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Abstract

Unsupervised pre-training on millions of
digital-born or scanned documents has shown
promising advances in visual document un-
derstanding (VDU). While various vision-
language pre-training objectives are studied in
existing solutions, the document textline, as
an intrinsic granularity in VDU, has seldom
been explored so far. A document textline usu-
ally contains words that are spatially and se-
mantically correlated, which can be easily ob-
tained from OCR engines. In this paper, we
propose WUKONG-READER, trained with new
pre-training objectives to leverage the structural
knowledge nested in document textlines. We
introduce textline-region contrastive learning to
achieve fine-grained alignment between the vi-
sual regions and texts of document textlines.
Furthermore, masked region modeling and
textline-grid matching are also designed to en-
hance the visual and layout representations of
textlines. Experiments show that WUKONG-
READER brings superior performance on var-
ious VDU tasks in both English and Chinese.
The fine-grained alignment over textlines also
empowers WUKONG-READER with promising
localization ability.

1 Introduction

Visual document understanding (VDU) handles var-
ious types of digital-born or scanned documents
like forms, tables, reports, or research papers, and
is becoming increasingly important for real-world
industrial practices [7]. Multi-modal pre-training
on millions of documents is a popular solution
for visual document understanding [12, 33, 35, 34,
14, 27]. Unlike the conventional vision-language
pre-training over natural images and their paired
short and abstractive descriptions [29, 22, 21], the
document texts are usually long and highly cor-
related with the images, since they can be easily
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(a) Letter. (b) Receipt.

Figure 1: Samples of document textlines: a) a letter
from FUNSD[16] with keys (blue) and values (green);
and b) a receipt from SROIE [15] with the restaurants
name (dark blue) and the address (orange).

obtained from accurate Optical Character Recog-
nition (OCR) engines from the scanned images.
Therefore, it is crucial to strengthen the connection
between vision and language for VDU with more
fine-grained alignment across the two modalities.

Towards that end, existing efforts seek to align
the visual and textual knowledge of documents at
different levels. A commonly used pre-training
objective for documents is masked language mod-
eling [8] over document text tokens [35, 34, 14,
33, 12, 27], often accompanied by the layout in-
formation encoded via the positional embedding.
Besides, various visual and vision-language mul-
timodal pre-training objectives are also proposed,
leveraging the patch-level features [34, 14], object-
level features from object detectors [23, 11], or the
whole image feature through a global text-image
matching loss [34].

However, as an intrinsic granularity for VDU,
document textlines have been mostly neglected in
past efforts. Intuitively, a textline contains a set of
words that are spatially and semantically related.
For instance of information extraction, the desired
text span (e.g., the names on letters and addresses
on receipts in Figure 1) often appears in a single
textline. Therefore, the document textline serves
as an appealing fine-grained granularity for VDU
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tasks. While StructualLM [19] similarly consid-
ers textlines as cell layout information, they only
use the textual features of these textlines in lan-
guage modeling. Instead, in this work, we seek to
enhance the multi-modal representation of a doc-
ument by aligning the visual region and text span
corresponding to the same textline.

In this work, we propose WUKONG-READER, a
pre-trained document model with a hybrid dual-
and single-stream multimodal architecture. To
learn fine-grained document representation, we pro-
pose the Textline-Region Contrastive Learning to
align the visual and textual features of document
textlines from the dual-stream encoders. The objec-
tive thus connects the spatial and semantic informa-
tion among document textlines for various VDU
tasks. Additionally, we also introduce two other
objectives to further improve the textline represen-
tation. We design the Masked Region Modeling
to recover the masked textline regions, so as to
enhance the visual features of textline. We also
propose the Textline Grid Matching to strengthen
the layout information of textlines, which localizes
each word of textlines to the pre-defined image
grids. Similar to previous works [35, 34, 14], the
classic masked language modeling objective is also
applied over document texts.

Experimental results show that our WUKONG-
READER notably improves various document un-
derstanding tasks across both English and Chinese.
For instance, WUKONG-READERlarge with 470M
parameters achieves the weighted F1 score of 93.62
on FUNSD [16] and 98.15 on SROIE [15], lead-
ing the new state-of-the-art records on informa-
tion extraction tasks. We also demonstrate that
the textline-based pre-training objectives empower
the model with meaningful textline features with
promising localization ability.

2 Related Work

Visual document understanding (VDU) has been
widely studied in recent years [12, 19, 27, 34, 35].
VDU tasks are abundant in textual and visual infor-
mation, as intensive texts and their layout informa-
tion can be extracted from documents via Optical
Character Recognition (OCR) or other document
parsers. Muti-modal pre-training has been a pop-
ular solution for VDU. Usually, a pre-trained text
encoder (e.g., BERT [8]; RoBERTa [24]) is applied
to learn contextualized representations of the tex-
tual input. Meanwhile, a pre-trained visual encoder

such as CNN-based [34] and transformer-based [14,
28] models are applied to process visual features.
Various self-supervised pre-training objectives over
millions of documents have shown promising ef-
fects for VDU. Reconstructive objectives such
as masked language modelling (MLM) [8], and
masked image modelling, (MIM) [9], are often
used to perform the self-supervised document pre-
training [20, 34].

Since the textual knowledge is parsed from the
document image, existing efforts explore various
document granularities to align the vision and
language modalities. They can be generally di-
vided into four categories: 1) Word-level: Lay-
outLM [35] jointly models the inner-relationship
between texts and layout 2D positions from doc-
uments, via pre-trained language models [8, 24].
However, the visual features are not used in the pre-
training architecture. TILT [28] additionally adds
a contextualized image embedding to the word em-
bedding. 2) Grid/Patch-level: LayoutLMv2 [34],
DocFormer [2] and ERNIE-Layout [27] extract
image grid features with CNN backbones, and
LayoutLMv3 uses image patches to encode vi-
sual features inspired by ViT [9]. To achieve
the cross-modal alignment, they adopt the text-
image alignment (i.e., TIA) and matching (i.e.,
TIM) objectives during pre-training. 3) Object-
level: SelfDoc [23] and UniDoc [11] extract object
features via document object detectors, and con-
catenate them with word features. SelfDoc [23]
uses two cross-modality attention functions to
identify the inner-relationships from one modality
to another. UniDoc [11] designs the similarity-
preserving knowledge distillation to encourage
alignment between words and visual features. 4)
Cell-level: StructualLM [19] uses the textual fea-
tures of cell layout information, which is similar to
document textlines. However, it only considers the
textual feature without the visual information.

Different from existing works, we target at the
textline-level features of both textual and visual
modalities. We propose a hybrid dual- and single-
stream model architecture for multi-modal pretrain-
ing. Similar architectures are previously explored
in general multi-modal pretraining [22, 21], how-
ever, they mostly focus on learning the global vi-
sual and textual features over natural images. In-
stead, we aim to align the fine-grained knowledge
nested in document textlines. We believe such
an important granularity of documents can benefit
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Figure 2: Architecture of the proposed WUKONG-READER. The scanned document is sent to the image encoder
to extract visual features. Meanwhile, OCR tools are applied to extract words, bounding boxes as 2D positional
embeddings to the text encoder. WUKONG-READER is pre-trained with 1) masked language modeling (MLM);
2) textline-region contrastive learning (TRC) to learn fine-grained textline alignment; 3) masked region model-
ing (MRM) to enhance the visual representation of textlines; and 4) textline grid matching (TGM) which classifies
the words of selected textlines (blue) into different image grids (red). More details in Section 3.2.

both language and visual representation learning in
VDU tasks.

3 Methodology

We propose WUKONG-READER, a new pre-trained
multi-modal model for visual document under-
standing. Our model jointly encodes the visual
image and textual tokens via two mono-modal en-
coders, followed by a multi-modal encoder to fuse
the two modalities. To leverage the structural in-
formation nested in document textlines, We pro-
pose several novel pre-training objectives for fine-
grained representation learning of documents.

3.1 Model Architecture

The overall architecture of the proposed WUKONG-
READER is shown in Figure 2. WUKONG-READER

encodes the document image and text through sep-
arate encoders and then fuse the two modalities via
the multi-modal encoder. Besides, we also deploy
an RoIhead and an image decoder for fine-grained
learning over document textlines.

Image Encoder. We use the Mask-RCNN model
trained on PubLayNet1 to learn the visual repre-
sentations for WUKONG-READER. Specifically,
we use the visual backbone of Mask-RCNN as the
image encoder. The visual features from the im-
age encoder are adaptively pooled into 49 visual
tokens. The RoIHead of Mask-RCNN then extracts
the regional features of document textlines for con-
trastive learning with texts. Meanwhile, an image
decoder is also deployed to recover the visual fea-
tures over textline regions.

Text Encoder. Given a document image, we use
an off-the-shelf OCR tool to extract the textual in-
formation from the image, which includes both
the words and their corresponding bounding boxes.
Following [35, 34], we normalize the bounding
boxes within [0, 1000] and use 2D positional em-
bedding layers to encode the layout information.
We initialize the text encoder with the first six lay-
ers of the RoBERTa model, and employ the spatial-
aware self-attention mechanism following [34] in
the Transformer layers. We calculate the input em-
bedding as the summation of the token embedding

1We adopt the configuration of “MaskRCNN ResNeXt101
32x8d FPN 3X” as provided in https://github.com/
hpanwar08/detectron2.
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from RoBERTa tokenizer, 1D positional embed-
ding, 2D positional embedding and the segment
embedding following [34]. The input embedding is
then fed to the text encoder to get textual features.

Multimodal Encoder. We concatenate the token-
level features from both vision and text, and feed
them to the multi-modal encoder to jointly fuse the
two modalities. We initialize the multi-modal en-
coder with the rest layers of the RoBERTa model.
Before concatenation, we also add 1D and 2D posi-
tional embeddings to visual features following [34].

During inference, the model architecture also en-
joys model efficiency. Instead of concatenating the
visual and textual features together for self atten-
tion [34, 14], it would be computationally cheaper
to first obtain the single-modal representations with
respective encoders before fusion. Similar ideas
are also discussed in ALBEF [22] and BLIP [21].
Moreover, for downstream tasks such as informa-
tion extraction or document classification, the ROI
head and image decoder can be safely discarded to
further reduce the model size.

3.2 Pre-training Objectives

As the fundamental pre-training objective in model-
ing languages, we use the Masked Language Mod-
eling (MLM) to recover the masked word tokens in
the document text. We follow the standard mask-
ing strategy in BERT [8] and mask out 15% word
tokens. Besides, to prevent information leakage,
we also cover the corresponding image regions and
set their bounding boxes to zeros, following [34].

Despite the powerful effect of MLM, it fails to
explicitly leverage the visual information. We thus
propose to mine the fine-grained image-text align-
ment through multiple new pre-training objectives.

3.2.1 Textline-Region Contrastive Learning
As is shown Figure 1, a textline of a document re-
turned by OCR usually contains a set of words that
are semantically related. We are thus motivated to
exploit structural knowledge within it by textline-
region contrastive learning (TRC). Specifically, to
obtain the textual representation of a textline, we
average the features of tokens within that textline.
Besides the textual feature, we also employ a multi-
layer perception based RoIHead on top of the im-
age encoder to extract the visual feature correspond-
ing to the textline region in the document image.

Contrastive representation learning has been
widely used for vision-language cross-modal pre-

training [29, 37]. To enhance the alignment of a
document image and its textual content, we also uti-
lize contrastive learning to align the textline-region
and texts. For ease of presentation, we suppose
there is a batch of N document image-text pairs,
and each document has L textlines. For the n-
th document, denote ρn and τn as the visual and
textual feature of document textlines, respectively.
Note that we pad ρn and τn with 0 to length L
for documents with fewer than L textlines. For
each document image, its paired text is used as its
positive, and the texts from other documents are
used as its negatives. The contrastive learning from
image to text can be formulated as

L(ρm, τ 1:N ) = − 1

N
log

exp(s(ρm, τm))
∑N

n=1 exp(s(ρm, τn))
,

where s(ρm, τn) represents the similarity of the
m-th image to the n-th text computed in the gran-
ularity of textlines. By symmetry, the contrastive
objective from text to image is

L(τm,ρ1:N ) = − 1

N
log

exp(s(τm,ρm))
∑N

n=1 exp(s(τm,ρn))
.

The TRC objective thus sums the two terms as:

LTRC=
1

2

N∑

m=1

(
L(ρm, τ 1:N )+L(τm,ρ1:N )

)
. (1)

The cross-modal interaction is reflected in how
the similarity between the image and text is com-
puted. Existing contrastive learning methods sim-
ply calculate the similarity based on the global
feature of the image or text [34, 14, 27]. To es-
tablish fine-grained alignment over textlines, the
key lies in the following similarity metric. Inspired
by [37, 10] we adopt the average textline maximum
similarity which is computed as

s(ρm, τn) =
1

L

L∑

l=1

max
1≤k≤L

(
ρ⊤
m,lτn,k

)
, (2)

s(τm,ρn) =
1

L

L∑

l=1

max
1≤k≤L

(
ρ⊤
m,kτn,l

)
, (3)

where ρm,l represent the l-th textline of the m-th
visual feature, and τn,k similarly denotes the k-
th textline of the n-th textual feature, respectively.
The defined similarity shows that for each image
region of textlines, we find their most similar text
segments. Similarly, for each textline text, we also
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find its closest image region of textlines. With the
objective in Equation (1), such design intrinsically
encourages the fine-grained alignment between the
visual and textual features of textlines.

3.2.2 Masked Region Modeling
To enhance the visual representation of document
textlines, we further propose the Masked Region
Modeling (MRM) to recover the masked pixels of
textline regions during pre-training.

Specifically, for the n-th document image, we
randomly mask 15% textlines of the document for
recovery. A document textline is usually dominated
by white background pixels instead of foreground
characters. To avoid trivial solutions and balance
the foreground and background pixels in a textline,
we mask all black strokes as well as 15% of back-
ground pixels within each textline. Our pre-training
objective is to predict these masked pixels based on
their surroundings. On top of the image encoder,
we use three deconvolution layers as the image de-
coder to recover the textline visual features ρ̃mask

n .
As the pre-training objective of MRM, we adopt
the ℓ1 loss [23] between the reconstructed ρ̃mask

n

and the original ρn:

LMRM =

N∑

n=1

ℓ1(ρn, ρ̃
mask
n ). (4)

Note that if a masked textline contains masked
tokens introduced in the MLM task, we do not
calculate the reconstruction loss for this token.

3.2.3 Textline Grid Matching
Aside from enhancing the visual representations
of textlines, layout information of textlines also
plays an important role for visual document un-
derstanding. We thus introduce the Textline Grid
Matching (TGM) to explicitly model the layout of
each word in textlines.

Specifically, we first split each document image
into G pre-defined grids. Then we randomly sam-
ple 15% textlines that are not used in MLM and
MRM, and predict which grid each output token in
the selected textline belongs to. For the n-th doc-
ument, suppose we sampled L′ textlines. We first
transform the output from the multi-modal encoder
to obtain a set of grid logits yl,1:Tl

, where Tl is the
number of words in the l-th textline. To avoid leak-
age of position information, we set the 2D bound-
ing boxes of tokens in the selected textlines as [0,
0, 0, 0]. We then classify the grid logits into the

G classes over the image, by minimizing the cross-
entropy loss ℓce as

LTGMn =

L′∑

l=1

Tl∑

t=1

ℓce(yl,t, gl,t),

where gl,t is the corresponding ground-truth label
of yl,t. The Texline Grid Matching loss for a mini-
batch is the summation over all the documents in
this batch:

Ltgm =
1

N

N∑

n=1

LTGMn . (5)

Compared with the previous TIA loss in Lay-
outLMv2 [34] which simply classifies whether a to-
ken is masked, TGM enhances the layout informa-
tion via explicit grid localization from both nearby
unmasked textual tokens and visual regions.

The total pre-training loss is the combination of
the four pre-training objectives introduced above:

Ltotal = LMLM + λ1LTRC + λ2LMRM + λ3LTGM,

where λ1, λ2 and λ3 are the scaling parameters that
control the weights of different loss terms. For
simplicity, we choose λ1 = 0.2, λ2 = λ3 = 1
for all our experiments. It is possible that better
performance can be achieved with a more careful
tuning of these scaling parameters.

4 Experiments

In this section, we empirically verify the proposed
WUKONG-READER across different VDU tasks in
both English and Chinese. We first introduce the
experimental setup and the main results on English
VDU tasks in Section 4.1 and Section 4.2, respec-
tively. Section 4.3 provides further discussion, e.g.,
ablations and localization abilities. Finally, we
also investigate the ability of Wukong-Reader in
Chinese in Section 4.4. The implementation of
WUKONG-READER is based on MindSpore [1].

4.1 Experimental Setup
Model Configuration. We study the proposed
model in two sizes: WUKONG-READERbase and
WUKONG-READERlarge. For both sizes, we use
the pre-trained MaskRCNN model to initialize the
image encoder, including the ResNet-101 visual
backbone and the multi-layer-perception based RoI-
Head. RoBERTa-base and RoBERTa-large2 are

2RoBERTa-base and RoBERTa-large are downloaded
from https://huggingface.co/roberta-base/
tree/main and https://huggingface.co/
roberta-large/tree/main, respectively.

13390

https://huggingface.co/roberta-base/tree/main
https://huggingface.co/roberta-base/tree/main
https://huggingface.co/roberta-large/tree/main
https://huggingface.co/roberta-large/tree/main


Model # Param. Modality Granularity FUNSD
(F1↑)

CORD
(F1↑)

SROIE
(F1↑)

RVL-CDIP
(Acc↑)

BERTbase [8] 110M T Word 60.26 89.68 90.99 89.91
RoBERTabase [24] 125M T Word 66.48 93.54 - -
UniLMv2base [3] 125M T Word 66.48 90.92 90.06
SelfDoc [23] 137M T+I Object 83.36 - - 93.81
UniDoc [11] 272M T+I Object 87.93 98.94 - 95.05
TILTbase [28] 230M T+I Word - 95.11 - 95.25
DocFormerbase [2] 183M T+I Grid/Patch 83.34 96.33 -
LayoutLMbase [35] 160M T+I Grid/Patch 79.27 - 94.38 94.42
LayoutLMv2base [34] 200M T+I Grid/Patch 82.76 94.95 96.25 95.25
LayoutLMv3base [14] 133M T+I Grid/Patch 90.29 96.56 - 95.44
WUKONG-READERbase 211M T+I Textline 91.52 96.54 96.88 94.91

BERTlarge [8] 340M T Word 65.63 90.25 92.00 89.81
RoBERTalarge [24] 355M T Word 70.72 - 92.80 -
UniLMv2large [3] 355M T Word 72.57 82.05 94.88 90.20
TILTlarge [28] 780M T+I Word - 96.33 98.10 95.52
StructuralLMlarge [19] 355M T Textline 85.14 - - 96.08
LayoutLMlarge [35] 343M T+I Grid/Patch 78.95 94.93 95.24 94.43
LayoutLMv2large [34] 426M T+I Grid/Patch 84.20 96.01 97.81 95.64
LayoutLMv3large [14] 368M T+I Grid/Patch 92.08 97.46 - 95.93
ERNIE-Layoutlarge [27] - T+I Grid/Patch 93.12 97.21 97.55 96.27
WUKONG-READERlarge 442M T+I Textline 93.62 97.27 98.15 95.26

Table 1: The entity-level F1 scores for information extraction on form (FUNSD) and receipt understanding (CORD
and SROIE), and accuracies on the document classification task (RVL-CDIP). “T” and “I” refer to the text and
image modality, respectively.

used to initialize the rest parts of the base and large
models, respectively. We fix the textual encoder
with 6 transformer layers, and use the rest Trans-
former layers of the RoBERTa model for the multi-
modal encoder. Following [34, 14], the image is
cropped to 224×224 resolution and then adaptively
pooled into 49 visual tokens by the image encoder.
We fix the sequence length of the textual encoder
as 512, and hence 561 for the multi-modal en-
coder. For textline-region contrastive learning, we
truncate the first 64 textlines for each document.
We evaluate WUKONG-READER on various docu-
ment understanding tasks: information extraction
and document classification in Section 4.2, layout
analysis in Appendix B.1, and document visual-
question answering in Appendix B.2.

Compared Methods. We compare WUKONG-
READER against the following methods with
different granularities: (i) Word-level features:
BERT [8] and RoBERTa [24] trained with the con-
ventional masked-language modeling over words.
LayoutLM [35] and TILT [28] obtains words’
bounding boxes from OCR and add them to the
paired text embeddings. (ii) Grid/patch-level fea-
tures: LayoutLMv2 [34] and DocFormer [2] ex-

tract image grid features with a CNN backbone,
and LayoutLMv3 uses ViT [9] to encode image
patches; (iii) Object-level features: SelfDoc [23]
and UniDoc [11] concatenate text embeddings with
region features from object detectors; and (iv)
Textline-level features: StructuralLM [19] lever-
ages the cell-level text and layout information.

Pre-training. Following previous studies [35,
34], we adopt the IIT-CDIP Test Collection
dataset [18] for pre-training, which contains 11M
document images from various industrial domains.
We extract the texts and bounding boxes using our
internal OCR tool. We use 64 Ascend 910 acceler-
ators for pre-training, and the batch size of 24 per
device. We use the Adam optimizer [17]. The learn-
ing rate is linearly warmed up to 1e-4 within the
first 10% iterations, and then linearly decayed to 0.
The weight decay is set as 1e-2. To save running
memory we also enable gradient checkpointing [5]
and FP16 training. We conduct pre-training for 10
epochs, which takes around 3 days and 5 days on
64 accelerators respectively.
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4.2 Main Results

4.2.1 Information Extraction.
Datasets and Evaluation Metric. For informa-
tion extraction, we evaluate over three datasets:
FUNSD [16], CORD [26], and SROIE [15]. Fol-
lowing [35, 34, 14], we build a token classifi-
cation layer on top of the multi-modal encoder,
and predict the BIO tags for each entity field for
FUNSD, CORD and SROIE. The weighted F1
score is used as the evaluation metric. Follow-
ing StructuralLM [19] and LayoutLMv3 [14], we
use the cell bounding box of each token in substi-
tution of word bounding boxes. Similar to Lay-
outLMv2 [34], we use entity-level F1 score on
SROIE, and correct OCR mismatch as the official
OCR annotations are inconsistent with the test set
provided by the official evaluation site. More de-
tails of these datasets can be found in Appendix A.

Results. According to Table 1, our model gener-
ally outperforms existing baselines on both scales.
Specifically, we achieve 91.52 and 93.62 weighted
F1 score on FUNSD for WUKONG-READERbase
and WUKONG-READERlarge, respectively. Both
results are 1.23 to 1.56 points higher than Lay-
outLMv3, the previous SOTA models on document
understanding. On CORD, our models also achieve
comparable performances to state-of-the-art meth-
ods like LayoutLMv3. For SROIE, we again lead
the performance with 96.88 and 98.15 weighted
F1 scores on the base and large model, superior to
LayoutLMv2 by 0.63 and 0.34 points, respectively.

4.2.2 Document Classification.
Datasets and Evaluation Metric. For document
classification, we use the RVL-CDIP dataset [13],
which contains around 400K industrial documents
in 16 classes. Following [34], we use the pre-
encoder and post-encoder visual features, together
with the [CLS] token of the multi-modal encoder
for document classification. By default, we per-
form fine-tuning for 10 epochs over 8 Ascend 910
accelerators, with the batch size of 24 per accelera-
tor. The classification accuracy is used for evalua-
tion. We set the learning rate to 5e-5 with the same
scheduler to pre-training, and the weight decay is
1e-2.

Results. From the last column in Table 1, the
proposed WUKONG-READERbase and WUKONG-
READERlarge achieve the competitive 94.91% and
95.26% accuracies among the baselines, and have

(a) Total loss. (b) MLM loss.

Figure 3: The training curves in terms of total loss
and MLM loss for pre-training with different training
objectives.

room for further improvement.

4.3 Discussions
Ablation Study of Training Objectives. We
provide a comprehensive study on the effect of
the different pre-training objectives on WUKONG-
READERlarge over each downstream dataset. To
better understand how these proposed objectives
affect visual document understanding, we compare
with the following settings: (i) the MLM objective;
and (ii) the MLM and MRM objectives; and (iii)
the MLM, MRM and TRC objectives; and (iv) the
MLM, MRM, TRC and TGM objectives.

From Table 2, it can be found that training with
only MLM objective leads to a significant perfor-
mance drop. When MRM is used, the performance
of each task is consistently improved, e.g., 2.27
and 3.36 F1 scores on FUNSD and CORD, respec-
tively. Moreover, the TRC objective enhances the
fine-grained visual and textual representation learn-
ing, and further improves the F1 score of FUNSD
by 0.84. Finally, the TGM objective can further
boost the performance of sequence labeling tasks,
improving the F1 score by 0.81 on FUNSD.

Further Analysis of MRM. We visualize the
training curves of both total loss and MLM loss in
Figure 3(a) and Figure 3(b). It can be found that
with only the MLM objective, the training fails as
a result of NaN errors at early training steps, as
indicated by the red ×. Thus we have to lower
the learning rate to 1e-5 to finish the pre-training.
However, when armed with MRM loss, the train-
ing stabilize and the overall process can be easily
finished with a larger learning rate of 1e-4. We hy-
pothesize that the enhanced visual features can help
stabilize the pre-training. In addition, the MRM ob-
jective significantly improves the task performance.
We notice that even only using self-reconstruction
losses such as MLM and MRM, the pre-trained
model can still achieve a relatively good perfor-
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Pre-training Objectives FUNSD CORD SORIE RVL-CDIP

MLM 89.70 93.48 97.23 92.67
MLM+MRM 91.97(+2.27) 96.84(+3.36) 97.64(+0.41) 94.36(+1.69)

MLM+MRM+TRC 92.81(+0.84) 97.16(+0.32) 97.64(+0.00) 94.47(+0.11)

MLM+MRM+TRC+TGM 93.62(+0.81) 97.27(+0.11) 98.15(+0.51) 95.26(+0.79)

Table 2: Ablation study on the pre-training objectives with WUKONG-READERlarge. All models are pre-trained for
10 epochs, and the fine-tuning settings are consistent with Table 1. The subscript numbers in the brackets represent
the relative improvement with the ablated objectives.

(a) Align Acc = 83.3%. (b) Align Acc = 83.9%.

Figure 4: Visualization of learned textline-region align-
ment. The green and red textline bounding boxes denote
the correct and incorrect alignment, respectively.

mance. It shows the self-reconstruction objective
on each separate modality serves to facilitate the
implicit cross-modal interaction.

Visualization of TRC. We also study the
WUKONG-READER’s capability of capturing fine-
grained cross-modal localization of textlines. We
use the WUKONG-READERlarge model, and visu-
alize the textline-region alignment in Figure 4,
where the green and red boxes denote the correctly
and incorrectly aligned pairs. Following [37], we
compute the alignment scores of textual and vi-
sual textline representations based on Equation (2).
From Figure 4, WUKONG-READER automatically
learns to align the textline with its correspond-
ing visual regions, with above 80+% accuracies.
The learned alignment between two modalities im-
plicitly explains the powerful effect of WUKONG-
READER in various downstream tasks. This abil-
ity of WUKONG-READER provides a promising
multimodal solution towards document localiza-
tion tasks, instead of using naive text matching
based on OCR results.

Model Efficiency With superior performance on
information extraction and classification in Sec-
tion 4.2, WUKONG-READER has similar param-
eters size (i.e., 211M and 442M) with other base-

Model SER
(F1↑)

RE
(F1↑)

EPHOIE
(F1↑)

LayoutXLMbase [36] 89.24 70.73 97.59
LiLT [30] 89.38 72.97 97.97
LayoutLMv3base [14] - - 99.21
WUKONG-READERbase 89.40 79.18 99.25

LayoutXLMlarge [36] 91.61 78.88 -
VIES [31] - - 95.23
TCPN [32] - - 97.59
WUKONG-READERlarge 91.02 87.19 99.63

Table 3: The F1 scores on the XFUND and EPHOIE
dataset. “SER” denotes the semantic entity recognition
task of XFUND and “RE” denotes the relation extrac-
tion task of XFUND. The EPHOIE dataset only has the
information extraction task that is similar to SER.

lines, according to Table 1. As mentioned in Sec-
tion 3.1, the model architecture is also computation-
ally cheaper. For instance, it takes 375.4G FLOPs
for the WUKONG-READERlarge model, while Lay-
outLMv2 and LayoutLMv3 require 379.0G and
431.7G FLOPs, respectively. We also compare the
inferece latency: WUKONG-READER takes 340ms
and 794ms for the base and large models, both of
which are faster than LayoutLMv3, i.e., 346ms and
964ms for the base and large sizes respectively.

4.4 WukongReader in Chinese

We also evaluate WUKONG-READER on Chinese
VDU tasks. We collect a large-scale Chinese doc-
ument collection with 8 million documents, and
follow the same pre-training setting as the English
the IIT-CDIP Test Collection dataset [18]. The de-
tails of data collection are left in Appendix C. We
intialize the backbone with XLM-Roberta [6] for
the text and multimodal encoders3. We also follow
XLM-Roberta to use SentencePiece with a unigram

3XLM-Roberta-base and XLM-RoBERTa-large are
downloaded from https://huggingface.co/
xlm-roberta-base and https://huggingface.
co/xlm-roberta-large, respectively.
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language modela as the tokenizer.
We fine-tune WUKONG-READER on two Chi-

nese VDU tasks: 1) XFUND [36] for information
extraction and relation extraction; 2) EPHOIE [31]
for information extraction. For XFUND, we follow
the language-specific fine-tuning setting in [36],
i.e., the fine-tuning and testing are both operated
on the Chinese subset of XFUND. We report F1
scores for evaluation. More details regarding to
these two datasets are be found in Appendix A.

Results. Table 3 shows that our WUKONG-
READERbase and WUKONG-READERlarge still
achieve superior performance on most metrics in
Chinese document understanding tasks. In particu-
lar, our model takes a new state-of-the-art F1 score
of 85.82% on the relation extraction of XFUND
and 99.63% on the EPHOIE dataset. Note that Lay-
outXLM [36] and LayoutLMv3 [14] use 30 million
and 50 million documents for pre-training, which
are far more than our 8 million data. Therefore, this
verifies that our fine-grained pre-training objectives
are more data-efficient and effective.

5 Conclusion

In this paper, we propose WUKONG-READER, a
multi-modal pre-trained model for fine-grained vi-
sual document understanding. Unlike existing solu-
tions that ignore the intrinsic textual segment infor-
mation, our WUKONG-READER aims to leverage
the semantics in textline regions of documents, by
aligning with the visual and textual contents over
document textlines via textline-region contrastive
learning. Meanwhile, we also propose masked re-
gion modeling and textline grid matching to further
enhance the visual and layout information of docu-
ment textlines. We evaluate WUKONG-READER on
various visual document understanding tasks such
as information extraction and document classifica-
tion, and the proposed model demonstrates superior
performance against previous counterparts.

Limitations

The potential limitations of this work are that
Wukong-Reader has fixed sequence length that may
prevent it from modeling long and multi-page doc-
uments. Therefore it would be promising to handle
varying-length inputs for Wukong-Reader by, for
instance, equipping the model with relative posi-
tional embeddings of the model backbone. Ad-
ditionally, the pre-training objectives used in this

work may not be applicable to all VDU tasks. For
instance, it can be hardly applied in abstractive
question answering or document summarization.

Ethics Statement

Wukong-Reader inherits the publically released
RoBERTa model [24], where the checkpoint may
contain some harmful information learned from the
pre-trained corpus. Meanwhile, Wukong-Reader is
further pre-trained on the IIT-CDIP Test Collection
dataset [18] or the collected large-scale Chinese
document corpus, where there can be also improper
expressions. Although we have developed rules to
manually filter out harmful expressions from the
OCR-recognized texts during pre-processing, it is
not guaranteed that all harmful information can be
removed.

Acknowledgement

We gratefully acknowledge the support of Mind-
Spore for this research, as well as the insightful
suggestions from the anonymous reviewers.

References
[1] Mindspore. https://www.mindspore.cn.

[2] Srikar Appalaraju, Bhavan Jasani, Bhargava Urala
Kota, Yusheng Xie, and R Manmatha. Docformer:
End-to-end transformer for document understanding.
In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 993–1003, 2021.

[3] Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang,
Nan Yang, Xiaodong Liu, Yu Wang, Jianfeng Gao,
Songhao Piao, Ming Zhou, et al. Unilmv2: Pseudo-
masked language models for unified language model
pre-training. In International Conference on Ma-
chine Learning, pages 642–652. PMLR, 2020.

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with trans-
formers. In Andrea Vedaldi, Horst Bischof, Thomas
Brox, and Jan-Michael Frahm, editors, Computer
Vision – ECCV 2020, pages 213–229, Cham, 2020.
Springer International Publishing.

[5] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. Training deep nets with sublinear memory
cost. arXiv preprint arXiv:1604.06174, 2016.

[6] Alexis Conneau, Kartikay Khandelwal, Naman
Goyal, Vishrav Chaudhary, Guillaume Wenzek, Fran-
cisco Guzmán, Edouard Grave, Myle Ott, Luke
Zettlemoyer, and Veselin Stoyanov. Unsupervised

13394

https://www.mindspore.cn


cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online, July 2020. Association for Computa-
tional Linguistics.

[7] Lei Cui, Yiheng Xu, Tengchao Lv, and Furu Wei.
Document ai: Benchmarks, models and applications.
arXiv preprint arXiv:2111.08609, 2021.

[8] J. Devlin, M. Chang, K. Lee, and K. Toutanova. Bert:
Pre-training of deep bidirectional transformers for
language understanding. In North American Chap-
ter of the Association for Computational Linguistics,
2019.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on
Learning Representations, 2020.

[10] Jiaxi Gu, Xiaojun Meng, Guansong Lu, Lu Hou,
Minzhe Niu, Hang Xu, Xiaodan Liang, Wei Zhang,
Xin Jiang, and Chunjing Xu. Wukong: 100 mil-
lion large-scale chinese cross-modal pre-training
dataset and a foundation framework. arXiv preprint
arXiv:2202.06767, 2022.

[11] Jiuxiang Gu, Jason Kuen, Vlad I Morariu, Han-
dong Zhao, Rajiv Jain, Nikolaos Barmpalios, Ani
Nenkova, and Tong Sun. Unidoc: Unified pretraining
framework for document understanding. Advances
in Neural Information Processing Systems, 34:39–50,
2021.

[12] Zhangxuan Gu, Changhua Meng, Ke Wang, Jun
Lan, Weiqiang Wang, Ming Gu, and Liqing Zhang.
Xylayoutlm: Towards layout-aware multimodal net-
works for visually-rich document understanding. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 4583–
4592, 2022.

[13] Adam W Harley, Alex Ufkes, and Konstantinos G
Derpanis. Evaluation of deep convolutional nets for
document image classification and retrieval. In 2015
13th International Conference on Document Analysis
and Recognition, pages 991–995, 2015.

[14] Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu,
and Furu Wei. Layoutlmv3: Pre-training for doc-
ument ai with unified text and image masking. In
Proceedings of the 30th ACM International Confer-
ence on Multimedia, page 4083–4091, 2022.

[15] Zheng Huang, Kai Chen, Jianhua He, Xiang Bai,
Dimosthenis Karatzas, Shijian Lu, and CV Jawahar.
Icdar2019 competition on scanned receipt ocr and
information extraction. In 2019 International Confer-
ence on Document Analysis and Recognition, pages
1516–1520. IEEE, 2019.

[16] Guillaume Jaume, Hazim Kemal Ekenel, and Jean-
Philippe Thiran. Funsd: A dataset for form under-
standing in noisy scanned documents. In 2019 In-
ternational Conference on Document Analysis and
Recognition Workshops, volume 2, pages 1–6. IEEE,
2019.

[17] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[18] David Lewis, Gady Agam, Shlomo Argamon,
Ophir Frieder, David Grossman, and Jefferson Heard.
Building a test collection for complex document in-
formation processing. In Proceedings of the 29th
annual international ACM SIGIR conference on Re-
search and development in information retrieval,
pages 665–666, 2006.

[19] Chenliang Li, Bin Bi, Ming Yan, Wei Wang, Song-
fang Huang, Fei Huang, and Luo Si. StructuralLM:
Structural pre-training for form understanding. In
Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistic, pages 6309–
6318, 2021.

[20] Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha
Zhang, and Furu Wei. Dit: Self-supervised pre-
training for document image transformer. In Pro-
ceedings of the 30th ACM International Conference
on Multimedia, page 3530–3539, New York, NY,
USA, 2022. Association for Computing Machinery.

[21] Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding
and generation. arXiv preprint arXiv:2201.12086,
2022.

[22] Junnan Li, Ramprasaath Selvaraju, Akhilesh Got-
mare, Shafiq Joty, Caiming Xiong, and Steven
Chu Hong Hoi. Align before fuse: Vision and lan-
guage representation learning with momentum distil-
lation. In Advances in Neural Information Process-
ing Systems, volume 34, pages 9694–9705, 2021.

[23] Peizhao Li, Jiuxiang Gu, Jason Kuen, Vlad I
Morariu, Handong Zhao, Rajiv Jain, Varun Manju-
natha, and Hongfu Liu. Selfdoc: Self-supervised
document representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5652–5660, 2021.

[24] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa:
A robustly optimized BERT pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

[25] Minesh Mathew, Dimosthenis Karatzas, and
CV Jawahar. Docvqa: A dataset for vqa on document
images. In Proceedings of the IEEE/CVF winter con-
ference on applications of computer vision, pages
2200–2209, 2021.

13395



[26] Seunghyun Park, Seung Shin, Bado Lee, Junyeop
Lee, Jaeheung Surh, Minjoon Seo, and Hwalsuk Lee.
Cord: a consolidated receipt dataset for post-ocr
parsing. In Workshop on Document Intelligence at
NeurIPS 2019, 2019.

[27] Qiming Peng, Yinxu Pan, Wenjin Wang, Bin Luo,
Zhenyu Zhang, Zhengjie Huang, Teng Hu, Wei-
chong Yin, Yongfeng Chen, Yin Zhang, et al. Ernie-
layout: Layout knowledge enhanced pre-training
for visually-rich document understanding. arXiv
preprint arXiv:2210.06155, 2022.

[28] Rafał Powalski, Łukasz Borchmann, Dawid Ju-
rkiewicz, Tomasz Dwojak, Michał Pietruszka, and
Gabriela Pałka. Going full-tilt boogie on document
understanding with text-image-layout transformer. In
International Conference on Document Analysis and
Recognition, pages 732–747. Springer, 2021.

[29] Alec Radford, Jong Wook Kim, Chris Hallacy,
Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack
Clark, et al. Learning transferable visual models
from natural language supervision. In International
Conference on Machine Learning, pages 8748–8763.
PMLR, 2021.

[30] Jiapeng Wang, Lianwen Jin, and Kai Ding. LiLT:
A simple yet effective language-independent layout
transformer for structured document understanding.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 7747–7757. Association for
Computational Linguistics, May 2022.

[31] Jiapeng Wang, Chongyu Liu, Lianwen Jin, Guozhi
Tang, Jiaxin Zhang, Shuaitao Zhang, Qianying Wang,
Yaqiang Wu, and Mingxiang Cai. Towards robust vi-
sual information extraction in real world: new dataset
and novel solution. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages
2738–2745, 2021.

[32] Jiapeng Wang, Tianwei Wang, Guozhi Tang, Lian-
wen Jin, Weihong Ma, Kai Ding, and Yichao Huang.
Tag, copy or predict: A unified weakly-supervised
learning framework for visual information extrac-
tion using sequences. In Zhi-Hua Zhou, editor, Pro-
ceedings of the Thirtieth International Joint Confer-
ence on Artificial Intelligence, IJCAI-21, pages 1082–
1090. International Joint Conferences on Artificial
Intelligence Organization, 8 2021. Main Track.

[33] Zilong Wang, Yiheng Xu, Lei Cui, Jingbo Shang,
and Furu Wei. LayoutReader: Pre-training of text
and layout for reading order detection. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 4735–4744,
2021.

[34] Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu
Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha
Zhang, Wanxiang Che, Min Zhang, and Lidong Zhou.
LayoutLMv2: Multi-modal pre-training for visually-
rich document understanding. In Proceedings of the

59th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2579–2591, 2021.

[35] Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang,
Furu Wei, and Ming Zhou. Layoutlm: Pre-training
of text and layout for document image understanding.
In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, pages 1192–1200, 2020.

[36] Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang,
Yijuan Lu, Dinei Florencio, Cha Zhang, and Furu
Wei. Layoutxlm: Multimodal pre-training for multi-
lingual visually-rich document understanding. arXiv
preprint arXiv:2104.08836, 2021.

[37] Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu,
Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo Li,
Xin Jiang, and Chunjing Xu. Filip: Fine-grained
interactive language-image pre-training. In Inter-
national Conference on Learning Representations,
2022.

[38] Xu Zhong, Jianbin Tang, and Antonio Jimeno
Yepes. Publaynet: largest dataset ever for document
layout analysis. In 2019 International Conference
on Document Analysis and Recognition, pages 1015–
1022. IEEE, 2019.

13396



A Downstream Tasks

We comprehensively evaluate WUKONG-READER

on various VDU tasks in both English and Chinese.
We summarize the downstream dataset used for
evaluation as follows.

FUNSD [16] consists of noisy scanned docu-
ments and aims at understanding the structure of
textual content of forms. It contains 199 fully la-
belled real scanned images, including 149 training
samples and 50 test documents. We follow [34]
to use the entity-level F1 to evaluate the model
performance.

CORD [26] is a consolidated dataset for receipt
parsing. CORD collected over 11,000 Indonesian
receipt images from shops and restaurants. The
dataset comprises 800, 100, and 100 receipt sam-
ples for training, validation, and testing. We adopt
entity-level F1 and transcript of CORD for training
and evaluation.

SROIE [15] contains 1000 scanned receipt im-
ages for text recognition and key information ex-
traction. SROIE annotated 626 and 347 receipts
for training and test, respectively. The dataset la-
belled four entities: company, date, address, and
total. We correlate the entity annotation files with
OCR results to generate ground-truth BIO labels
for training and testing. During inference, we ex-
tract entities according to BIO labeling results and
employ the entity-level F1 for evaluation. We use
the official OCR annotations, however which con-
tain OCR mismatch and are inconsistent with test
set provided by the official evaluation site. There-
fore, LayoutLMv2 [34] and other top methods on
SROIE leaderboard4 claim to exclude OCR mis-
match and fix total entities. We thus follow the
same evaluation protocol as these methods to cor-
rect OCR mismatch via post-processing on entities.

RVL-CDIP [13] contains around 400K indus-
trial document images in 16 classes, such as forms,
advertisements, and letters, among which 360K
and 40K are selected for training and testing. We
extract text and layout information using Huawei-
developed text recognition algorithms. We use the
overall classification accuracy as the evaluation
metric. We use the official OCR annotations, how-
ever which are inconsistent with test set provided

4https://rrc.cvc.uab.es/?ch=13&com=
evaluation&task=3

by the official evaluation site. We thus follow Lay-
outLMv2 [34] to post-process extracted entities
and correct OCR mismatch.

PubLayNet [38] is a collection of research paper
documents, with 355,703 training images and and
11, 245 validation images, respectively. The anno-
tation of the dataset follows the object detection
task of MS COCO, where each object is assigned
with a bounding box and one of the five categories:
figure, list, text, table and title.

DocVQA [25] contains 50,000 manually de-
signed questions over 12,767 industrial document
images. These scanned documents include various
categories: figure/diagram, form, table/list, layout,
free text, image/photo, handwritten characters, yes
or no and others. We use the Microsoft OCR tool
to extract the text and their bounding boxes. We
also re-organize the OCR recognized text based on
reading order of human, i.e., we heuristically clus-
ter the word bounding box based on their intervals.
This can be beneficial for documents with irregular
layouts. For instance, reading from left to right
in double column documents may fail to produce
natural text.

XFUND [36] is a multilingual form understand-
ing benchmark dataset including 7 languages (Chi-
nese, Japanese, Spanish, French, Italian, Ger-
man, Portuguese). This dataset provides human-
annotated key-value pairs from form documents,
and thus the goal is to perform key-value extraction
with two sub-tasks: semantic entity recognition and
relation extraction. The experiment in this paper
only uses the Chinese source, which has 10288
and 3629 entities for training and test set, respec-
tively. We follow the same methods as used in
LayoutXLM [36] to perform these two sub-tasks.

EPHOIE [31] is a visual information extraction
dataset on Chinese examination paper heads. It con-
tains 1,494 images (1183 for training and 311 for
testing) with human annotations for 15,771 Chinese
text instances. Similar to the semantic entity recog-
nition in XFUND, EPHOIE is also a token-level
entity labelling task with ten pre-defined categories,
and thus we use the same fine-tuning method for
SER and EPHOIE.
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Model Framework Backbone Modality Text Title List Table Figure mAP
Publaynet[38] Mask R-CNN ResNet-101 Vision 91.6 84.0 88.6 96.0 94.9 91.0
Ditbase[20] Mask R-CNN Transformer Vision 93.4 87.1 92.9 97.3 96.7 93.5
UniDoc[11] Faster R-CNN ResNet-50 Vision 93.9 88.5 93.7 97.3 96.4 93.9
DiTbase[20] Cascade R-CNN Transformer Vision 94.4 88.9 94.8 97.6 96.9 94.5
LayoutLMv3base[14] Cascade R-CNN Transformer Vision 94.5 90.6 95.5 97.9 97.0 95.1
Wukong-Readebase DETR[4] ResNet-101 Vision 94.7 90.8 95.8 98.0 97.2 95.3
Wukong-Readebase DETR[4] ResNet-101 Vision+Text 95.5 91.1 96.6 98.2 97.4 96.0

Table 4: Results on the Publaynet dataset.

Model ANLS

LayoutLMv2base 78.0
LayoutLMv2base

∗ 74.0
WUKONG-READERbase 74.1
WUKONG-READERlarge 78.9

Table 5: Results on the DocVQA dataset.

B More Experiments

B.1 Layout Analysis

Datasets and Evaluation Metric. We use the
PublayNet dataset [38] for layout analysis. Follow-
ing standard practice of object detection, we use
the mean average precision (MAP) and intersection
over union (IOU) [0.50:0.95] of bounding boxes to
evaluate the model performance.

In contrast to previous methods [14, 11] that
solely employ the vision encoder to detect doc-
ument elements, we propose to reuse the multi-
modal features for layout analysis task to ex-
plore the effectiveness of our multi-modal encoder.
Specifically, we design a feature selection decoder
similar to [4] on top of the multi-modal encoder,
which enables us to detect document layouts using
both vision and text. We apply the ADAM opti-
mizer with a total batch size of 32 over 8 AI proces-
sors. Both the base learning rate and weight decay
are set to 4e-4, and a linear learning rate scheduler
is used. We train the model for 10 epochs on the
training set and evaluate the performance on the
validation set.

Results. We demonstrate the results on Publaynet
in Table 4. We first feed only the visual backbone
of Wukong-Readerbase to the transformer decoder
following[4], which achieves 95.3 mAP scores and
leads the previous vision-based methods [14, 11,
20]. Additionally, we can further improve the mAP
score to 96.0 when employing the multi-modal fea-

Figure 5: The ANLS scores of each category in
DocVQA achieved by WUKONG-READERlarge.

tures by Wukong-Readerbase, outperforming the
rest baselines with a clear margin. This again ver-
ifies the effectiveness of the learned multi-modal
representations from WUKONG-READER.

B.2 Document Question Answering

Datasets and Evaluation Metric. For docu-
ment question answering, we use the DocVQA
dataset [25], which contains 50,000 questions over
12,000 pages of various industrial documents. We
use the official website for evaluation5, which
compares the extracted answer span with the
ground-truth and reports the averaged normalized
Levesitein distance (ANLS).

Results. The results on DocVQA are listed in
Table 5. For LayoutLMv2-base [34], we report the
best reproduced result marked as ∗. As suggested
by existing methods [34], leveraging the additional
techniques of post-processing, data augmentation
and model ensemble contributes a lot to this per-
formance, while we leave this exploration to the
future work. Overall, our WUKONG-READERbase
and WUKONG-READERlarge achieve 74.1 and 78.9
ANLS score, respectively. This is comparable to

5https://rrc.cvc.uab.es/?ch=17&com=
introduction
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the competitive LayoutLMv2 without using addi-
tional techniques. For instance, LayoutLMv2 is
initialized from UniLMv2 [3] that naturally owns
a more powerful question answering ability than
RoBERTa. Unfortunately, we are unable to access
UniLMv2 model since it is not publicly released yet
and thus our model was initialized from RoBERTa.
We also visualize the ANLS score of each class in
DocVQA returned by our WUKONG-READERlarge
in Figure 5. Our model can perform reasonably
well on “Form” and “Layout” with around 80.0
ANLS scores, yet there is still room for improve-
ment for categories such as “Figure” and “Image”.

C Preparing the Chinese Pre-training
Document Corpus

We also collect a 8 million Chinese document cor-
pus to validate WUKONG-READER in Chinese.
The collection comes from various resources: the
Chinese documents from Common Crawl6; the
static Chinese HTML dumps of Wikipedia7 and
publicly available Chinese digital books, contracts
and IPO (Initial Public Offering) documents via the
official Chinese websites.8 To obtain the textual
and layout information of the collected documents,
we first obtain the character-level bounding boxes
via OCR. Then we calculate the bounding box of
each token by merging the bounding boxes of all
characters it contains. Thus the output format is
consistent with those in the IIT-CDIP Test Collec-
tion dataset [18].

6https://commoncrawl.org/
7https://dumps.wikimedia.org/
8http://www.sse.com.cn/ & http://www.szse.cn/
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