
which shows that the answer is usually in the ad-
jacent hops of the target entity. Larger hops bring
more candidates, which may affect model perfor-
mance, e.g., Hits@10 values drop when L=4 in
ICEWS14 and ICEWS18. Therefore, L=3 is se-
lected as the default setting in our experiments.

(a) Model performance. (b) GPU memory.

(c) Model running time.
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Figure 4: The effects of hyperparameters. (a), (b) and
(c) are the effects of M and N on performance, GPU
memory and training time. (d) denotes the impacts of
the first-order weight. (e) and (f) show results with
different RNN implementations and decoder iterations.

5.5 Case Study for Explainable Reasoning

Figure 5 visualizes two reasoning graphs on
ICEWS14 and ICEWS0515, showing the extrapo-
lation reasoning process of TECHS. The proposi-
tional attention weights of nodes are listed nearby
them, which represent the propositional reasoning
score of each node at the current step. For exam-
ple, the uppermost propositional reasoning path
from Massoud Barzani to Iran: 2014-08-26 in case
B learned a large attention score for the correct
answer Iran. Generally, nodes with more prior
neighbors or larger prior attention weights signifi-
cantly impact subsequent steps and the prediction
of final entity scores. From both reasoning cases,
we induce several FOTH rules using the FARI al-
gorithm. Some typical ones with their confidence
scores are shown in Table 5. For example, the
rule [7] with lower confidence is learned for the
prediction of the false candidate Iraq in case B.
These attentions and FOTH rules demonstrate the
explainability of our model. Besides, we observe
that propositional and first-order reasoning have an
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No. ϵ premise ⇒ conclusion
ca

se
A [1] 0.22 makeAppeal(X,Y1):t1∧consult−1(Y1,Y2):t2∧makeStatement(Y2,Z):t3⇒appealCooperation(X,Z):t

[2] 0.13 hostVisit−1(X,Y1):t1∧signAgreement(Y1,Y2):t2∧praise(Y2,Z):t3⇒appealCooperation(X,Z):t

[3] 0.06 expressIntentTo(X,Y1):t1∧expressIntentTo(Y1,Y2):t2∧makeStatement(Y2,Z):t3⇒appealCooperation(X,Z):t

ca
se

B [4] 0.17 demand(X,Y1):t1∧makeStatement(Y1,Y2):t2∧engageCooperation−1(Y2,Z): t3⇒makeStatement(X,Z):t

[5] 0.16 consult(X,Y1):t1∧expressIntentTo−1(Y1,Y2):t2∧consult−1(Y2,Z):t3⇒makeStatement(X,Z):t

[6] 0.10 demand(X,Y1):t1∧consult(Y1,Y2):t2∧makeStatement(Y2,Z):t3⇒makeStatement(X,Z):t

[7] 0.04 praise(X,Y):t1∧makeStatement(Y,Z):t2⇒makeStatement(X,Z):t

Table 5: Some FOTH rules learned during the reasoning process correspond to two cases in Figure 5. Existing signs
(∃) are omitted for better exhibition and relations marked with red represent the target relation to be predicted.

Figure 5: Cases of the reasoning processes, where values in orange rectangles represent propositional attentions.

incompletely consistent effect. Thus, they can be
integrated to jointly guide the reasoning process,
leading to more accurate reasoning results.

6 Conclusion

To effectively integrate complex information on
TKGs and implement differentiable logical rea-
soning, this work proposes TECHS which mainly
contains a temporal graph encoder and a logical
decoder. The former utilizes the temporal encod-
ing and heterogeneous attention to embed structural
dependencies and temporal dynamics. The latter re-
alizes differentiable rule learning and reasoning by
continuously conducting forward message-passing
in the proposed reasoning graph. Finally, FOTH
rules can be easily induced by a novel FARI al-
gorithm. In the future, we will explore mining
more types of rules on TKGs, such as numerical
rules (Wang et al., 2020), and expand to the sce-
nario of inductive reasoning (Pan et al., 2022).

7 Limitations

Due to the massive combination of relations and
times on TKGs, balancing the model performance
and efficiency is challenging. Our model TECHS
performs well as Section 5.2 and 5.4 discussed.
However, there is also a limitation. TECHS is a

two-step approach that can be further improved if
we can fuse logical reasoning in the graph encoder
like ConGLR (Lin et al., 2022). The model will be
more efficient for computational space and time.
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