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Abstract

Recent advances in pre-trained language mod-
els (PLMs) have facilitated the development of
commonsense reasoning tasks. However, ex-
isting methods rely on multi-hop knowledge
retrieval and thus suffer low accuracy due to
embedded noise in the acquired knowledge. In
addition, these methods often attain high com-
putational costs and nontrivial knowledge loss
because they encode the knowledge indepen-
dently of the PLM, making it less relevant to the
task and resulting in a poor local optimum. In
this work, we propose Multi-View Knowledge
Retrieval with Prompt Tuning (MVP-Tuning).
Our MVP-Tuning leverages similar question-
answer pairs in training set to improve knowl-
edge retrieval and employs a single prompt-
tuned PLM to model knowledge and input text
jointly. We conduct our experiments on five
commonsense reasoning QA benchmarks to
show that MVP-Tuning outperforms all other
baselines in 4 out of 5 datasets with only as
most 2% trainable parameters. The ensemble
of our MVP-Tuning models even gets a new
state-of-the-art performance on OpenBookQA
and is ranked first place on the leaderboard1.
Our code and data are available2.

1 Introduction

Endowing machines with human-like common-
sense reasoning capabilities has gained increas-
ing interest in natural language processing in re-
cent years (Talmor et al., 2019; Rajpurkar et al.,
2018). Large pre-trained language models (De-
vlin et al., 2018; Radford et al., 2019; Yang et al.,
2019; Brown et al., 2020a; Roberts et al., 2020; He
et al., 2020) offer unprecedented potential to mine

∗Corresponding author.
1The anonymous submission is in https://

leaderboard.allenai.org/open_book_qa/submission/
cdtvnvg4kc1nql1dnu3g

2https://github.com/kochsnow/MVP-Tuning/

knowledge because of their unique capability in in-
context learning. However, given their black-box
nature, these models lack essential interpretability,
resulting in the embedded knowledge that is al-
ways implicit, difficult to interpret, and fragmented.
Therefore, people have developed methods to ex-
plicitly inject external knowledge, such as knowl-
edge graphs (KG), as contextual knowledge into
downstream tasks like commonsense reasoning.

The main challenge of the above solution lies
in utilizing knowledge to serve individual queries
while suffering the scalability issue since there can
be millions of nodes in the knowledge graph. Intu-
itively, how to extract a partial knowledge graph,
i.e., a subgraph, effectively and efficiently is cru-
cial. Recent efforts focus on the multi-hop knowl-
edge retrieval strategy (Feng et al., 2020a), which
anchors input context entities to KG nodes and
obtains relevant subgraphs from these nodes and
the corresponding multi-hop neighbors. Knowl-
edge triplets retrieved by multi-hop retrieval need
to be directly connected in the knowledge graph
and form a path. This process is highly sensitive
to the quality of the knowledge graph, e.g., it tends
to fail when necessary triplets are distant from the
query and even in another subgraph. Therefore,
the knowledge extracted by this strategy is often
incomplete and biased as the neighbors of the in-
put context entities bound the search span. To this,
we propose multi-view retrieval, which expands
the pool of knowledge triplet candidates with addi-
tional highly-related question-answer pairs. This
method does not suffer from the limitation of multi-
hop retrieval and is able to connect distant or dis-
joint triplets via some similarity measurements, re-
sulting in broader and more diverse triplets from the
KG. Figure 1 compares these two retrieval strate-
gies. For example, given the question “What are
candles good for eliminating?”, two retrieved multi-
view knowledge triplets “(candle, CapableOf, emit
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Input Question:
<Q>: What are candles good for 
eliminating?
A. shelf B. board C.church D.table E. dark

Retrieved Question Answer Pairs:
QA1: If I have a vintage, decorative light source in 
my possession, what is it likely to be? candle
QA2: The power went out, so why did the family use a 
candle? emit light
QA3: The person used a candle to navigate up the 
spiral staircase, where were they likely? light house

emit light darkcandle

b)  Multi-View Knowledge Retrieval

light house

light source
illumination
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a)  Multi-Hop Knowledge Retrieval
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Figure 1: Multi-hop knowledge retrieval vs. Multi-view knowledge retrieval.

light)” and “(candle, AtLocation, dark)” are suffi-
cient to guide the PLM to reason and output the
answer “dark” directly. On the other hand, the con-
ventional multi-hop strategy needs to retrieve three
triplets “(dark, Antonym, light)”, “(light, Antonym,
heavy)”, and “(dark, IsA, illumination)”, which are
much noisier and more challenging to reason.

Having extracted the target knowledge, how can
we harness this knowledge to serve the ultimate pur-
pose of reasoning? An intuitive way is to employ
Graph Neural Networks (GNNs) to output node em-
beddings for KGs and then fuse them with embed-
dings of other input texts from PLMs (Schlichtkrull
et al., 2018; Lin et al., 2019; Feng et al., 2020a;
Yasunaga et al., 2021; Wang et al., 2021a; Jin-
hao Jiang and Wen, 2022). Despite being straight-
forward, this solution inherits critical issues from
GNNs, such as over-smoothness. Instead, we ex-
plore a new way of encoding knowledge from KGs,
simple yet effective. For encoding, we directly
combine the retrieved knowledge triplets as texts
and concatenate them with other textual informa-
tion as the input of the PLM. Our approach can
alleviate the computational cost and reduce the in-
formation loss compared to previous GNNs based
approaches.

In this paper, our proposed multi-view knowl-
edge retrieval scheme can outperform existing work
regarding efficiency and accuracy by a large mar-
gin when built with recent successful parameter-
efficient learning techniques, such as prompt-
tuning (Li and Liang, 2021; Liu et al., 2021c; Lester
et al., 2021) with a PLM. Therefore, we name our
framework as Multi-View Knowledge Retrieval
with Prompt Tuning (MVP-Tuning). The multi-
view knowledge retrieval strategy brings more ac-
curate knowledge localization with less computa-
tional cost. The obtained knowledge is fed into a

PLM model to augment the information in text. To
further improve the capability of our model, we in-
tegrate parameter-efficient learning in this context.

In summary, our primary contributions are:

• We proposed a multi-view knowledge graph
retrieval algorithm that acquires knowledge
using similar question-answer pairs as com-
plementary queries.

• We point out that the KG encoder is non-
essential and propose a simple yet effective
unified paradigm, that is, a single PLM jointly
models the text and knowledge without any
KG encoder, for commonsense reasoning
tasks.

• We present a systematic study on the effec-
tiveness of prompt learning in commonsense
QA, including the impact of prompt length
and initialization strategy.

• We conduct experiments on five popular com-
monsense QA benchmarks, including Com-
monsenseQA, OpenBookQA, SoicalIQA,
PIQA, and Riddle-Sense, and compare with
extensive baselines. Our MVP-Tuning outper-
forms other approaches in 4 out of 5 datasets
with at most 2% of the trainable parameters
of the same-scale PLM. MVP-Tuning also
improves previous state-of-the-art results on
CommonsenseQA and OpenBookQA under
the low-resource setting. We submitted the
predictions of our MVP-Tuning model to the
leaderboards of CommonsenseQA and Open-
BookQA, where it achieves state-of-the-art
results in comparison to other models with a
similar scale PLM. Our MVP-Tuning ensem-
bled predictions even obtain the best result, to
date, on OpenBookQA’s leaderboard.
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2 Related Work

GNN-Powered Structured Knowledge Utiliza-
tion Existing techniques often combine PLMs
with a variety of KG encoders to leverage knowl-
edge and context information. There are a num-
ber of developed knowledge encoders. Some en-
code retrieved knowledge using complex neural
network designs, like RGCN (Schlichtkrull et al.,
2018), GconAttn (Lin et al., 2019), MHGRN (Feng
et al., 2020a), and QAGNN (Yasunaga et al., 2021).
Others attempt to build knowledge encoders with
simpler designs that exhibit superior performance.
GSC (Wang et al., 2021b) creates a basic graph neu-
ral counter that beats more complicated approaches,
indicating that GNN-based encoders are merely do-
ing simple counting. SAFE (Jinhao Jiang and Wen,
2022) encodes relation routes using a simple two-
layer MLP. However, these approaches encode text
and knowledge independently. GreaseLM (Zhang
et al., 2022), on the other hand, integrates the rep-
resentations of both KG and PLM encoders over
multiple layers of modal interaction processes.
Prompt-Based Unstructured Knowledge Utiliza-
tion A line of research has investigated the use of
unstructured knowledge sources, such as Wikipedia
and dictionaries, for commonsense reasoning (Xu
et al., 2021b; Lv et al., 2020a). These methods
append related knowledge to the input context as
a prompt to improve commonsense reasoning. For
example, Bhakthavatsalam et al. (2020) combined
knowledge from ConceptNet, WordNet, and other
corpora to create 3.5 million generic statements
and show that this knowledge can enhance both ac-
curacy and explanation quality. Other studies have
focused on comparing different methods for in-
corporating external knowledge from relevant cor-
pora (Mitra et al., 2020). Additionally, there have
been efforts to generate missing facts from PLMs
to supplement external knowledge sources. For
instance, Bosselut et al. (2019) fine-tuned a PLM
on ATOMIC for commonsense knowledge graph
completion, and Liu et al. (2021a) prompted GPT-
3 (Brown et al., 2020b) directly to obtain knowl-
edge for reasoning.
Prompt Learning Prompt learning is a simple
yet effective approach to adapt a PLM for specific
downstream tasks by adding prompt tokens in the
input. A line of prompt learning works utilizes au-
tomated search techniques to identify appropriate
discrete prompting words (Shin et al., 2020; Deng
et al., 2022). In contrast to these discrete prompt
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Figure 2: MVP-Tuning framework.

learning methods, there are also a number of works
known as soft prompt learning that has been de-
veloped. These include Prompt Tuning (Lester
et al., 2021), P-tuning (Liu et al., 2021c), Prefix-
Tuning (Li and Liang, 2021), and P-Tuning v2 (Liu
et al., 2021b). These approaches use trainable soft
prompt tokens to steer PLMs’ generation.

3 Problem Statement

In this work, we study the multiple-choice com-
monsense question answering (Talmor et al., 2019;
Mihaylov et al., 2018). Given a natural language
question q and a collection of n response candi-
dates C = {c1, · · · , cn}, the purpose is to pick the
most appropriate candidate c⋆ ∈ C to answer the
question q based on the requisite commonsense
knowledge. In accordance with previous work (Lin
et al., 2019), we address this commonsense rea-
soning task in a knowledge-aware setting that em-
braces a commonsense knowledge graph (CSKG)
as the commonsense knowledge source.

An external CSKG can be described formally as
a multi-relational graph G = (V,R, E), where V is
the set of all concept nodes (e.g., leg and fire), R is
the set of relation types (e.g., CapableOf and IsA),
and E ⊆ V×R×V is the set of relational edges that
connects two concept nodes in the V . Specifically,
We employ ConceptNet (Speer et al., 2017), which
consists of 799,273 nodes and 2,487,003 edges.

4 Approach: MVP-Tuning

As shown in Figure 2, MVP-Tuning is based on
the PLM and includes the multi-view knowledge
retrieval module and the prompt tuning module.
We augment the input context with multi-view re-
trieved knowledge, and the prompt tuning module
optimizes the PLM in a parameter-efficiency way.

4.1 Multi-View Knowledge Retrieval Module

We retrieve knowledge in CSKG from two views:
1) self-view that selects triplets related to the
question-choice pair (q, c), and 2) consensus-view
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that retrieves triplets of other question-answer pairs
that are semantically similar to (q, c).
Self-View Knowledge Retrieval Following
KEAR (Xu et al., 2021a), we implement self-view
knowledge by retrieving the most relevant relation
triplet in the CSKG. We denote the self-view
knowledge retrieval process as KSV. Given a
question-choice pair (q, c), KSV(q, c) returns the
most relevant triplet (e1, r, e2) in ConceptNet
as self-view knowledge. The self-view knowl-
edge retrieval process KSV is performed as the
following: Firstly, we use the entity linking
tool (Loper and Bird, 2002) to find all entities
Eq = {e(1)q , ..., e

(nq)
q }, Ec = {e(1)c , ..., e

(nc)
c } ap-

pearing in the question q and choice c respectively,
where nq and nc are the number of entities in q
and c. We filter out entities in Eq and Ec whose
lengths do not match the Wiktionary definition.
After that, we select the entity with the maximum
length in Eq and Ec as the question and choice
entity eq and ec

3. Then we find all triplets in
ConceptNet containing both eq and ec and choose
the one with the maximum total length as retrieved
self-view knowledge (e1, r, e2). If there is no
such triplet, we retrieve all triplets sourcing from
the choice entity ec in ConceptNet. Each triplet
j’s score sj is the product of its confidence wj

(given by ConceptNet) and the relation type weight
trj : sj = wj · trj = wj · N

Nrj
, where rj is the

relation type of j, N is the total number of triplets
originating from the choice entity ec, and Nrj is
the number of triplets having relation rj among
these triplets. We select the triplet with the largest
score as self-view knowledge (e1, r, e2).
Consensus-View Knowledge Retrieval Self-
view knowledge is obtained by querying KG
with the question-choice pair, which is limited
in scope. Meanwhile, the knowledge retrieved
by conventional multi-hop knowledge retrieval is
still restricted or even noisy, as depicted in Sec-
tion 1. To address this limitation, we propose
consensus-view knowledge retrieval with query ex-
pansion to improve the retrieval performance. In
query expansion, a given query is reformulated
by first discovering semantically related queries,
and then re-weighting the terms in the original
query (Vechtomova and Wang, 2006; Azad and
Deepak, 2019; Carpineto and Romano, 2012). In
our consensus-view knowledge retrieval, similar

3For universality, we do not assume the annotations of
question and choice entities eq and ec are always available.

question-answer pairs in the training set collec-
tively retrieve more relevant knowledge from KG.
We define the consensus-view knowledge retrieval
process as KCV. Given a question-choice pair
(q, c) and the number of retrieved items m, the
consensus-view knowledge retrieval process is
as follow: We employ BM25 (Robertson et al.,
2009) to choose the m most pertinent question-
answer pairs {(q1, a1), (q2, a2), · · · , (qm, am)}
from the training data for the given the question-
choice pair (q, c). Then we use the self-
view knowledge of these selected question-
answer pairs to construct the consensus-view
knowledge of (q, c), denoted as KCV(q, c) =
{KSV(q1, a1),KSV(q2, a2), · · · ,KSV(qm, am)}.
Constructing Multi-View Knowledge Aug-
mented Input Given the question q and its re-
lated choices (c1, · · · , ci, · · · , cn), we first ob-
tain the self-view knowledge KSV(q, ci) and the
consensus-view knowledge KCV(q, ci) for each
possible question-choice pair (q, ci). We then
append the corresponding multi-view knowledge
KSV(q, ci) and KCV(q, ci) to each (q, ci) to con-
struct its augmented text representation texti =
q⊕ci⊕KSV(q, ci)⊕KCV(q, ci), where ⊕ denotes
the string concatenation. Finally, we merge the aug-
mented text representations of all question-choice
pairs as the multi-view knowledge augmented input
text = text1 ⊕ text2 ⊕ · · · ⊕ textn for predicting
the answer of the question q.

4.2 Prompt Tuning Module
To perform parameter-efficient learning, our MVP-
Tuning framework employs prompt tuning (Li
and Liang, 2021; Liu et al., 2021b; Lester et al.,
2021) of the pre-trained Transformer encoder. The
core mechanism of prompt tuning is to learn soft
prompts, which steers a frozen pretrained language
model to perform specific downstream tasks.
Transformers The Transformer encoder consists
of a list of layers, each of which contains a multi-
head self-attention module and a feed-forward net-
work (FFN). In the multi-head self-attention, each
attention head is defined as:

Attention(x) = softmax(
QKT

√
dk

)V (1)

where dk is the hidden size, Q = xWq,K =
xWk, V = xWv and Wq ∈ Rdk×dk ,Wk ∈
Rdk×dk ,Wv ∈ Rdk×dk are three learnable weight
matrices. The multi-head self-attention performs
N heads in parallel and concatenates their outputs
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to form the input to FFN. FFN is defined as:

FFN(x) = max(0, xW1 + b1)W2 + b2 (2)

where W1 ∈ Rdk×dh ,W2 ∈ Rdh×dk are weights,
b1 ∈ Rdh , b2 ∈ Rdk are biases and dh is the FFN
hidden size.
P-Tuning v2 In our MVP-Tuning framework,
we choose P-Tuning v2 (Liu et al., 2021b) as the
prompt tuning technique because it shows decent
performance on NLU tasks. P-Tuning v2 prepends
a trainable prefix key and prefix value to the key K
and value V in Eq. 1 at each layer, respectively.

Concretely, we denote the original key and
value at the l-th Transformer encoder layer as Kl

and Vl. We then define a learnable prefix key
Pk ∈ RL×np×dk and prefix value Pv ∈ RL×np×dk ,
where L is the number of layers and np is the length.
These prefix key and value will be added to Kl

and Vl via K
′
l = [P

(l)
k ;Kl], V

′
l = [P

(l)
v ;Vl], where

[; ] is the concatenation along the first dimension,
P

(l)
k ∈ Rnp×dk and P

(l)
v ∈ Rnp×dk is the corre-

sponding prefix key and value for l-th layer in Pk

and Pv. K ′
l and V ′

l will replace the original Kl and
Vl when performing the multi-head self-attention.
During training, we only optimize Pk and Pv and
freeze the pretrained model.

Previous work (Lester et al., 2021) suggests that
the initialization of prefix key and value is crucial
for the downstream task performance. We thus
explore the following two initialization strategies:
Random Initialization Pk and Pv are randomly
initialized by a Gaussian distribution.
Relation Augmentation Initialization To intro-
duce additional relation information, we initialize
Pk and Pv by the relation embeddings. We list all
CSKG relations and encode them using the word
embeddings from the pretrained model. Since a re-
lation could contain multiple words, we average all
word embeddings of one relation to build a fixed-
length relation embedding. The concatenation of
all relation embeddings Pr ∈ Rnp×dk will pass
through a MLP to obtain Pk and Pv (Liu et al.,
2021b), where the prefix length np now equals the
number of relations in CSKG.

5 Experiments

As shown in Table 1, we experiment on five com-
monsense reasoning multiple-choice QA datasets.

Task Train Dev Test

CommonsenQA official split 9,741 1,221 -
CommonsenQA in-house split 8,500 1,221 1,241
OpenBookQA 4,957 500 500
SocialIQA 33,410 1,954 -
PIQA 16,113 1,838 -
RiddleSenseQA 3,510 1,021 -

Table 1: Statistics of the datasets. “-” denotes the unused
or unavailable dataset split in our experiments.

5.1 Datasets
OpenBookQA (Mihaylov et al., 2018) is a 4-
way multiple-choice QA dataset consisting of el-
ementary scientific questions intended to evaluate
science commonsense knowledge. We report the
accuracy of our final system on the official test
set (Mihaylov and Frank, 2018) and submit the test
results to the leaderboard.
CommonsenseQA (Talmor et al., 2019) is a 5-
way multiple-choice QA dataset. It is constructed
using ConceptNet (Speer et al., 2017). Common-
senseQA has two split schemes, including in-house
split (Lin et al., 2019) and official split (Talmor
et al., 2019). We therefore report results in both the
in-house split4 and the official split. The test set
of CommonsenseQA is not publicly available, so
we submit our model’s predictions to the official
leaderboard to evaluate the test accuracy.
SocialIQA (Sap et al., 2019) is a 3-way multiple-
choice QA dataset used to assess social common-
sense knowledge comprehension. The test set is
unavailable. For a fair comparison, we report re-
sults on the development set (Shwartz et al., 2020).
PIQA (Bisk et al., 2020) is a set of binary-choice
questions about physical common sense. Because
PIQA does not release the test set, all assessments
are based on the development set.
Riddle-Sense (Lin et al., 2021) is a five-choice
QA dataset regarding commonsense riddles. Since
the Riddle-Sense test is hidden, evaluations are
carried out on its development set.

5.2 Implementation and Training Details
For fair comparison, our MVP-Tuning method
utilizes the same pretrained models as the above
benchmark. We primarily seed our MVP-Tuning
method with the RoBERTa-large (Liu et al., 2019b)
model for all datasets. We additionally test Aris-
toRoBERTa (Clark et al., 2020)5 for OpenBookQA.

4In the in-house split, the results of test set are reported
based on the model with the best performance in the dev set.

5OpenBookQA provides an extra corpus of scientific facts
in a textual form. AristoRoBERTa uses the facts correspond-
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Methods RoBERTa-large AristoRoBERTa Unfreezed Param. Model Param.
Mplm + Mkg Nplm + Nkg

Fine-Tuned PLM (w/o KG) 64.80 (±2.37) 78.40 (±1.64) 355M+0 355M+0

+ RN (Santoro et al., 2017) 65.20 (±1.18) 75.35 (±1.39) 355M+210k 355M+819M
+ RGCN (Schlichtkrull et al., 2018) 62.45 (±1.57) 74.60 (±2.53) 355M+365k 355M+819M
+ GconAttn (Lin et al., 2019) 64.75 (±1.48) 71.80 (±1.21) 355M+700k 355M+819M
+ MHGRN (Feng et al., 2020b) 66.85 (±1.19) 80.6 355M+547k 355M+819M
+ QA-GNN (Yasunaga et al., 2021) 67.80 (±2.75) 82.77 (±1.56) 355M+2.85M 355M+821M
+ GreaseLM (Zhang et al., 2022) 68.80 (±1.75)⋆ 84.80 355M+3.6M 355M+822M
+ GSC (Wang et al., 2021b) 70.33 (±0.81) 86.67 (±0.46) 355M+3k 355M+3k
+ SAFE (Jinhao Jiang and Wen, 2022) 69.2 87.13 355M+4.7k 355M+4.7k

MVP-Tuning (prefix length=120) 71.00 (±0.21) 87.50 (±0.10) 6.07M+0 355M+0

Table 2: Test accuracy comparison on OpenBookQA. Our reproduced results are denoted with ⋆. Mplm and Mkg

represent trainable parameters of PLM encoder and KG encoder respectively. Nplm and Mkg represent model size
of PLM encoder and KG encoder respectively.

Methods Test Acc Unfreezed Param. Model Param.
Mplm + Mkg Nplm + Nkg

AristoRoBERTa + GreaseLM 84.80 355M+3.6M 355M+822M
AristoRoBERTa + GSC 86.67 (±0.46) 355M+3k 355M+3k
AristoRoBERTa + SAFE 87.13 355M+4.7k 355M+4.7k

AristoRoBERTa + MVP-Tuning (prefix length=120) 87.50 (±0.10) 6.07M+0 355M+0
DeBERTa-xlarge + MVP-Tuning (prefix length=120) 87.63 (±0.17) 11.8M+0 900M+0
DeBERTa-xxlarge + MVP-Tuning (prefix length=120) 91.3 (±0.10) 17.7M+0 1.5B+0

Table 3: Test accuracy on OpenBookQA test set with different PLMs. Mplm and Mkg represent trainable parameters
of PLM encoder and KG encoder respectively. Nplm and Mkg represent model size of PLM encoder and KG
encoder respectively.

Methods Test

AristoRoBERTa 77.8
KF + SIR (Banerjee and Baral, 2020) 80.0
AristoRoBERTa + PG (Wang et al., 2020) 80.2
AristoRoBERTa + MHGRN (Feng et al., 2020b) 80.6
Albert + KB 81.0
T5* (Raffel et al., 2020) 83.2
AristoRoBERTa + QAGNN 82.8
AristoRoBERTa + GreaseLM 84.8
AristoRoBERTa + GSC 87.4
UnifiedQA (Khashabi et al., 2020) 87.2
GenMC (Huang et al., 2022) 89.8
GenMC (ensemble) (Huang et al., 2022) 92.0
X-reasoner 94.2

AristoRoBERTa + MVP-Tuning (prefix length=120) 87.6

DeBERTa-xxlarge + MVP-Tuning (prefix length=120) 91.2
MVP-Tuning (ensemble) 95.2

Table 4: Test accuracy on OpenBookQA leaderboard.

To evaluate the effectiveness of our method, we test
MVP-Tuning with larger PLMs, such as DeBERTa-
xlarge and DeBERTa-xxlarge (He et al., 2020). De-
tailed hyperparameter setting can be found in Ap-
pendix A.1.

5.3 Baselines

Fine-tuned PLMs We fine-tune RoBERTa-large
to study the impact of vanilla fine-tuned PLM,
which does not use any KG and is only fed with
the question and choices. For the OpenBookQA,

ing to each question, prepared by Clark et al. (2020), as an
additional input to the QA context.

we also fine-tune AristoRoBERTa.
PLM+KG Models combine PLMs with ex-
tra GNN-based KG encoders. With the same
fine-tuned PLM, we evaluate eight KG encoder
variants, including RN (Santoro et al., 2017),
RGCN (Schlichtkrull et al., 2018), GconAttn (Lin
et al., 2019), MHGRN (Feng et al., 2020a),
QAGNN (Yasunaga et al., 2021), GSC (Wang
et al., 2021b), GreaseLM (Zhang et al., 2022) and
SAFE (Jinhao Jiang and Wen, 2022). Details can
be seen in Appendix A.2.

5.4 Main Results

Results on OpenBookQA According to Ta-
ble 2, MVP-Tuning outperforms the current
PLM+KG methods in either RoBERTa-large or
AristoRoBERTa setting. Although this improve-
ment seems to be minor, it is achieved with no more
than 2% trainable parameters (6.02M for MVP-
Tuning vs. 355M for Fine-tuned PLM). MVP-
Tuning allows us to use a larger PLM with a low
training cost. Table 3 shows that the test perfor-
mance of MVP-Tuning with DeBERTa-xxlarge is
4% better than the best PLM+KG model, while
having 20× fewer trainable parameters (17.7M
vs. 355M). Compared to other systems on the
leaderboard of OpenbookQA (Table 4), our MVP-
Tuning with DeBERTa-xxlarge ranks 3rd with only
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Methods Official Dev In-house Dev In-house Test Unfreezed Param. Model Param.
Acc. Acc. Acc. Mplm + Mkg Nplm + Nkg

Fine-Tuned PLM (w/o KG) 77.15 (±0.35)⋆ 73.07 (±0.45) 68.69 (±0.56) 355M+0 355M+0

+ RN (Santoro et al., 2017) 76.00 (±0.65)⋆ 74.57 (±0.91) 69.08 (±0.21) 355M+210k 355M+819M
+ RGCN (Schlichtkrull et al., 2018) 77.07 (±0.14)⋆ 72.69 (±0.19) 68.41 (±0.66) 355M+365k 355M+819M
+ GconAttn (Lin et al., 2019) 77.56 (±0.27)⋆ 72.61 (±0.39) 68.59 (±0.96) 355M+700k 355M+819M
+ MHGRN (Feng et al., 2020b) 79.52 (±0.15)⋆ 74.45 (±0.10) 71.11 (±0.81) 355M+547k 355M+819M
+ QA-GNN (Yasunaga et al., 2021) 78.77 (±0.16)⋆ 76.54 (±0.21) 73.41 (±0.92) 355M+2.85M 355M+821M
+ SAFE (Jinhao Jiang and Wen, 2022) 78.97 (±0.29)⋆ 76.93 (±0.37)⋆ 74.03 / 73.68 (±0.43)⋆ 355M+4.7k 355M+4.7k
+ GreaseLM (Zhang et al., 2022) 79.44 (±0.43)⋆ 78.5 (±0.5) 74.2 (±0.4) 355M+3.6M 355M+822M
+ GSC (Wang et al., 2021b) 80.43 (±0.21)⋆ 79.11 (±0.22) 74.48 (±0.41) 355M+3k 355M+3k

MVP-Tuning (prefix length=100) 83.29 (±0.13) 81.13 (±0.11) 75.89 (±0.19) 4.92M+0 355M+0

Table 5: Performance comparison on CommonsenseQA in both official split setting and in-house split setting. Our
reproduced results are denoted with ⋆. Mplm and Mkg represent trainable parameters of PLM encoder and KG
encoder respectively. Nplm and Mkg represent the size of PLM encoder and KG encoder respectively.

Methods Single Ensemble

RoBERTa (Liu et al., 2019a) 72.1 72.5
RoBERTa+FreeLB (Zhu et al., 2019) (ensemble) 72.2 73.1
RoBERTa+HyKAS (Ma et al., 2019) 73.2 -
RoBERTa+KE (ensemble) - 73.3
RoBERTa+KEDGN (ensemble) 72.5 74.4
RoBERTa+MHGRN (Feng et al., 2020b) 75.4 -
RoBERTa + QA-GNN(Yasunaga et al., 2021) 76.1 -
RoBERTa + GSC(Wang et al., 2021b) 76.2 -
Albert (Lan et al., 2019) - 76.5
Albert+PG (Wang et al., 2020) 75.6 78.2
ALBERT+HGN(Yan et al., 2020) 77.3 80.0
XLNet+GraphReason (Lv et al., 2020b) 75.3 -
UnifiedQA (11B) (Khashabi et al., 2020) 79.1 -

RoBERTa-large + MVP-Tuning 78.4 -

Table 6: CommonsenseQA leaderboard result.

17.7M trainable parameters, while most of the other
QA systems are built on the T5 model with 11B
trainable parameters. Moreover, our ensembled
MVP-Tuning6 rank top-1 to date. We note that the
runner-up with a public technical report, GENMC-
ensemble (Huang et al., 2022), combines 7 fine-
tuned T5-11B models and has 4000 times more
trainable parameters than ours. Table 4 also indi-
cates that our MVP-Tuning with AristoRoBERTa
performs better than the current GNN-based QA
methods with the same scale PLMs.
Results on CommonsenseQA We compared our
MVP-Tuning with existing PLM+KG models and
fine-tuned PLMs. All of them are based on the
RoBERTa-large model. As we can see in Table 5,
MVP-Tuning shows a constant improvement un-
der three evaluation settings, with 2.04% higher
mean accuracy on the official dev split, 2.02%
higher mean accuracy on in-house dev split, and
1.41% higher mean accuracy on the in-house test
split, all without a KG encoder and with no more
than 2% (4.92M vs. 355M) trainable parameters
of PLM. Moreover, the variance of MVP-Tuning
is smaller than the baselines, which implies the

6We apply MVP-Tuning to DeBERTaV3-large, Aris-
toRoBERTa, DeBERTa-xxlarge, and UniMC-DeBERTa-
xxlarge (Yang et al., 2022) and ensemble their predictions.

Methods SocialIQA PhysQA RiddleSense

Fine-Tuned PLM 78.25 77.53 60.72

+ GcoAttn 78.86 78.24 61.77
+ MHGRN 78.11 77.15 63.27
+ QAGNN 78.10 78.24 63.39⋆

+ GreaseLM 77.89⋆ 78.02⋆ 63.88⋆

+ GSC 78.61⋆ 78.40⋆ 64.07⋆

+ SAFE 78.86 79.43 63.78⋆

MVP-Tuning 79.12 78.94 64.54

Table 7: Performance comparison on SocialIQA,
PhysQA, and RiddelSense (Dev accuracy). Our repro-
duced results are denoted with ⋆.

robustness of our method. We also submit our
MVP-Tuning model based on RoBERTa-large to
CommonsenseQA’s official leaderboard. As can
be seen from Table 6, MVP-Tuning offers a non-
trivial advantage over every other GNN-based QA
system with a comparable scale PLM.
Results on Other QA Datasets To further assess
the effectiveness of the proposed MVP-Tuning, we
also compare our method to the aforementioned
baselines on other commonsense reasoning datasets
from different domains or tasks. As shown in Ta-
ble 7, our MVP-Tuning obtains the best perfor-
mance in most cases, which indicates that our ap-
proach is generally effective for various common-
sense reasoning datasets or tasks in a unified and
parameter-efficient way.

6 Analysis

6.1 Low-Resource Setting
To test the robustness of MVP-Tuning, we examine
its performance in low-resource settings, with three
different proportions of training data, i.e., 5%, 10%
and 20%, in CommonsenseQA and OpenBookQA.
For the CommonsenseQA, we still use the in-house
split setting. We follow SAFE (Jinhao Jiang and
Wen, 2022) setting to report the average test per-
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Methods CommonsenseQA OpenBookQA
(%, shots) (5%, 425) (10%, 850) (20%, 1700) (5%, 298) (10%, 498) (20%, 991)

RoBERTa-large 29.66 42.84 58.47 37.00 39.4 41.47

+ RGCN 24.41 43.75 59.44 38.67 37.53 43.67
+ GconAttn 21.92 49.83 60.09 38.60 36.13 43.93
+ RN 23.77 34.09 59.90 33.73 35.93 41.40
+ MHGRN 29.01 32.02 50.23 38.00 36.47 39.73
+ QA-GNN 32.95 37.77 50.15 33.53 35.07 42.40
+ GreaseLM 22.80⋆ 56.16⋆ 63.09⋆ 39.00⋆ 39.60⋆ 42.20⋆

+ GSC 31.02⋆ 35.07⋆ 65.83⋆ 29.60⋆ 41.80⋆ 42.40⋆

+ SAFE 36.45 56.51 65.16 38.80 41.20 44.93

+ MVP-Tuning 48.99 61.16 67.12 39.60 49.00 56.00

Table 8: Performance comparison on CommonSenseQA and OpenBookQA with different proportions of training
data. ⋆ indicates the results reproduced by us.

Methods CommonSenseQA OpenbookQA

Input Text 76.82 80.04

+ Self-View Know. 80.42 86.8
+ Consensus-View Know. 78.46 85.4
+ Multi-Hop Know 79.11 84.0
+ Multi-View Know. 83.29 87.6

Table 9: Performance of different knowledge in
RoBERTa-large on the CommonSenseQA official dev
set and the OpenBookQA test set.

Initialization Strategy CommonSenseQA OpenbookQA

Random Init. 82.47 87.0
Relations Augmentation Init. 82.39 86.2

Table 10: Performance of two prefix initialization strate-
gies with RoBERTa-large on the CommonSenseQA of-
ficial dev set and the OpenBookQA test set. The prefix
length here is 34, as there are 34 relation types in CSKG.

formance of three runs, and the best results are
highlighted in bold. According to Table 8, our
MVP-Tuning consistently outperforms other ap-
proaches on different training data sizes, which
shows the remarkable low-resource capability of
our method. And we observe that our MVP-Tuning
performs the best when the number of shots is ap-
proximately between 500 and 1000, which obtains
an improvement of over 5% accuracy.

6.2 Ablation Study

We conduct the ablation study on the proposed
MVP-Tuning. For the multi-view knowledge re-
trieval, we augment the input text with self-view
knowledge, consensus-view knowledge, and multi-
view knowledge separately, then evaluate their per-
formance on various datasets. In addition, we also
examine the influence of the number of retrieved
consensus-view knowledge. For the prompt-tuning
module, we explore the influence of the prefix ini-
tialization strategy and prefix length.
Effect of Different Types of Knowledge Ac-
cording to Table 9, multi-view knowledge can

provide the most comprehensive and diverse in-
formation for commonsense reasoning QA tasks,
and thus achieve the best result. Consensus-view
knowledge performs worse than self-view knowl-
edge, suggesting that although consensus-view
knowledge is complementary to self-view knowl-
edge, it still misses some important knowledge.
We further evaluate the performance of multi-hop
knowledge. Our findings reveal that multi-hop
knowledge exhibits inferior performance not only
in comparison to multi-hop knowledge but also
when compared to self-view knowledge. These
comparative results demonstrate the efficacy of
multi-view retrieval as a retrieval technique.
Effect of the Quantity of Retrieved Consensus-
View Knowledge Figure 3 shows the impact
of the quantity of consensus-view knowledge re-
trieved in MVP-Tuning. The performance gener-
ally improves with more consensus-view knowl-
edge, but too much consensus-view information
introduces noises that ultimately hurt performance.
Effect of Prefix Initialization Strategies We
compare two prompt tuning module initializa-
tion strategies in Table 10. Random initialization
slightly outperforms relation augmentation initial-
ization, indicating that the basic prompt tuning is
already a good baseline for MVP-Tuning.
Effect of the Number of Soft Prefix Tokens We
studied the effect of the number of soft prefix to-
kens. Figure 4 indicates that our system is not
sensitive to the length of soft prefix.
Case Study We also provide some examples in
Appendix A.4 to illustrate the effectiveness of our
multi-view knowledge retrieval.

7 Conclusion

In this work, we propose MVP-Tuning, a simple
and effective approach to building a strong com-
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monsense reasoning QA system. It strengthens
the conventional knowledge retrieval results via
multi-view knowledge and unifies the modeling
of input text and retrieved knowledge in a single
prompt-tuned PLM. Extensive experiments show
the superiority of MVP-Tuning, as it beats other
sophisticated approaches in 4 out of 5 popular com-
monsense QA benchmarks while having less than
2% trainable parameters. MVP-Tuning achieves a
new state-of-the-art performance in OpenBookQA
and wins first place in the leaderboard.

Limitation

This paper presents the MVP-Tuning framework,
which combines multi-view knowledge retrieval
with prompt tuning and incorporates retrieved
knowledge in a simple KG-encoder-free paradigm.
However, there are limitations to our approach.
Firstly, multi-view knowledge consists of self-view
and consensus-view knowledge, which are one-hop
triplets in the knowledge graph. However, not all
question-choice pairs have one-hop triplets, lead-
ing to null knowledge being retrieved. Additionally,
excessive consensus-view knowledge can lead to
noisy retrieved knowledge. Therefore, our knowl-
edge retrieval system needs further improvement
to obtain sufficient, high-quality knowledge. Sec-
ondly, we focus on the empirical study of prompt
tuning in commonsense reasoning tasks. Although
we conduct extensive experiments, including ini-
tialization schemes and prefix token length, we do
not fully understand the mechanism behind prompt
tuning and sometimes experience unstable perfor-
mance. Although prompt tuning has been proven to
be an efficient tuning paradigm for commonsense
reasoning tasks, it requires further exploration.
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A Appendix

A.1 Hyperparameter Settings for Datasets
and Models

Table 11 shows hyperparameter settings for
datasets and models.

A.2 Details of PLM+KG Baselines
• RN (Santoro et al., 2017) utilizes a relational

reasoning structure in order to incorporate in-
formation from a commonsense knowledge
graph (CSKG).

• RGCN (Schlichtkrull et al., 2018) uses a graph
concept attention model to gather entity data
from the CSKG.

• GconAttn (Lin et al., 2019) enhances the
GCN (Kipf and Welling, 2016) by adding
relation-specific weights.

• MHGRN (Feng et al., 2020a) is a GNN archi-
tecture that uses both GNNs and path-based
models to reason over the CSKG.

• QAGNN (Yasunaga et al., 2021) employs a
GAT (Veličković et al., 2017) to jointly reason
over the CSKG and incorporate information
from the CSKG into its processing.

• GSC (Wang et al., 2021b) utilizes a simple
graph neural counter as the KG encoder in or-
der to incorporate knowledge from the CSKG.

• GreaseLM (Zhang et al., 2022) combines en-
coder representations from a pre-trained lan-
guage model (PLM) and KG encoder through
the use of multiple modality interaction lay-
ers, allowing for the integration of knowledge
from the CSKG into the PLM’s processing.

• SAFE (Jinhao Jiang and Wen, 2022) merely
utilize MLP-based KG encoder to extract fea-
tures from relation paths in the retrieved multi-
hop knowledge subgraph.

A.3 Training Curve Analysis
We additionally investigate the learning of our
MVP-Tuning. We compare the training curves
of prompt-tuning and fine-tuning with multi-view
knowledge retrieval and a backbone PLM Roberta-
large. Figure 5 demonstrates that the fine-tuning ap-
proach converges rapidly and starts to overfit soon,
where the val loss rises with fluctuations. On the
other hand, prefix-tuning converges more slowly
and smoothly due to its fewer trainable parameters.

A.4 Case Study
In Table 12, we provide two examples from CSQA
to illustrate how the model may reason using re-
trieved multi-view knowledge to arrive at the cor-
rect answer. For the first question, self-knowledge
helps eliminate the incorrect answer be dismem-
bered by a chainsaw, as “child” is incapable of
doing so. The consensus-view knowledge veri-
fies the “Desires” relationship between“kids” and
“play”, indicating that “play tag” is the right re-
sponse. Again, self-view knowledge excludes hurt
from the second question, as there is no link be-
tween “hurt” and “having fun” in the CSKG. The
consensus-view knowledge contains triplets whose
tail entity is a synonym of “pleasure” such as “hap-
piness” and “enjoyment”, which helps to affirm
the correct answer. This suggests that multi-view
knowledge is essential for obtaining the correct an-
swer. Multi-view knowledge retrieval facilitates
model reasoning to choose the right candidate.
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Figure 5: MVP-Tuning vs. Fine-Tuning with Multi-View Knowledge on CommonsenseQA dataset.

Models Hyperparameter OpenBookQA CommonsenseQA Other QA Datasets

Both RoBERTa-large
and AristoRoBERTa

Batch Size 4 8 8
Number of epochs 100 100 100

Learning Rate 1e-3 1e-3 1e-3
Optimizer Adam Adam Adam

Prefix Token Length 120 100 100

Both DeBERTa-xlarge
and DeBERTa-xxlarge

Batch Size 2
Number of epochs 100

Learning Rate 2e-4
Optimizer Adam

Prefix Token Length 100

Table 11: Hyperparameter settings for different datasets and models. Other QA datasets include SocialIQA, PIQA
and Riddle-Sense.

Question A child wants to play, what would they likely want?
Candidates A) fall down, B) breathe, C) play tag, D) be dismembered by a chainsaw, E) become

adult
Self-View Knowledge child CapableOf {fall down, breathe, play tag, become adult}
Consensus-View Knowledge children Desires play sports; child CapableOf play video games; children Desires play

ball

Question What is the feeling of one having fun?
Candidates A) smiling, B) pleasure, C) hurt, D) injuries, E) laughter
Self-View Knowledge having fun HasSubevent {smiling, laughter}; having fun Causes {pleasure, injuries}
Consensus-View Knowledge having fun Causes being happy; having fun Causes happiness; having fun Causes

enjoyment; having fun Causes feeling happy}

Table 12: Case study of the effect of multi-view retrieval of knowledge. We list two questions from the Common-
senseQA dataset using the multi-view knowledge we have retrieved. The correct response is displayed in bold, and
our MVP-Tuning strategy selected the correct answer for both questions. Choices in italic are the incorrect options
that a RoBERTa-large model makes.
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Question What are candles good for eliminating?
Candidates A) shelf, B) board, C) church, D) table, E) dark

Multi-View Knowledge Retrieval Single View Knowledge: candle at location dark
Consensus View Knowledge: candle CapableOf {light house, emit light}, candle
AtLocation dimly lit room, light source AtLocation candle, lighting match Causes
illumination

Multi-Hop Knowledge Retrieval One hop knowledge: candle at location dark
Two Hop knowledge: light antonym {dark, heavy}, candle isa light, good antonym
evil, dark isa illumination

Question What happens if someone kisses too long?
Candidates A) strong feelings , B) herpes, C) shortness of breath, D) excitement, E) arousal

Multi-View Knowledge Retrieval Single View knowledge: kissing causes shortness of breath
Consensus View knowledge: kissing Causes {shyness, pleasurable, sexual excite-
ment, happiness}, being in love CausesDesire kiss, person Desires passionate kisses

Multi-Hop Knowledge Retrieval One Hop knowledge: kissing causes shortness of breath
Two Hop knowledge: long antonym {short, brief}, shortness isa {length, duration},
kissing hassubevent kiss

Table 13: Comparing two knowledge retrieval schemes: multi-view knowledge retrieval and multi-hop knowledge
retrieval. We list two questions from the CSQA dataset to compare our retrieved multi-view knowledge and with
multi-hop knowledge.
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