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Abstract

We use both Bayesian and neural models to
dissect a data set of Chinese learners’ pre- and
post-interventional responses to two tests mea-
suring their understanding of English prepo-
sitions. The results mostly replicate previous
findings from frequentist analyses and reveal
new and crucial interactions between student
ability, task type, and stimulus sentence. Given
the sparsity of the data as well as high diversity
among learners, the Bayesian method proves
most useful; but we also see potential in using
language model probabilities as predictors of
grammaticality and learnability.1

1 Introduction

Learning a second or third language is hard—not
only for NLP models but also for humans! Which
linguistic properties and external factors make it
so difficult? And how can we improve instruction
and testing to help learners accomplish their goals?
Here we also ask a third question: How can we best
apply different computational models to such be-
havioral experimental data in order to get intuitive
and detailed answers to the first two questions in a
practical and efficient way? For example, we are in-
terested in whether language model (LM) probabil-
ities might give a rough estimate of grammaticality
and learning difficulty (table 1, right columns).

This work is in part a replication study of Wong
(2022), who, in addressing these questions about
native Chinese speakers’ learning of English prepo-
sitions in context (see examples in table 1), mainly
focused on instructional intervention and found
generally positive effects as well as differences
between instruction types, in particular favoring
conceptual over rule-based teaching. We pick up
where Wong (2022) left off and search for more
fine-grained patterns among students’ individual
differences, linguistic items, stimulus sentences,

1Our experimental code is available at https://github.
com/jakpra/L2-Prepositions.

and their grammaticality. Our main hypothesis
is that the full story of the complex interactions
among these factors can only be revealed by mod-
eling them holistically. Such a fine-grained holistic
analysis is well-aligned with Item Response Theory
(IRT; Fischer, 1973; Lord, 1980). IRT allows us to
formulate models in terms of predicting whether
students provide the intended response to each test
item. We consider sparse Bayesian and dense neu-
ral versions of this framework. We can then inspect
how strongly each model input (the linguistic, ex-
perimental, and student-specific factors mentioned
above, which are realized as random and fixed ef-
fects for the Bayesian model and feature vectors for
the neural model) affects the outcome. As a repre-
sentative of yet another modeling strategy, and also
as an additional input to the IRT models, we ob-
tain probability estimates for the target prepositions
in each stimulus sentence from a pretrained trans-
former LM. These probabilities serve as a proxy for
contextual formulaicity, as learned distributionally
from a large corpus.

While the theoretical advantages of Bayesian
over frequentist statistics, as well as the generally
strong performance of neuro-distributional mod-
els, are often cited as justification for choosing
one particular modeling method, both replication
studies and side-by-side comparisons of such dras-
tically different modeling strategies for linguistic
analysis remain rare (with notable exceptions, e.g.,
Michaelov et al., 2023; Tack, 2021).

We contribute to this important development by
• designing (§4.1), fitting, and evaluating (§5.1)

a Bayesian mixed effects model on Wong’s
(2022) data (§3), considering more potential
linguistic and human factors in preposition
learning than previously and finding signifi-
cant effects for several of them;

• training (§4.2) and evaluating an analogous
multilayer perceptron (MLP) model and com-
paring it with the Bayesian model in terms of
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Student
judgment LM

# Usage Stimuli Grammatical? pre post ptgt pctx

1a HIR-Spat The bell hung over the baby’s cradle and made him smile. ✓ 80.65 92.59 4.15 54.66

A
s

ex
pe

ct
ed1b through ✗ 50.00 46.67 0.03 54.10

2a HIR-Abst The tutors watched over the students during the oral presentation. ✓ 80.00 96.77 96.70 67.19
2b on ✗ 35.00 46.15 0.07 50.64

3a CVR-Abst Tremendous fear fell over the town after the murder. ✓ 71.43 91.67 18.58 65.61
3b through ✗ 41.67 27.27 0.39 63.91

4a CRS-Spat The painter reached over the paint can for a brush. ✓ 41.18 63.33 0.05 49.50

si
gn
(∆p

tg
t)??

?

4b through ✗ 36.11 33.33 0.78 45.42

5a CRS-Abst The lawyer jumped over a few pages of the contract. ✓ 72.73 94.12 6.97 52.39
5b to ✗ 42.11 34.78 20.27 51.66

6a CVR-Abst Happiness diffused over the guests when they see the newly-weds. ✓ 44.44 88.46 2.47 65.27
6b on ✗ 80.00 35.48 3.19 62.82

7a CVR-Spat The canvas stretched over a large hole in the road. ✓ 44.12 70.37 17.99 51.66

si
gn
(∆p

ct
x)?

??

7b through ✗ 55.56 60.00 15.52 52.79

8a CVR-Abst The tension swept over the school when the alarm rang. ✓ 66.67 100.00 3.93 46.61
8b onto ✗ 37.84 12.50 <0.01 46.63

9a CRS-Abst The politicians skipped over sensitive topics during the debate. ✓ 83.33 94.59 2.88 40.80
9b to ✗ 60.98 35.00 0.17 42.06

Table 1: Examples of stimulus sentences for grammatical (✓) and ungrammatical (✗) preposition use. In the
Student judgment columns we show the percentage of students who judged the example as grammatical at the
pretest (including control group) and posttest (treatment groups only) in Wong’s study. The LM columns show our
probed RoBERTa probabilities ptgt and pctx [in %], which are defined in §4.3 and discussed in §5.3.

both feature ablation and overall prediction ac-
curacy of the outcome, i.e., whether a student
will answer a test prompt correctly (§5.2);

• and probing a pretrained LM (§4.3 and §5) for
contextual probabilities of target prepositions
in order to determine their correlation—and
thus, practical usefulness—with human lan-
guage learning.

Thus, we aim to both better explain L2 prepo-
sition learning and compare Bayesian, frequentist,
and neural approaches to doing so.

2 Background

2.1 English Preposition Semantics

Prepositions are among the most frequently used
word classes in the English language—they make
up between 6 and 10 % of all word tokens depend-
ing on text type and other factors (cf. Schneider
et al., 2018). This is because English does not
have a full-fledged morphological case system and
instead often expresses semantic roles via word
order and lexical markers like prepositions. At
the same time, the inventory of preposition forms
is relatively small—a closed set of largely gram-
maticalized function words covering a wide range

of predictive, configurational, and other relational
meanings. The resulting many-to-many mapping
between word forms and meanings is complex and
warrants nuanced linguistic annotation, analysis,
and computational modeling in context (O’Hara
and Wiebe, 2003; Hovy et al., 2010; Srikumar
and Roth, 2013; Schneider et al., 2018; Kim et al.,
2019b). Further, considerable cross-linguistic vari-
ation in the precise syntax-semantics interactions
of prepositions and case has been shown to affect
not only machine translation (Hashemi and Hwa,
2014; Weller et al., 2014; Popović, 2017), but also
construal in human translation (Hwang et al., 2020;
Peng et al., 2020; Prange and Schneider, 2021)
and—crucially—learner writing (Littlemore and
Low, 2006; Mueller, 2011; Gvarishvili, 2013; Kran-
zlein et al., 2020).

2.2 Cognitive and Concept-based Instruction

Cognitive linguistics (CogLx) maintains that many
aspects of natural language semantics are grounded
in extra-linguistic cognition, even (or especially)
when they do not directly arise from syntactic com-
position, or at the lexical level. For example, Brug-
man (1988), Lakoff (1987), and Tyler and Evans
(2003) argue that spatial prepositions evoke a net-
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work of interrelated senses, ranging from more
prototypical to extended and abstract ones. Incor-
porating such conceptual connectedness into lan-
guage instruction has shown some benefits (Tyler,
2012; Boers and Demecheleer, 1998; Lam, 2009).

2.3 Computational Modeling in SLA
Until recently, most studies in applied linguistics
and second-language acquisition (SLA)—insofar
as they are quantitative—have relied on null-
hypothesis testing with frequentist statistical mea-
surements like analysis of variance (ANOVA)
(Norouzian et al., 2018). This has the advantage
that it is generally unambiguous and interpretable
what is being tested (because concrete and spe-
cific hypotheses need to be formulated ahead of
time) and that conclusions are based directly on
data without any potentially confounding modeling
mechanisms. At the same time, frequentist analy-
ses are relatively rigid, and thus run into efficiency,
sparsity, and reliability issues as interactions of
interest grow more complex. Li and Lan (2022)
propound a more widespread use of computational
modeling and AI in language learning and educa-
tion research. A promising alternative exists in the
form of Bayesian models (e.g., Murakami and Ellis,
2022; Privitera et al., 2022; Guo and Ellis, 2021;
Norouzian et al., 2018, 2019), which circumvent
sparsity by sampling from latent distributions and
offer intuitive measures of uncertainty “for free” in
form of the estimated distributions’ scale parame-
ters. They can also be made very efficient to train
by utilizing stochastic variational inference (SVI).

Bayesian modeling for educational applications
goes hand-in-hand with Item Response Theory
(IRT; Fischer, 1973; Lord, 1980), which posits that
learning outcomes depend on both student aptitude
and test item difficulty. This addresses another
limitation of frequentist analysis—the focus on ag-
gregate test scores—by modeling each student’s
response to each item individually. We loosely
follow this general paradigm with our model im-
plementations, without committing to any specific
theoretical assumptions.

Within NLP, Bayesian and IRT-based ap-
proaches have been used to evaluate both human
annotators (Rehbein and Ruppenhofer, 2017; Pas-
sonneau and Carpenter, 2014) and models (Kwako
et al., 2022; Sedoc and Ungar, 2020), to conduct
text analysis (Kornilova et al., 2022; Bamman et al.,
2014; Wang et al., 2012), and natural language in-
ference (Gantt et al., 2020).

Murakami and Ellis (2022) show that grammar
learning can be affected by contextual predictabil-
ity (or formulaicity). While they used a simple
n-gram model, we account for this phenomenon
more broadly with a pretrained transformer LM.

3 Original Study and Data

Wong (2022) measured students’ pre- and post-
interventional understanding of the English prepo-
sitions in, at, and over, particularly contrasting
CogLx/schematics-based instruction with different
flavors of rule-based methods. To this end, interme-
diate learners of English (all university students)
with first languages Mandarin or Cantonese took
initial English language tests (‘pretest’) targeting
different usages of prepositions. They were then
taught with one of four methods (incl. one con-
trol group, who received instruction about definite
and indefinite articles instead of prepositions), and
subsequently tested two more times. There were
two different tests: a grammaticality judgment test
(GJT) to measure effects on language processing
and a picture elicitation test (PET) to measure ef-
fects on production.

While all preposition-focused training was found
to enhance learners’ understanding of prepositions
compared to both the pretest and the control group,
schematics-based mediation led to stronger learn-
ing results than any of the other methods, especially
at the PET (fig. 1) and on spatial usages of preposi-
tions (the interaction between instruction method
and spatial usage is not shown in fig. 1 for brevity).
These latter findings in particular support our hy-
pothesis that in addition to external factors like
task type and instruction method, learning difficulty
may also be affected by inherent linguistic prop-
erties of the prepositions and their usages (just as,
e.g., Guo and Ellis (2021) show for distributional
properties of grammatical suffixes). In this work
we take a second look at Wong’s data to directly
address this possibility for preposition learning.

3.1 Data Summary

We conduct all of our computational analyses with
Wong’s data (stimuli and behavioral results) but
expand on the original study by explicitly modeling
as potential factors several additional dimensions,
relating to individual differences and interactions
among stimuli, task types, and students (table 2,
§3.2 and §3.3). 71 students (after outlier filtering)
participated in the study. There are a total of 48
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test items (12 senses × 4 contexts) and 22 fillers
for the GJT as well as 36 test items (12 senses× 3 contexts) and 15 fillers for the PET. Outlier
students and filler items are removed before any
analysis/model training, resulting in 17,644 data
points overall (GJT: 10,156; PET: 7,488).

3.2 Stimulus Sentences
In the GJT (but not in the PET), students receive a
linguistic stimulus to evaluate for grammaticality
(see examples in table 1). Intended-grammatical
stimuli involve target prepositions used in a sen-
tence context that evokes their intended sense or
function (fxn), either literally/spatially or figura-
tively/abstractly. For each intended-grammatical
stimulus, there is an intended-ungrammatical stim-
ulus, consisting of the same sentence context but
replacing the target preposition with another that is
meant to fit the context less well.

3.3 Categorical Features
Instruction method. The main goal of Wong’s
(2022) study was to compare CogLx-based
schematic mediation (SM) with more tradi-
tional rule-and-exemplar (RM) and bare-bones
correctness-based mediation (CM). SM, RM, and
CM instruction focused on the same preposition
forms and usages students were tested on.
Time of test. Students were tested three times: Two
days before instructional intervention (PREtest, ◁
in fig. 1), two days after instruction (POSTtest, ○),
and again 3 weeks later (DeLaYed posttest,▷).
Preposition form, function (fxn), and usage. The
test cues are made up of 6 pairs of preposition
usages across three forms: ‘in’ with the CON-
TAINMENT (CTN) function; ‘at’ with the TARGET

(TGT) and POINT (PNT) functions; and ‘over’ with
the HIGHER (HIR), ACROSS (CRS), and COVER

(CVR) functions. Each usage pair consists of a
spatial (e.g., ‘in the box’) and a non-spatial cue
(e.g., ‘in love’) sharing the same schematization
(in this case, CONTAINMENT). The cues were se-
lected based on the Principled Polysemy Frame-
work (Tyler and Evans, 2003), thereby ruling out
overly fine-grained senses and allowing systematic
presentation for instruction and testing.
Test type. In the GJT, learners had to decide, for
each stimulus sentence containing a preposition,
whether the whole sentence is “correct” or “incor-
rect”.2 We consider as a potential factor on the out-
come whether a stimulus is intended-grammatical
(GJT-Y) or not (GJT-N). In the PET, learners were

W22 Ours

Random Effects
Feature Values
Instruction SM, RM, CM, CTRL ✓ ✓
Time PRE, POST, DLY ✓ ✓
Test GJT, PET ✓ ✓
Usage Spatial, Abstract ✓ ✓
Answer GJT-Y, GJT-N, PET ✗ ✓
Form-Fxn in-CTN, at-TGT ✗ ✓

at-PNT, over-HIR,
over-CRS, over-CVR

Student s1, ..., s71 ✗ ✓
Fixed Effects
ptgt—LM probability of target preposition ✗ ✓
pctx—Avg. LM prob. of non-tgt tokens in sent. ✗ ✓

Table 2: Features under consideration in Wong (2022)
(W22) and our work.

shown an illustration of a concrete scenario instan-
tiating one of the cues and were asked to produce a
descriptive sentence containing a preposition. Re-
sponses were counted as correct if they chose the
target preposition.
Students. By adding local student identities to the
model input (anonymized as, e.g., s1, s23), we allow
fine-grained degrees of freedom w.r.t. individual
differences, as is suggested by IRT.

4 Models

Our main point of reference (or quasi-baseline) is
Wong’s frequentist data analysis, which is summa-
rized in §3. In this work, we newly consider the
following different modeling strategies: We train
a Bayesian logistic model (BLM, §4.1) as well
as a small multilayer perceptron (MLP, §4.2) on
the same data. With the BLM we can define and
interpret the precise structure of how individual
features and their interactions affect the outcome.
In contrast, the MLP utilizes nonlinear activation
functions and multiple iterations/layers of computa-
tion, allowing it to pick up on complex interactions
among input features without prior specification
and thus to potentially achieve higher predictive
accuracy, at the cost of interpretability. Both the
BLM and MLP are implemented in Python and
PyTorch, and are light-weight enough to be trained
and run on a laptop CPU within several minutes for
training and several seconds for inference. We also
query a pretrained neural language model (LM,
namely RoBERTa; Liu et al., 2019b) to obtain con-
textual probabilities for the stimulus sentences used

2The testing prompt did not explicitly highlight or other-
wise draw attention to the preposition in question.
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in the grammaticality judgment test and add those
probabilities to the BLM and MLP’s inputs (§4.3).

4.1 Bayesian Logistic Model
We model the posterior likelihood of a correct re-
sponse (i.e., a given student providing the intended
answer to a given stimulus) as a logistic regression
conditional on the aforementioned categorical vari-
ables. Concretely, responses are sampled from a
Bernoulli distribution with log-odds proportional
to the weighted sum of the random and fixed ef-
fects. As potential factors we consider the features
listed in §3.3 and table 2, as well as their mutual in-
teractions. For the students feature, to keep model
size manageable, we only consider pairwise in-
teractions with usage (spatial/abstract), form-fxn,
and answer. Otherwise all n-wise interactions are
included. The effects’ weight coefficients are sam-
pled from Normal distributions whose means and
standard deviations are fitted to the training data
via SVI with the AdamW optimizer, AutoNormal
guide, and ELBO loss. We use standard-normal
priors for means and flat half-normal priors for
standard deviations, meaning that, by default, pa-
rameter estimates are pulled towards null-effects,
and will only get more extreme if there is strong ev-
idence for it. The model is implemented using the
Pyro-PPL/BRMP libraries (Bingham et al., 2018).

4.2 Multilayer Perceptron
We train and test a multilayer perceptron (MLP)
with depth 3. We mirror the BLM setup by treating
student response correctness as the output and op-
timization objective and the different feature sets
as concatenated embedding vectors. Between hid-
den layers we apply the GELU activation func-
tion, and during training additionally dropout with
p = 0.2 before activation. We also apply dropout
with p = 0.1 to the input layer. We minimize binary
cross-entropy loss using the AdamW optimizer. We
train for up to 25 epochs but stop early if dev set ac-
curacy does not increase for 3 consecutive epochs.

4.3 RoBERTa
We feed the GJT stimulus sentences to RoBERTa-
base (Liu et al., 2019b, accessed via Huggingface-
transformers). RoBERTa a pretrained neural LM
based on the transformer architecture (Vaswani
et al., 2017) and trained on English literary and
Wikipedia texts to optimize the masked-token and
next-sentence prediction objectives. For each sen-
tence, we wish to obtain RoBERTa’s posterior prob-

ability estimates for each observed word token
wi ∈w0∶n−1, given w0∶n−1/{wi}, i.e., all other words
in that sentence. Thus we run RoBERTa n times,
each time i masking out wi in the input. From
these n sets of probabilities, we extract two mea-
surements of formulaicity we expect to be relevant
to our modeling objective of student response cor-
rectness:3 (a) ptgt , the contextual probability of the
target or alternate preposition given all other words
in the sentence and (b) pctx, the average contextual
probability of all words except the preposition.4

Examples are given in table 1. We standardize
these two variables to N (0,1) and add them to the
BLM (as fixed effects, both individually and with
interactions) and MLP (as scalar input features).

5 Evaluation

We first analyze the BLM’s learned latent coef-
ficients (§5.1). Then we compare different ver-
sions of the BLM and MLP w.r.t. their ability to
predict unseen student responses using their esti-
mated weighting of linguistic and external features
as well as LM probabilities (§5.2). Finally, we man-
ually inspect a small set of stimulus sentences with
anomalous LM probabilities w.r.t. their intended
grammaticality and observed judgments (§5.3).

5.1 Determining Relevant Input Features

Setup. We fit BLMs on the entire data set (without
reserving dev or eval splits). We run SVI for 1000
iterations with a sample size of 100 and a fixed
random seed. We compute effect sizes (Cohen’s d),
and p-values based on 95%-confidence intervals
of differences between estimated parameter values
(Altman and Bland, 2011).
Replication. As in Wong (2022), we use the fea-
tures instruction, time, form-fxn, usage, and addi-
tionally let the model learn individual coefficients
for each student. Separate models were trained
for GJT and PET. As shown in fig. 1, we mostly
replicate similar trends (differences between differ-
ences) as found previously, namely:

• Time: DLY ≈ POST > PRE;
• Instruction: treatment > ctrl; SM > CM ≈ RM;

3We also preliminarily experimented with inputting the
entire LM hidden state of the last layer to the models but
did not find it to be helpful. Kauf et al. (2022) found that
alignment with human judgments varies from layer to layer,
which presents an interesting avenue for future work.

4Note that the preposition token still has the potential to af-
fect the other words’ probabilities by occurring in their context
condition.
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• and we generally see larger learning effects in
the PET than in the GJT.

However, many effect sizes are amplified—and
thus p-values more significant-looking—in our
model. A potential explanation for this could be
that the BLM models each individual item response
whereas ANOVA only considers overall %-correct.
We are thus comparing effects on all students’ ac-
curacy at multiple test items in aggregate with ef-
fects on each student’s accuracy at each test item
separately. It seems intuitive that the latter ‘micro-
effects’ are much greater on average than the for-
mer ‘macro-effects’, which are themselves effects
on the average performance metric. Another reason
could be that because the Bayesian effect sizes stem
from simulated data points, they are only indirectly
related to the real underlying data via SVI. The es-
timated distribution these samples are drawn from
only approximates the real data and thus the effect
size estimations may be over-confident. See §6.1
for a discussion of advantages and disadvantages.

Although our model estimates spatial usages as
generally more difficult than abstract ones, we do
not replicate Wong’s finding of an interaction be-
tween abstractness and instruction or time. Still,
our Bayesian quasi-IRT approach allows us to find
additional interesting patterns that could not have
been captured by a frequentist analysis5 as they
involve student-level and item-level interactions:
Answer type and individual differences. We
trained a single combined model on both GJT and
PET data. As can be expected, in addition to the
overall trends (fig. 1), we also find a strong effect
for expected answer type (fig. 2): the receptive task
of accepting grammatical items (GJT-Y) is much
easier than the productive task of choosing the right
preposition when describing a picture (PET). Inter-
estingly, ruling out ungrammatical items (GJT-N)
is equally as difficult as the PET. In addition, out-
comes are affected by individual differences be-
tween students, and student aptitude heavily de-
pends on answer type (fig. 3) as well as on prepo-
sition form/function (fig. 5 in appendix A). There
is some (negative) correlation between individual
aptitudes at GJT-N and GJT-Y and some (positive)
correlation between GJT-N and PET. Still, both
correlations are weak (R2 = 0.23 and 0.20).

In sum, not only do receptive vs. productive task

5Or only very tediously so.
6Where W22 does not report Cohen’s d, we show their

reported partial-eta-squared η2
p instead.

0.6 0.4 0.2 0.0 0.2 0.4 0.6

ABSTRACT

SPATIAL
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CM
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GJT

0.6 0.4 0.2 0.0 0.2 0.4 0.6

ABSTRACT

SPATIAL

SM

RM

CM

CTRL

DLY

POST

PRE

PET

W22:   d=1.335, p<0.0001***
Ours: d=12.838, p<0.0001***

W22: d=0.172, p=0.357
Ours: d=2.248, p<0.0001***

 DLY
W22 (CTRL v all):  d=0.92, p=0.003***
Ours (CTRL v CM): d=3.11, p<0.001***

 DLY
W22: non-significant
Ours: d=1.751, p<0.0001***

W22: 𝜂𝑃
2=0.167, p=0.002***

Ours:   d=0.491, p=0.0006***

W22 (all):        𝜂𝑃
2=0.48, p<0.0001***

Ours (PRE v PST): d=15.4, p<0.0001***

Ours (POST v DLY): d=0.228, p=0.109

 DLY
W22 (CTRL v all):   d=1.49, p<0.001***
Ours (CTRL v CM): d=6.92, p<0.001***

⚫ POST
W22:                  p=0.040*
Ours: d=3.851, p<0.0001***

W22: 𝜂𝑃
2=0.697, p<0.001***

Ours:   d=0.770, p<0.0001***

Figure 1: Summary of our Bayesian effect estimations
(marginal means and standard deviations over model
parameters) for selected features. Coefficient values
(x-axis) indicate the extent to which the feature value
(y-axis) contributes to a correct (positive) or incorrect
(negative) student response. On the right we compare
effect sizes (Cohen’s d) and statistical significance to
Wong’s (2022) frequentist analysis.6

0.04 0.02 0.00 0.02 0.04 0.06

GJT-Y

PET

GJT-N
d=0.108, p=0.444

d=1.264, p<0.0001***

Figure 2: Estimated effects for different answer types.

1.0 0.5 0.0 0.5 1.0
GJT-N

0.75

0.50

0.25

0.00

0.25

0.50

0.75

GJ
T-Y

1.0 0.0 0.5
PET:

Figure 3: Effect estimation means of individual stu-
dents (points) in interaction with answer type (x=GJT-N,
y=GJT-Y, color=PET). There is a weak negative correla-
tion between being good at GJT-N and GJT-Y answers
(blue line, R2=0.23) and a weak positive correlation
between GJT-N and PET skills (R2=0.20).
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types vary in their overall difficulty (fig. 2), but
the wide spread in individual student differences
(fig. 3) suggests that the skill sets required (let’s
call them “sensitivity” and “specificity”) are some-
what complementary to each other and tend to be
distributed unevenly among students. Each student
has a unique combination of them. We discuss this
further in §6.2.
LM probabilities. The model was trained on
GJT data only. Recall from §3.3 that GJT test-
ing prompts did not explicate the target preposi-
tion or even mention the word ‘preposition’. All
else equal, it is thus conceivable that, despite the
preposition-focused training, students evaluate the
sentences’ grammaticality for reasons unrelated
to the target preposition. However, we can with
high probability rule out this option as our model
estimates strong effects for numerous features di-
rectly related to the preposition, namely: ptgt by
itself (d=4.57; p<0.0001***); interaction ptgt :pctx

(d=14.92; p<0.0001***);7 and spatial vs. abstract
usage of each preposition form and function (fig. 1,
fig. 6 in appendix A). Furthermore, due to the
heavy interaction between LM probabilities and
categorical cue properties,8 the singular random
effect of spatial vs. abstract usage decreases when
the model considers the LM-based fixed effects
(d=0.372; p=0.0093**) compared to when it does
not (d=0.491; p=0.0006***, fig. 1).

5.2 Predicting Student Responses

Setup. We train the BLM and MLP using a
training:evaluation:development data split ratio of
84:15:1, placing less weight on the dev set since
it is only used to determine early-stopping during
MLP training. Experiments are run 10 times with
random data splits and model initializations.
Results. As shown in table 3, both models eas-
ily outperform simple baselines, and the two mod-
els’ overall accuracies are roughly on par (within
each other’s stdevs) with a slight advantage for
the BLM. For predicting GJT outcomes only, the
aforementioned interaction between students and
answer types is most crucial, followed by infor-
mation about the target preposition (BLM) and
instruction (MLP), respectively. The LM-based
features ptgt and pctx are useful for both models,

7While pctx by itself is only very weakly correlated with
either grammaticality or student response, it does become a
useful predictor in interaction with ptgt (cf. fig. 4 left).

8Linguistic categories may to some extent be encoded in
the LM’s distributed representations (Jawahar et al., 2019).

GJT + PET GJT only

BLM MLP BLM MLP

Uniform BL 49.7 ±1.1 49.7 ±1.2
BLM prior BL 49.7 ±2.1 48.2 ±1.4
Majority BL 64.2 ±0.9 68.1 ±0.7

Full model 72.6 ±1.1 71.5 ±0.6 72.5 ±0.8 71.3 ±0.9− students −2.2 ±0.6 −0.9 ±0.7 −2.6 ±0.9 −2.0 ±0.8− answer −5.6 ±0.8 −4.6 ±0.6 −2.4 ±0.8 −2.0 ±0.8− fxn & usage −5.4 ±1.0 −4.6 ±1.0 −1.5 ±0.4 −0.8 ±1.3− instr & time −2.1 ±0.9 −1.8 ±0.9 −0.4 ±0.7 −1.4 ±0.9−ptgt & pctx n/a n/a −0.9 ±0.9 −0.4 ±0.9

Table 3: Baselines (BL), BLM and MLP prediction
performance, and feature ablation (student response cor-
rectness prediction accuracy in %). Means and standard
deviations over 10 random seeds, which affect not only
model initialization but also data splitting and shuffling.
Best full model results on each data split are underlined;
highest-impact features in each column are bolded.

but less so than the categorical ones. This is some-
what unexpected based on their strong effect sizes
(§5.1) and the overwhelmingly high performance
of LMs on other tasks. A potential reason is the
contrast between the LM reflecting a gross aver-
age of language use—which indeed correlates with
grammaticality (R2 = 0.48, fig. 4)—and the unrelia-
bility of student judgments, especially at the pretest
and in the control group (fig. 1 top). The lack of
stimulus sentences (and thus LM probabilities) in
the PET further increases the importance of the
answer, form-function, and usage features in the
GJT+PET condition. We also see a larger ablation
effect of the instruction and time features, which
is consistent with the larger interaction effect esti-
mates for the PET (fig. 1 bottom).

5.3 Qualitative Analysis of Stimuli

We take a closer look at individual stimuli in fig. 4.
From the y-axis distribution in the center and right
panels we can clearly see the learning development
among students undergoing preposition-focused
training. At the pretest (center), aggregate students’
grammaticality judgment is less decisive (mostly
vertically centered around 50%± ≈ 20pp. At the
posttest (right), the spread is much more decisive,
ranging from almost 0% to 100%. At both points
in time, there is a slight bias towards positive judg-
ment, i.e., students are generally more willing to
accept ungrammatical stimuli as grammatical than
to reject grammatical ones. In contrast, LM proba-
bilities (x-axis) tend to err on the conservative side,
i.e., the LM has higher recall on recognizing un-
grammatical items, whereas students have higher
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Figure 4: Correlations of LM probabilities, student grammaticality judgment %, and intended answer (color/shape)
for individual stimuli (points). Left: ptgt (x) and pctx (y); Center: ptgt (x) and pretest judgment (y); Right: ptgt
(x) and posttest judgment of non-control groups only (y). R2(answer, judge@post)=0.72; R2(ptgt , answer)=0.48;
R2(ptgt , judge@post, blue line right)=0.41; R2(ptgt , pctx, blue line left)=0.30; R2(answer, judge@pre)=0.28; R2(ptgt ,
judge@pre, blue line center)=0.22; R2(pctx, answer)=0.15; R2(pctx, judge@post)=0.13; R2(pctx, judge@pre)=0.04.
Data points/sentences listed in table 1 and discussed in §5.3 are labeled.

recall on recognizing grammatical items, each at
the cost of precision.9

We expect that intended-grammatical (✓) usages
generally receive higher LM probabilities (∆p) than
intended-ungrammatical (✗) usages. This is the
case most of the time (for 41/48 stimulus pairs
total), except for 7 cases, 6 of which involve the
preposition ‘over’ as the target. We present these
sentences in table 1, along with 3 examples where
both ∆p’s are as expected.

What makes ex. 4 – 9 special? A potential ex-
planation is that the verb+preposition+object con-
structions in ex. 1 – 3 seem to be more clearly
distinguishable as either grammatical or ungram-
matical than the rest. In contrast, the ✗ sentences in
ex. 4 – 6 are not truly ungrammatical. The scenar-
ios they describe are unlikely but possible, and the
unlikeliness mostly arises through the full-sentence
context rather than the prepositional construction
alone. In fact, each alternative preposition in 4b,
5b, and 6b might in isolation be a more expected
collocation with the verb than ‘over’, which would
explain the ptgt trend. Ex. 7 – 9 (both ✗ and ✓)
describe much more rare (i.e., unlikely as far as the
distributional LM is concerned) scenes, which may
lead to the overall lower pctx values.10

9Note that LM probabilities are not based on a binary gram-
maticality decision but on a selection decision over the entire
vocabulary, and also that gradient linguistic judgments in gen-
eral cannot be said to only revolve around grammaticality (cf.
Lau et al., 2017). We could address this by looking at the
ratio between the probabilities for each pair, but that would in
turn establish a dependency among stimuli within each pair
which is not present in the human experiment—each stimu-
lus is presented in isolation, in randomized order. Thus, for
transparency, we stick with the plain probability and elaborate
qualitatively on the expected behavior below.

10A second tendency may lie in the concreteness and per-
ceived simplicity (both in terms of semantics and register) of

6 Discussion

6.1 Which model type is most appropriate?
For the purpose of our study, the Bayesian logis-
tic model of student responses has clear advan-
tages over both the previous frequentist analysis of
score aggregates (complexity of interactions, intu-
itiveness; §5.1) and the neural response classifier
(higher interpretability with roughly equal predic-
tion accuracy; §5.2). However, while this obser-
vation is in line with both our expectations and re-
cent literature in SLA (e.g., Norouzian et al., 2018,
2019), we still recommend testing model practica-
bility on a case-by-case basis. For example, if much
more training data is available, a neural classifier
is likely to outperform a sparse model at predic-
tion accuracy. Whenever the BLM and ANOVA
agree on a feature’s significance (and they usually—
but not always—do), the BLM’s estimates are rel-
atively amplified (§5.1). This can be useful for
identifying potentially relevant effects and interac-
tions, but should also be taken with a grain of salt
as it sometimes may construe results too optimisti-
cally. Where do these divergences come from?
We hesitate to make any strong statements about
broad philosophical differences between Bayesian
and frequentist statistics in the abstract. Rather,
we suspect that it mostly comes down to practical
considerations like framing model and data around
individual item responses vs. aggregate score, as
well as varying degrees of commitment to latent
sampling and optimization. Item response predic-
tion accuracy and ablation analyses give some in-

the preposition-governing verbs: ‘hang, watch, fall’ are all
fairly concrete, unambiguous, and colloquial, whereas ‘reach,
diffuse, stretch, sweep’ have more specialized meanings and
are somewhat higher register.
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sight into how individual features affect models’
estimates of the outcome variable and is consistent
with statistical analyses (§5.2). This is particularly
useful for discriminative neural models such as our
MLP classifier, and is, of course, common practice
in NLP classification studies. However, it is also
much more costly, less precise, and less reliable
than Bayesian and frequentist approaches.

6.2 Implications for SLA
Our analysis of answer types and student aptitudes
(§5.1 and §5.2) confirms Wong’s (2022) and others’
findings about differences between productive and
receptive knowledge. We support Wong’s argument
that the type of assessment should align with both
instruction type and and intended learning outcome.
We further observe that even within the generally
receptive task of grammaticality judgment, the sub-
task of ruling out ungrammatical items (GJT-N)
requires higher specificity than accepting grammat-
ical ones (GJT-Y) and is thus more closely aligned
with productive tasks (e.g., PET). Interestingly, stu-
dents who are better than average at productive tests
tend to be slightly weaker than average at receptive
ones and vice versa. A potential future use case
of explicitly modeling students’ individual differ-
ences w.r.t. different task types and linguistic items
is that educational applications can be tailored to
their weaknesses, which is expected to increase
learning effectiveness and efficiency.11 Outside
of directly deploying learning technology to end
users, our findings can inform educators and SLA
researchers. For example, unexpected patterns in
LM probabilities (§5.3) may point to suboptimally
designed stimulus pairs. Thus, LM probing could
be a useful tool in cue selection and stimulus design
of similar studies in the future.

6.3 Implications for NLP
In this work, we primarily analyze human learner
behavior using different machine learning models,
while in NLP-at-large it is much more common to
analyze machine learning models w.r.t. a human
ground truth. At the same time, our observations
that different senses and usages even of the same
preposition form heavily affect human learnability
are somewhat analogous to previous results in auto-
matic preposition disambiguation (varying model
performance for extended vs. lexicalized senses;

11In practice, such a process should ideally be decentralized
by training separate models for each student on the client side,
to uphold privacy and other ethical standards.

Schneider et al., 2018; Liu et al., 2019a). Liu et al.
also found that LM pretraining improves disam-
biguation performance, while Kim et al. (2019a)
drew attention to differences among various NLP
tasks as ‘instruction methods’. This is not to say
that current LM training practices are necessarily
plausible models of human language learning and
teaching, but even these high-level similarities in
behavioral patterns invite further investigation.

7 Conclusion

Much quantitative research in many areas of lin-
guistics, including SLA, has been relying on the
frequentist method for a long time—and for good
reasons: It enables strong conclusions about clear
hypotheses, closely following the observed data.

Here we compared several alternative ap-
proaches to estimating a multitude of potential ef-
fects more holistically, namely via IRT-inspired
Bayesian sparse models of explicit interactions
among facts, neural classifiers of student responses
and feature ablation, as well as contextual proba-
bilities of the experimental stimuli obtained from a
pretrained language model (§4).

Overall, we were able to replicate previous fre-
quentist findings regarding the difficulty of acquir-
ing the preposition system in English as a sec-
ond language and the benefits of concept-based
instruction (§5.1). Our computational analysis em-
phasized the increased flexibility and occasionally
stronger effect size estimates of IRT and Bayesian
models, as well as their natural interpretability com-
pared to neural models with equal predictive power.

We also found novel interactions among task
and subtask type, student individual differences,
preposition cue and LM contextualization (§5), and
discussed them in the broader contexts of both
NLP and SLA, hoping to build bridges between
the two research communities (§6). As a final take-
away for both fields, the differences between the
LM’s and students’ overall tendencies to accept
or reject stimuli (§5.3 and fig. 4 right) could po-
tentially be exploited in both directions: The ag-
gregate distributional grammatical knowledge of
an LM could be used to teach students the most
accepted usages of prepositions and other function
words across a large population of speakers (i.e.,
improve their specificity), while LMs could learn
to be more creative and to utilize humans’ intuitive
cross-lingual meaning mappings by learning from
second-language learner data.
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Limitations

Our study and findings are limited to the spe-
cific L1–L2 pair of Chinese (Mandarin and
Cantonese)–English. Further, the experimental set-
ting we draw our data from is highly controlled,
with carefully-chosen lexical items and carefully-
designed (length- and distractor-matched) stimulus
sentences. While this enables strong statistical con-
clusions about the data itself, it poses a sparsity
problem for most state-of-the-art NLP models, as
can be seen even in the small and simple multi-
layer perceptron we test.

While it would also be interesting to know
whether students respond differently to the same
instruction type or vice versa, the between-subjects
experimental design underlying our data does not
allow such a measurement.

We inspect several model types representing a
selection of extreme areas of a vast continuum of
computational analysis methodologies. Naturally,
this means that we cannot go into a lot of depth
regarding model engineering and detailed compari-
son among similar implementations of each type.

Ethics Statement

Student identities are completely anonymized in
our analyses and in the data we feed to our models.
By locally distinguishing individual students, we
do not wish to single out, over-interpret, or judge
any individual student’s behavior or aptitude, but
rather to fit the models to our data as best we can
and also to control for spurious patterns that might
have been missed during initial outlier-filtering.
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Maja Popović. 2017. Comparing language related is-
sues for NMT and PBMT between German and En-
glish. The Prague Bulletin of Mathematical Linguis-
tics, 108(1):209.

Jakob Prange and Nathan Schneider. 2021. Draw mir a
sheep: A supersense-based analysis of German case
and adposition semantics. Künstliche Intelligenz,
35(3):291–306.

Adam John Privitera, Mohammad Momenian, and Bren-
dan Weekes. 2022. Graded bilingual effects on at-
tentional network function in chinese high school
students. Bilingualism: Language and Cognition,
page 1–11.

Ines Rehbein and Josef Ruppenhofer. 2017. Detecting
annotation noise in automatically labelled data. In
Proc. of ACL, pages 1160–1170, Vancouver, Canada.

Nathan Schneider, Jena D. Hwang, Vivek Srikumar,
Jakob Prange, Austin Blodgett, Sarah R. Moeller,
Aviram Stern, Adi Bitan, and Omri Abend. 2018.
Comprehensive supersense disambiguation of En-
glish prepositions and possessives. In Proc. of ACL,
pages 185–196, Melbourne, Australia.

12732

https://doi.org/10.18653/v1/S19-1026
https://doi.org/10.18653/v1/S19-1026
https://doi.org/10.18653/v1/S19-1026
https://doi.org/10.18653/v1/2022.findings-naacl.7
https://doi.org/10.18653/v1/2022.findings-naacl.7
https://aclanthology.org/2020.law-1.10
https://aclanthology.org/2020.law-1.10
https://doi.org/10.18653/v1/2022.bea-1.1
https://doi.org/10.18653/v1/2022.bea-1.1
https://doi.org/10.18653/v1/2022.bea-1.1
https://doi.org/10.18653/v1/2022.bea-1.1
https://doi.org/https://doi.org/10.1111/cogs.12414
https://doi.org/https://doi.org/10.1111/cogs.12414
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2301.08731
https://arxiv.org/abs/2301.08731
https://doi.org/https://doi.org/10.1016/j.system.2011.10.012
https://doi.org/https://doi.org/10.1016/j.system.2011.10.012
https://doi.org/https://doi.org/10.1016/j.system.2011.10.012
http://www.aclweb.org/anthology/W03-0411
http://www.aclweb.org/anthology/W03-0411
https://doi.org/10.1162/tacl_a_00185
https://doi.org/10.1162/tacl_a_00185
https://www.aclweb.org/anthology/2020.lrec-1.733
https://www.aclweb.org/anthology/2020.lrec-1.733
https://doi.org/10.1007/s13218-021-00712-y
https://doi.org/10.1007/s13218-021-00712-y
https://doi.org/10.1007/s13218-021-00712-y
https://doi.org/10.1017/S1366728922000803
https://doi.org/10.1017/S1366728922000803
https://doi.org/10.1017/S1366728922000803
https://doi.org/10.18653/v1/P17-1107
https://doi.org/10.18653/v1/P17-1107
http://aclweb.org/anthology/P18-1018
http://aclweb.org/anthology/P18-1018


João Sedoc and Lyle Ungar. 2020. Item Response The-
ory for efficient human evaluation of chatbots. In
Proc. of Eval4NLP@EMNLP, pages 21–33, Online.

Vivek Srikumar and Dan Roth. 2013. Modeling seman-
tic relations expressed by prepositions. Transactions
of the ACL, 1:231–242.

Anaïs Tack. 2021. Mark my words! On the automated
prediction of lexical difficulty for foreign language
readers. Ph.D. thesis, KU Leuven.

Andrea Tyler. 2012. Cognitive linguistics and second
language learning: Theoretical basics and experi-
mental evidence. Routledge.

Andrea Tyler and Vyvyan Evans. 2003. The seman-
tics of English prepositions: Spatial scenes, embod-
ied meaning, and cognition. Cambridge University
Press.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proc. of NeurIPS, pages 5998–6008,
Long Beach, CA, USA.

William Yang Wang, Elijah Mayfield, Suresh Naidu,
and Jeremiah Dittmar. 2012. Historical analysis of
legal opinions with a sparse mixed-effects latent vari-
able model. In Proc. of ACL, pages 740–749, Jeju
Island, Korea.

Marion Weller, Sabine Schulte im Walde, and Alexander
Fraser. 2014. Using noun class information to model
selectional preferences for translating prepositions in
SMT. In Proc. of AMTA, pages 275–287, Vancouver,
Canada.

Man Ho Ivy Wong. 2022. Fostering conceptual
understanding through computer-based animated
schematic diagrams and cue contrast. TESOL Quar-
terly.

A Effects of Preposition Cues

In the main text, for brevity, we omitted a detailed
analysis of the effects of specific combinations of
preposition form, function, and usage on student
performance. Here we take a closer look at the six
types of cues: in with the CONTAINMENT function,
at with the TARGET and POINT functions, and over
with the HIGHER,COVER, and CROSS functions.

In fig. 5, we see that there is a wide spread among
students for each of the cue types, especially at the
PET. The fact that these effects are estimated as
interactions in addition to the student-level inter-
cepts suggests, again, that students’ skill sets are
unique, depending on the preposition cue, which is
also illustrated for 5 randomly chosen students.

In fig. 6, we see that the difficulty of these
six cues varies greatly, depending on both spatial/
abstract use and task type. In fact, the difficulty
ranking is largely reversed between GJT and PET.
As a striking example of this, at-TARGET-Abstract
and in-CONTAIN-Abstract are the easiest cues to
judge correctly in the GJT but most difficult to pro-
duce in the PET. There exceptions to this trend, too.
E.g., at-POINT-Abstract is relatively difficult in
both GJT and PET. Another interesting observation
is that, in the PET, both usages of over-HIGHER

are much easier to produce than any other cue.

0.6 0.4 0.2 0.0 0.2 0.4 0.6

over-HIGHER

over-CROSS

over-COVER

in-CONTAIN

at-TARGET

at-POINT

GJT

0.6 0.4 0.2 0.0 0.2 0.4 0.6

over-HIGHER

over-CROSS

over-COVER

in-CONTAIN

at-TARGET

at-POINT

PET

Figure 5: Spread among student effect means (x-axis)
in interaction with preposition form/function. 5 ran-
domly chosen students are shown exemplarily (filled
shapes; empty circles are outliers). Note that, while in
our other figures the error bars denote standard devi-
ations over models’ marginal parameter distributions,
here they describe the distribution over students of esti-
mated mean interaction effects.
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