@inproceedings{kim-etal-2023-explainmeetsum,
title = "{E}xplain{M}eet{S}um: A Dataset for Explainable Meeting Summarization Aligned with Human Intent",
author = "Kim, Hyun and
Cho, Minsoo and
Na, Seung-Hoon",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.731",
doi = "10.18653/v1/2023.acl-long.731",
pages = "13079--13098",
abstract = "To enhance the explainability of meeting summarization, we construct a new dataset called {``}ExplainMeetSum,{''} an augmented version of QMSum, by newly annotating evidence sentences that faithfully {``}explain{''} a summary. Using ExplainMeetSum, we propose a novel multiple extractor guided summarization, namely Multi-DYLE, which extensively generalizes DYLE to enable using a supervised extractor based on human-aligned extractive oracles. We further present an explainability-aware task, named {``}Explainable Evidence Extraction{''} (E3), which aims to automatically detect all evidence sentences that support a given summary. Experimental results on the QMSum dataset show that the proposed Multi-DYLE outperforms DYLE with gains of up to 3.13 in the ROUGE-1 score. We further present the initial results on the E3 task, under the settings using separate and joint evaluation metrics.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kim-etal-2023-explainmeetsum">
<titleInfo>
<title>ExplainMeetSum: A Dataset for Explainable Meeting Summarization Aligned with Human Intent</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hyun</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minsoo</namePart>
<namePart type="family">Cho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seung-Hoon</namePart>
<namePart type="family">Na</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>To enhance the explainability of meeting summarization, we construct a new dataset called “ExplainMeetSum,” an augmented version of QMSum, by newly annotating evidence sentences that faithfully “explain” a summary. Using ExplainMeetSum, we propose a novel multiple extractor guided summarization, namely Multi-DYLE, which extensively generalizes DYLE to enable using a supervised extractor based on human-aligned extractive oracles. We further present an explainability-aware task, named “Explainable Evidence Extraction” (E3), which aims to automatically detect all evidence sentences that support a given summary. Experimental results on the QMSum dataset show that the proposed Multi-DYLE outperforms DYLE with gains of up to 3.13 in the ROUGE-1 score. We further present the initial results on the E3 task, under the settings using separate and joint evaluation metrics.</abstract>
<identifier type="citekey">kim-etal-2023-explainmeetsum</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.731</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.731</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>13079</start>
<end>13098</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ExplainMeetSum: A Dataset for Explainable Meeting Summarization Aligned with Human Intent
%A Kim, Hyun
%A Cho, Minsoo
%A Na, Seung-Hoon
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F kim-etal-2023-explainmeetsum
%X To enhance the explainability of meeting summarization, we construct a new dataset called “ExplainMeetSum,” an augmented version of QMSum, by newly annotating evidence sentences that faithfully “explain” a summary. Using ExplainMeetSum, we propose a novel multiple extractor guided summarization, namely Multi-DYLE, which extensively generalizes DYLE to enable using a supervised extractor based on human-aligned extractive oracles. We further present an explainability-aware task, named “Explainable Evidence Extraction” (E3), which aims to automatically detect all evidence sentences that support a given summary. Experimental results on the QMSum dataset show that the proposed Multi-DYLE outperforms DYLE with gains of up to 3.13 in the ROUGE-1 score. We further present the initial results on the E3 task, under the settings using separate and joint evaluation metrics.
%R 10.18653/v1/2023.acl-long.731
%U https://aclanthology.org/2023.acl-long.731
%U https://doi.org/10.18653/v1/2023.acl-long.731
%P 13079-13098
Markdown (Informal)
[ExplainMeetSum: A Dataset for Explainable Meeting Summarization Aligned with Human Intent](https://aclanthology.org/2023.acl-long.731) (Kim et al., ACL 2023)
ACL