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Abstract

Stance Detection is concerned with identifying
the attitudes expressed by an author towards
a target of interest. This task spans a variety
of domains ranging from social media opinion
identification to detecting the stance for a legal
claim. However, the framing of the task varies
within these domains, in terms of the data col-
lection protocol, the label dictionary and the
number of available annotations. Furthermore,
these stance annotations are significantly im-
balanced on a per-topic and inter-topic basis.
These make multi-domain stance detection a
challenging task, requiring standardization and
domain adaptation. To overcome this challenge,
we propose Topic Efficient StancE Detection
(TESTED), consisting of a topic-guided diver-
sity sampling technique and a contrastive ob-
jective that is used for fine-tuning a stance clas-
sifier. We evaluate the method on an existing
benchmark of 16 datasets with in-domain, i.e.
all topics seen and out-of-domain, i.e. unseen
topics, experiments. The results show that our
method outperforms the state-of-the-art with
an average of 3.5 F1 points increase in-domain,
and is more generalizable with an averaged
increase of 10.2 F1 on out-of-domain evalua-
tion while using ≤ 10% of the training data.
We show that our sampling technique mitigates
both inter- and per-topic class imbalances. Fi-
nally, our analysis demonstrates that the con-
trastive learning objective allows the model
a more pronounced segmentation of samples
with varying labels.

1 Introduction

The goal of stance detection is to identify the
viewpoint expressed by an author within a piece
of text towards a designated topic (Mohammad
et al., 2016). Such analyses can be used in a va-
riety of domains ranging from identifying claims
within political or ideological debates (Somasun-
daran and Wiebe, 2010; Thomas et al., 2006), iden-
tifying mis- and disinformation (Hanselowski et al.,

2018; Hardalov et al., 2022a), public health pol-
icymaking (Glandt et al., 2021; Hossain et al.,
2020; Osnabrügge et al., 2023), news recommenda-
tion (Reuver et al., 2021) to investigating attitudes
voiced on social media (Qazvinian et al., 2011; Au-
genstein et al., 2016; Conforti et al., 2020). How-
ever, in most domains, and even more so for cross-
domain stance detection, the exact formalisation
of the task gets blurry, with varying label sets and
their corresponding definitions, data collection pro-
tocols and available annotations. Furthermore, this
is accompanied by significant changes in the topic-
specific vocabulary (Somasundaran and Wiebe,
2010; Wei and Mao, 2019), text style (Pomerleau
and Rao, 2017; Ferreira and Vlachos, 2016) and
topics mentioned either explicitly (Qazvinian et al.,
2011; Walker et al., 2012) or implicitly (Hasan and
Ng, 2013; Derczynski et al., 2017). Recently, a
benchmark of 16 datasets (Hardalov et al., 2021)
covering a variety of domains and topics has been
proposed for testing stance detection models across
multiple domains. It must be noted that these
datasets are highly imbalanced, with an imbalanced
label distribution between the covered topics, i.e.
inter-topic and within each topic, i.e. per-topic, as
can be seen in Figure 2 and Figure 3. This further
complicates the creation of a robust stance detec-
tion classifier.

Given the inherent skew present within the
dataset and variances within each domain, we pro-
pose a topic-guided diversity sampling method,
which produces a data-efficient representative sub-
set while mitigating label imbalances. These sam-
ples are used for fine-tuning a Pre-trained Lan-
guage Model (PLM), using a contrastive learn-
ing objective to create a robust stance detection
model. These two components form our Topic
Efficient StancE Detection (TESTED) framework,
as seen in Figure 1, and are analysed separately
to pinpoint the factors impacting model perfor-
mance and robustness. We test our method on
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Figure 1: The two components of TESTED: Topic
Guided Sampling (top) and training with contrastive
objective (bottom).

the multi-domain stance detection benchmark by
Hardalov et al. (2021), achieving state-of-the-art
results with both in-domain, i.e. all topics seen and
out-of-domain, i.e. unseen topics evaluations. Note
though that TESTED could be applied to any text
classification setting.

In summary, our contributions are:

• We propose a novel framework (TESTED)
for predicting stances across various domains,
with data-efficient sampling and contrastive
learning objective;

• Our proposed method achieves SOTA results
both in-domain and out-of-domain;

• Our analysis shows that our topic-guided sam-
pling method mitigates dataset imbalances
while accounting for better performance than
other sampling techniques;

• The analysis shows that the contrastive learn-
ing objective boosts the ability of the classifier
to differentiate varying topics and stances.

2 Related Work

Stance Detection is an NLP task which aims to
identify an author’s attitude towards a particular
topic or claim. The task has been widely explored
in the context of mis- and disinformation detection
(Ferreira and Vlachos, 2016; Hanselowski et al.,
2018; Zubiaga et al., 2018b; Hardalov et al., 2022a),
sentiment analysis (Mohammad et al., 2017; Al-
dayel and Magdy, 2019) and argument mining
(Boltužić and Šnajder, 2014; Sobhani et al., 2015;
Wang et al., 2019). Most papers formally define
stance detection as a pairwise sequence classifica-
tion where stance targets are provided (Küçük and
Can, 2020). However, with the emergence of differ-

ent data sources, ranging from debating platforms
(Somasundaran and Wiebe, 2010; Hasan and Ng,
2014; Aharoni et al., 2014) to social media (Mo-
hammad et al., 2016; Derczynski et al., 2017), and
new applications (Zubiaga et al., 2018a; Hardalov
et al., 2022a), this formal definition has been sub-
ject to variations w.r.t. the label dictionary inferred
for the task.

Previous research has predominantly focused on
a specific dataset or domain of interest, outside of
a few exceptions like multi-target (Sobhani et al.,
2017; Wei et al., 2018) and cross-lingual (Hardalov
et al., 2022b) stance detection. In contrast, our
work focuses on multi-domain stance detection,
while evaluating in- and out-of-domain on a 16
dataset benchmark with state-of-the-art baselines
(Hardalov et al., 2021).

Topic Sampling Our line of research is closely
associated with diversity (Ren et al., 2021) and
importance (Beygelzimer et al., 2009) sampling
and their applications in natural language process-
ing (Zhu et al., 2008; Zhou and Lampouras, 2021).
Clustering-based sampling approaches have been
used for automatic speech recognition (Syed et al.,
2016), image classification (Ranganathan et al.,
2017; Yan et al., 2022) and semi-supervised active
learning (Buchert et al., 2022) with limited use for
textual data (Yang et al., 2014) through topic mod-
elling (Blei et al., 2001). This research proposes an
importance-weighted topic-guided diversity sam-
pling method that utilises deep topic models, for
mitigating inherent imbalances present in the data,
while preserving relevant examples.

Contrastive Learning has been used for tasks
where the expected feature representations should
be able to differentiate between similar and diver-
gent inputs (Liu et al., 2021; Rethmeier and Au-
genstein, 2023). Such methods have been used
for image classification (Khosla et al., 2020), cap-
tioning (Dai and Lin, 2017) and textual represen-
tations (Giorgi et al., 2021; Jaiswal et al., 2020;
Ostendorff et al., 2022). The diversity of topics
(Qazvinian et al., 2011; Walker et al., 2012; Hasan
and Ng, 2013), vocabulary (Somasundaran and
Wiebe, 2010; Wei and Mao, 2019) and expres-
sion styles (Pomerleau and Rao, 2017) common
for stance detection can be tackled with contrastive
objectives, as seen for similar sentence embedding
and classification tasks (Gao et al., 2021; Yan et al.,
2021).
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3 Datasets

Our study uses an existing multi-domain dataset
benchmark (Hardalov et al., 2021), consisting of
16 individual datasets split into four source groups:
Debates, News, Social Media, Various. The cat-
egories include datasets about debating and po-
litical claims including arc (Hanselowski et al.,
2018; Habernal et al., 2018), iac1 (Walker et al.,
2012), perspectum (Chen et al., 2019), poldeb (So-
masundaran and Wiebe, 2010), scd (Hasan and Ng,
2013), news like emergent (Ferreira and Vlachos,
2016), fnc1 (Pomerleau and Rao, 2017), snopes
(Hanselowski et al., 2019), social media like mtsd
(Sobhani et al., 2017), rumour (Qazvinian et al.,
2011), semeval2016t6 (Mohammad et al., 2016),
semeval2019t7 (Derczynski et al., 2017), wtwt
(Conforti et al., 2020) and datasets that cover a
variety of diverse topics like argmin (Stab et al.,
2018), ibmcs (Bar-Haim et al., 2017) and vast (All-
away and McKeown, 2020). Overall statistics for
all of the datasets can be seen in Appendix C.

3.1 Data Standardisation

As the above-mentioned stance datasets from dif-
ferent domains possess different label inventories,
the stance detection benchmark by Hardalov et al.
(2021) introduce a mapping strategy to make the
class inventory homogeneous. We adopt that same
mapping for a fair comparison with prior work,
shown in Appendix C.

4 Methods

Our goal is to create a stance detection method
that performs strongly on the topics known during
training and can generalize to unseen topics. The
benchmark by Hardalov et al. (2021) consisting
of 16 datasets is highly imbalanced w.r.t the inter-
topic frequency and per-topic label distribution, as
seen in Figure 2.

These limitations necessitate a novel experimen-
tal pipeline. The first component of the pipeline we
propose is an importance-weighted topic-guided
diversity sampling method that allows the creation
of supervised training sets while mitigating the in-
herent imbalances in the data. We then create a
stance detection model by fine-tuning a Pre-trained
Language Model (PLM) using a contrastive objec-
tive.

4.1 Topic-Efficient Sampling

We follow the setting in prior work on data-efficient
sampling (Buchert et al., 2022; Yan et al., 2022),
framing the task as a selection process between
multi-domain examples w.r.t the theme discussed
within the text and its stance. This means that
given a set of datasets D = (D1, . . .Dn) with their
designated documents Di = (d1i , . . . d

m
i ), we wish

to select a set of diverse representative examples
Dtrain, that are balanced w.r.t the provided topics
T = (t1, . . . tq) and stance labels L = (l1, . . . lk).

Diversity Sampling via Topic Modeling We
thus opt for using topic modelling to produce a
supervised subset from all multi-domain datasets.
Selecting annotated examples during task-specific
fine-tuning is a challenging task (Shao et al., 2019),
explored extensively within active learning re-
search (Hino, 2020; Konyushkova et al., 2017).
Random sampling can lead to poor generalization
and knowledge transfer within the novel problem
domain (Das et al., 2021; Perez et al., 2021). To
mitigate the inconsistency caused by choosing sub-
optimal examples, we propose using deep unsuper-
vised topic models, which allow us to sample rele-
vant examples for each topic of interest. We further
enhance the model with an importance-weighted di-
verse example selection process (Shao et al., 2019;
Yang et al., 2015) within the relevant examples
generated by the topic model. The diversity max-
imisation sampling is modeled similarly to Yang
et al. (2015).

The topic model we train is based on the tech-
nique proposed by Angelov (2020) that tries to find
topic vectors while jointly learning document and
word semantic embeddings. The topic model is
initialized with weights from the all-MiniLM-L6
PLM, which has a strong performance on sentence
embedding benchmarks (Wang et al., 2020). It
is shown that learning unsupervised topics in this
fashion maximizes the total information gained,
about all texts D when described by all wordsW .

I(D,W) =
∑

d∈D

∑

w∈W
P (d,w) log

(
P (d,w)

P (d)P (w)

)

This characteristic is handy for finding rele-
vant samples across varying topics, allowing us
to search within the learned documents di. We
train a deep topic modelMtopic using multi-domain
data D and obtain topic clusters C = (Ci, . . . Ct),
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Algorithm 1 Topic Efficient Sampling

Require: S ≥ 0 ▷ Sampling Threshold
Require: Avg ∈ {moving, exp}
Ensure: |C| > 0
Dtrain ← {}
I ← { |C1|∑

Ci∈C
Ci . . .

|Ct|∑
Ci∈C

Ci } ▷ Cluster Importances

for Ci ∈ C do ▷ Iterating for each cluster
Ei ← {PLM(d1i ) . . . } = {e1i . . . emi }
si ← max(1, S · Ii) ▷ Threshold per cluster
j← 0

cent0 ←
∑

ei∈E
ei

|E| ▷ Centroid of the cluster
while j ≤ si do

sim = ⟨E,cent⟩
∥E∥∥cent∥ ▷ Similarity Ranking

sample = arg sort(sim,Ascending)[0]
▷ Take the sample most diverse from the centroid

Dtrain ← Dtrain ∪ sample
j← j + 1

centj ←
{
α · esample + (1− α) · centj−1 exp
(j−1)

j · centj +
esample

j moving
▷ Centroid update w.r.t. sampled data

end while
end for
return Dtrain

where |C| = t is the number of topic clusters.
We obtain the vector representation for ∀di from
the tuned PLM embeddings E = (e1, . . . em) in
Mtopic, while iteratively traversing through the
clusters Ci ∈ C.

Our sampling process selects increasingly more
diverse samples after each iteration. This search
within the relevant examples is presented in Al-
gorithm 1. This algorithm selects a set of diverse
samples from the given multi-domain datasets D,
using the clusters from a deep topic modelMtopic

and the sentence embeddings E of the sentences
as a basis for comparison. The algorithm starts by
selecting a random sentence as the first diverse sam-
ple and uses this sentence to calculate a “centroid”
embedding. It then iteratively selects the next most
dissimilar sentence to the current centroid, until the
desired number of diverse samples is obtained.

4.2 Topic-Guided Stance Detection

Task Formalization Given the topic, ti for each
document di in the generated set Dtrain we aim
to classify the stance expressed within that text
towards the topic. For a fair comparison with
prior work, we use the label mapping from the

previous multi-domain benchmark (Hardalov
et al., 2021) and standardise the original labels L
into a five-way stance classification setting, S =
{Positive, Negative, Discuss, Other, Neutral}.
Stance detection can be generalized as pairwise
sequence classification, where a model learns a
mapping f : (di, ti)→ S. We combine the textual
sequences with the stance labels to learn this
mapping. The combination is implemented using a
simple prompt commonly used for NLI tasks (Lan
et al., 2020; Raffel et al., 2020; Hambardzumyan
et al., 2021), where the textual sequence becomes
the premise and the topic the hypothesis.

[CLS] premise: premise

hypothesis: topic [EOS]

The result of this process is a super-
vised dataset for stance prediction Dtrain =
((Prompt(d1, t1), s1) . . . (Prompt(dn, tn), sn))
where ∀si ∈ S. This method allows for data-
efficient sampling, as we at most sample 10%
of the data while preserving the diversity and
relevance of the selected samples. The versatility
of the method allows TESTED to be applied to any
text classification setting.

Tuning with a Contrastive Objective After
obtaining the multi-domain supervised training
set Dtrain, we decided to leverage the robustness
of PLMs, based on a transformer architecture
(Vaswani et al., 2017) and fine-tune on Dtrain with
a single classification head. This effectively allows
us to transfer the knowledge embedded within the
PLM onto our problem domain. For standard fine-
tuning of the stance detection modelMstance we
use cross-entropy as our initial loss:

LCE = −
∑

i∈S
yi log (Mstance(di)) (1)

Here yi is the ground truth label. However, as we
operate in a multi-domain setting, with variations
in writing vocabulary, style and covered topics, it
is necessary to train a model where similar sen-
tences have a homogeneous representation within
the embedding space while keeping contrastive
pairs distant. We propose a new contrastive ob-
jective based on the cosine distance between the
samples to accomplish this. In each training batch
B = (d1, . . . db), we create a matrix of contrastive
pairs P ∈ Rb×b, where ∀i, j = 1, b, Pij = 1
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if i-th and j-th examples share the same label
and −1 otherwise. The matrices can be precom-
puted during dataset creation, thus not adding to the
computational complexity of the training process.
We formulate our pairwise contrastive objective
LCL(xi, xj ,Pij) using matrix P .

LCL =

{
e(1− ecos(xi,xj)−1),Pij = 1

emax(0,cos(xi,xj)−β) − 1,Pij = −1
(2)

Here xi, xj are the vector representations of ex-
amples di, dj . The loss is similar to cosine embed-
ding loss and soft triplet loss (Barz and Denzler,
2020; Qian et al., 2019); however, it penalizes the
opposing pairs harsher because of the exponential
nature, but does not suffer from computational in-
stability as the values are bounded in the range
[0, e− 1

e ]. The final loss is:

L = LCE + LCL (3)

We use the fine-tuning method from Mosbach
et al. (2021); Liu et al. (2019) to avoid the instabil-
ity caused by catastrophic forgetting, small-sized
fine-tuning datasets or optimization difficulties.

5 Experimental Setup

5.1 Evaluation
We evaluate our method on the 16 dataset multi-
domain benchmark and the baselines proposed by
Hardalov et al. (2021). To directly compare with
prior work, we use the same set of evaluation met-
rics: macro averaged F1, precision, recall and ac-
curacy.

5.2 Model Details
We explore several PLM transformer architectures
within our training and classification pipelines in
order to evaluate the stability of the proposed tech-
nique. We opt to finetune a pre-trained roberta-
large architecture (Liu et al., 2019; Conneau et al.,
2020). For fine-tuning, we use the method intro-
duced by Mosbach et al. (2021), by adding a linear
warmup on the initial 10% of the iteration raising
the learning rate to 2e−5 and decreasing it to 0
afterwards. We use a weight decay of λ = 0.01
and train for 3 epochs with global gradient clip-
ping on the stance detection task. We further show
that learning for longer epochs does not yield size-
able improvement over the initial fine-tuning. The
optimizer used for experimentation is an AdamW

(Loshchilov and Hutter, 2019) with a bias correc-
tion component added to stabilise the experimenta-
tion (Mosbach et al., 2021).

Topic Efficiency Recall that we introduce a topic-
guided diversity sampling method within TESTED,
which allows us to pick relevant samples per topic
and class for further fine-tuning. We evaluate its
effectiveness by fine-tuning PLMs on the examples
it generates and comparing it with training on a
random stratified sample of the same size.

6 Results and Analysis

In this section, we discuss and analyze our results,
while comparing the performance of the method
against the current state-of-the-art (Hardalov et al.,
2021) and providing an analysis of the topic effi-
cient sampling and the contrastive objective.

6.1 Stance Detection
In-domain We train on our topic-efficient subset
Dtrain and test the method on all datasets D in the
multi-domain benchmark. Our method TESTED
is compared to MoLE (Hardalov et al., 2021), a
strong baseline and the current state-of-the-art on
the benchmark. The results, presented in Table 1,
show that TESTED has the highest average perfor-
mance on in-domain experiments with an increase
of 3.5 F1 points over MoLE, all while using≤ 10%
of the amount of training data in our subset Dtrain
sampled from the whole dataset D. Our method
is able to outperform all the baselines on 10 out
of 16 datasets. On the remaining 6 datasets the
maximum absolute difference between TESTED
and MoLE is 1.1 points in F1. We also present
ablations for TESTED, by replacing the proposed
sampling method with other alternatives, remov-
ing the contrastive objective or both simultaneously.
Replacing Topic Efficient sampling with either Ran-
dom or Stratified selections deteriorates the results
for all datasets with an average decrease of 8 and
5 F1 points, respectively. We attribute this to the
inability of other sampling techniques to maintain
inter-topic distribution and per-topic label distribu-
tions balanced while selecting diverse samples. We
further analyse how our sampling technique tack-
les these tasks in subsection 6.2. We also see that
removing the contrastive loss also results in a de-
teriorated performance across all the datasets with
an average decrease of 3 F1 points. In particular,
we see a more significant decrease in datasets with
similar topics and textual expressions, i.e. poldeb
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Majority class baseline 27.60 21.45 21.27 34.66 39.38 35.30 21.30 20.96 43.98 19.49 25.15 24.27 22.34 15.91 33.83 34.06 17.19
Random baseline 35.19 18.50 30.66 50.06 48.67 50.08 31.83 18.64 45.49 33.15 20.43 31.11 17.02 20.01 49.94 50.08 33.25
MoLE 65.55 63.17 38.50 85.27 50.76 65.91 83.74 75.82 75.07 65.08 67.24 70.05 57.78 68.37 63.73 79.38 38.92

TESTED (Our Model) 69.12 64.82 56.97 83.11 52.76 64.71 82.10 83.17 78.61 63.96 66.58 69.91 58.72 70.98 62.79 88.06 57.47
Topic→ Random Sampling 61.14 53.92 42.59 77.68 44.08 52.54 67.55 75.60 72.67 56.35 59.08 66.88 57.28 69.32 52.02 76.93 53.80
Topic→ Stratified Sampling 64.01 50.27 51.57 77.78 46.67 62.13 79.00 77.90 76.44 61.50 64.92 68.45 51.96 69.47 56.76 78.30 51.16
- Contrastive Objective 65.63 61.11 55.50 81.85 43.81 63.04 80.84 79.05 73.43 62.18 61.57 60.17 56.06 68.79 59.51 86.94 56.35
Topic Sampling→ Stratified
- Contrastive Loss

63.24 60.98 49.17 77.85 45.54 58.23 77.36 75.80 74.77 60.85 63.69 62.59 54.74 62.85 53.67 86.04 47.72

Table 1: In-domain results reported with macro averaged F1, averaged over experiments. In lines under TESTED,
we replace (for Sampling) (→) or remove (for loss) (−), the comprising components.

F1 avg. arc iac
1
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rsp

ec
tru

m

po
lde

b

scd em
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en
t
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1

sn
op
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mtsd rum
or

sem
ev

al1
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ev

al1
9
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t

arg
min

ibm
cs

va
st

MoLE w/ Hard Mapping 32.78 25.29 35.15 29.55 22.80 16.13 58.49 47.05 29.28 23.34 32.93 37.01 21.85 16.10 34.16 72.93 22.89
MoLE w/ Weak Mapping 49.20 51.81 38.97 58.48 47.23 53.96 82.07 51.57 56.97 40.13 51.29 36.31 31.75 22.75 50.71 75.69 37.15
MoLE w/Soft Mapping 46.56 48.31 32.21 62.73 54.19 51.97 46.86 57.31 53.58 37.88 44.46 36.77 28.92 28.97 57.78 72.11 30.96

TESTED 59.41 50.80 57.95 78.95 55.62 55.23 80.80 72.51 61.70 55.49 39.44 40.54 46.28 42.77 72.07 86.19 54.33

Topic Sampling→ Stratified 50.38 38.47 46.54 69.75 50.54 51.37 68.25 59.41 51.64 48.24 28.04 29.69 34.97 38.13 63.83 83.20 44.06
- Contrastive Loss 54.63 47.96 50.09 76.51 47.49 51.93 75.22 68.69 56.53 49.47 33.95 37.96 44.10 39.56 63.09 83.59 48.03

Table 2: Out-of-domain results with macro averaged F1. In lines under TESTED, we replace (for Sampling) (→) or
remove (for loss) (−), the comprising components. Results for MoLE w/Soft Mapping are aggregated across with
best per-embedding results present in the study (Hardalov et al., 2021).

and semeval16, meaning that learning to differen-
tiate between contrastive pairs is essential within
this task. We analyse the effect of the contrastive
training objective further in subsection 6.4.

Out-of-domain In the out-of-domain evaluation,
we leave one dataset out of the training process
for subsequent testing. We present the results of
TESTED in Table 2, showing that it is able to over-
perform over the previous state-of-the-art signifi-
cantly. The metrics in each column of Table 2 show
the results for each dataset held out from train-
ing and only evaluated on. Our method records
an increased performance on 13 of 16 datasets,
with an averaged increase of 10.2 F1 points over
MoLE, which is a significantly more pronounced
increase than for the in-domain setting, demonstrat-
ing that the strength of TESTED lies in better out-
of-domain generalisation. We can also confirm that
replacing the sampling technique or removing the
contrastive loss results in lower performance across
all datasets, with decreases of 9 and 5 F1 points
respectively. This effect is even more pronounced
compared to the in-domain experiments, as adapt-
ing to unseen domains and topics is facilitated by
diverse samples with a balanced label distribution.

6.2 Imbalance Mitigation Through Sampling

Inter-Topic To investigate the inter-topic imbal-
ances, we look at the topic distribution for the
top 20 most frequent topics covered in the com-
plete multi-domain dataset D, which accounts for
≥ 40% of the overall data. As we can see in Fig-
ure 2, even the most frequent topics greatly vary in
their representation frequency, with σ = 4093.55,
where σ is the standard deviation between repre-
sented amounts. For the training dataset Dtrain,
by contrast, the standard deviation between the
topics is much smaller σ = 63.59. This can be
attributed to the fact that Dtrain constitutes ≤ 10%
of D, thus we also show the aggregated data dis-
tributions in Figure 2. For a more systematic
analysis, we employ the two sample Kolmogorov-
Smirnov (KS) test (Massey, 1951), to compare
topic distributions in D and Dtrain for each dataset
present in D. The test compares the cumulative
distributions (CDF) of the two groups, in terms
of their maximum-absolute difference, stat =
supx |F1(x)− F2(x)|.

The results in Table 3 show that the topic distri-
bution within the full and sampled data D, Dtrain,
cannot be the same for most of the datasets. The
results for the maximum-absolute difference also
show that with at least 0.4 difference in CDF, the
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Figure 2: Distributions of top 20 most frequent topics in complete dataset D (left), Sampled dataset Dtrain (mid) and
their aggregated comparison (right). The distribution of top 20 topics in {D} − {Dtrain} is added to the tail of the
figure (mid).

dataset stat p-value

fnc-1-ours 1.00 0.007937
arc 0.40 0.873016
emergent 0.80 0.079365
wtwt 0.20 1.000000
rumor 0.40 0.873016
snopes 0.40 0.873016
perspectrum 0.60 0.357143
vast 0.60 0.357143
semeval2016task6 0.40 0.873016
iac 0.40 0.873016
mtsd 0.25 1.000000
argmin 0.40 0.873016
scd 1.00 0.007937
ibm_claim_stance 0.80 0.079365
politicaldebates 0.50 1.000000

Table 3: KS test for topic distributions. The topics
in bold designate a rejected null-hypothesis (criteria:
p ≤ 0.05 or stat ≥ 0.4), that the topics in D and Dtrain
come from the same distribution.

sampled dataset Dtrain on average has a more bal-
anced topic distribution. The analysis in Figure 2
and Table 3, show that the sampling technique is
able to mitigate the inter-topic imbalances present
in D. A more in-depth analysis for each dataset is
provided in Appendix A.

Per-topic For the per-topic imbalance analysis,
we complete similar steps to the inter-topic anal-
ysis, with the difference that we iterate over the
top 20 frequent topics looking at label imbalances
within each topic. We examine the label distribu-
tion for the top 20 topics for a per-topic compari-
son. The standard deviation in label distributions
averaged across those 20 topics is σ = 591.05 for
the whole dataset D and the sampled set Dtrain
σ = 11.7. This can be attributed to the stratified
manner of our sampling technique. This is also
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Figure 3: Label distribution inD (right) andDtrain (left).

evident from Figure 3, which portrays the overall
label distribution in D and Dtrain.

To investigate the difference in label distribu-
tion for each of the top 20 topics in D, we use
the KS test, presented in Table 4. For most topics,
we see that the label samples in D and Dtrain can-
not come from the same distribution. This means
that the per-topic label distribution in the sampled
dataset Dtrain, does not possess the same imbal-
ances present in D.

We can also see the normalized standard devia-
tion for the label distribution within Dtrain is lower
than inD, as shown in Figure 4. This reinforces the
finding that per-topic label distributions in the sam-
pled dataset are more uniform. For complete per-
topic results, we refer the reader to Appendix A.

Performance Using our topic-efficient sampling
method is highly beneficial for in- and out-of-
domain experiments, presented in Table 1 and Ta-
ble 2. Our sampling method can select diverse
and representative examples while outperforming
Random and Stratified sampling techniques by 8
and 5 F1 points on average. This performance can
be attributed to the mitigated inter- and per-topic
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topic p-values

FOXA_DIS 0.028571
CVS_AET 0.028571
ANTM_CI 0.028571
AET_HUM 0.047143
abortion 0.100000
Sarah Palin getting divorced? 0.028571
gun control 0.001879
CI_ESRX 0.028571
Hilary Clinton 0.001468
death penalty 0.100000
Donald Trump 0.002494
Is Barack Obama muslim? 0.028571
cloning 0.333333
marijuana legalization 0.032178
nuclear energy 0.333333
school uniforms 0.333333
creation 0.003333
minimum wage 0.333333
evolution 0.100000
lockdowns 0.000491

Table 4: KS test for label distributions. The topics in
bold designate a rejected null-hypothesis (criteria: p ≤
0.05), that the label samples in D and Dtrain averaged
per top 20 topics come from the same distribution.

Figure 4: Normalized Standard Deviation in label distri-
bution for top 20 topics.

imbalance in Dtrain.

6.3 Data Efficiency

TESTED allows for sampling topic-efficient, di-
verse and representative samples while preserving
the balance of topics and labels. This enables the
training of data-efficient models for stance detec-
tion while avoiding redundant or noisy samples.
We analyse the data efficiency of our method by
training on datasets with sizes [1%, 15%] compared
to the overall data size |D|, sampled using our tech-
nique. Results for the in-domain setting in terms of
averaged F1 scores for each sampled dataset size
are shown in Figure 5. One can observe a steady
performance increase with the more selected sam-
ples, but diminishing returns from the 10% point
onwards. This leads us to use 10% as the optimal
threshold for our sampling process, reinforcing the
data-efficient nature of TESTED.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sampled Dataset size in %

30

40

50

60

70

F1
 sc

or
e

Dataset size vs. F1 score
F1 score
F1 score in our experiment

Figure 5: Sampled Data size vs Performance. Perfor-
mance increases with a bigger sampled selection.

Figure 6: Sample Representation before (left) and after
(right) contrastive training.

6.4 Contrastive Objective Analysis

To analyse the effect of the contrastive loss, we
sample 200 unseen instances stratified across each
dataset and compare the sentence representations
before and after training. To compare the repre-
sentations, we reduce the dimension of the embed-
dings with t-SNE and cluster them with standard
K-means. We see in Figure 6 that using the objec-
tive allows for segmenting contrastive examples in
a more pronounced way. The cluster purity also
massively rises from 0.312 to 0.776 after training
with the contrastive loss. This allows the stance
detection model to differentiate and reason over the
contrastive samples with greater confidence.

7 Conclusions

We proposed TESTED, a novel end-to-end frame-
work for multi-domain stance detection. The
method consists of a data-efficient topic-guided
sampling module, that mitigates the imbalances in-
herent in the data while selecting diverse examples,
and a stance detection model with a contrastive
training objective. TESTED yields significant per-
formance gains compared to strong baselines on in-
domain experiments, but in particular generalises
well on out-of-domain topics, achieving a 10.2 F1
point improvement over the state of the art, all

13455



while using ≤ 10% of the training data. While in
this paper, we have evaluated TESTED on stance
detection, the method is applicable to text classifi-
cation more broadly, which we plan to investigate
in more depth in future work.

Limitations

Our framework currently only supports English,
thus not allowing us to complete a cross-lingual
study. Future work should focus on extending this
study to a multilingual setup. Our method is evalu-
ated on a 16 dataset stance benchmark, where some
domains bear similarities. The benchmark should
be extended and analyzed further to find indepen-
dent datasets with varying domains and minimal
similarities, allowing for a more granular out-of-
domain evaluation.
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Appendix

A Imbalance analysis

A.1 Inter-topic
To complement our inter-topic imbalance mitiga-
tion study, we complete an ablation on all topics
in D and report them on a per-domain basis in Fig-
ure 7. The trend is similar to the one in Figure 2,
where the dataset with imbalanced distributions
is rebalanced, and balanced datasets are not cor-
rupted.

A.2 Per-topic
We show that our topic-efficient sampling method
allows us to balance the label distribution for un-
balanced topics, while not corrupting the ones dis-
tributed almost uniformly. To do this, we investi-
gate each of the per-topic label distributions for the
top 20 most frequent topics while comparing the
label distributions for D and Dtrain, presented in
Figure 8.

B Evaluation Metrics

To evaluate our models and have a fair comparison
with the introduced benchmarks we use a standard
set of metrics for classification tasks such as macro-
averaged F1, precision, recall and accuracy.

Acc =
TP + TN

TP + TN + FP + FN
(4)

Prec =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 =
2 ∗ Prec ∗Recall

Prec+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(7)

C Dataset Statistics

We use a stance detection benchmark (Hardalov
et al., 2021) whose data statistics are shown in
Table 5. The label mapping employed is shown in
Table 6.

D TESTED with different backbones

We chose to employ different PLM’s as the back-
bone for TESTED and report the results in the Ta-
ble 7. The PLMs are taken from the set of roberta-
base, roberta-large, xlm-roberta-base, xlm-roberta-
large. The differences between models with a sim-
ilar number of parameters are marginal. We can

Dataset Train Dev Test Total

arc 12,382 1,851 3,559 17,792
argmin 6,845 1,568 2,726 11,139
emergent 1,770 301 524 2,595
fnc1 42,476 7,496 25,413 75,385
iac1 4,227 454 924 5,605
ibmcs 935 104 1,355 2,394
mtsd 3,718 520 1,092 5, 330
perspectrum 6,978 2,071 2,773 11,822
poldeb 4,753 1,151 1,230 7,134
rumor 6,093 471 505 7, 276
scd 3,251 624 964 4,839
semeval2016t6 2,497 417 1,249 4,163
semeval2019t7 5,217 1,485 1,827 8,529
snopes 14,416 1,868 3,154 19,438
vast 13,477 2,062 3,006 18,545
wtwt 25,193 7,897 18,194 51,284

Total 154,228 30,547 68,495 253,270

Table 5: Dataset statistics of the stance detection bench-
mark by Hardalov et al. (2021) also used in this paper.
Note that the rumour and mtsd datasets are altered in
that benchmark as some of the data was unavailable.

Label Description

Positive agree, argument for, for, pro, favor, support, endorse
Negative disagree, argument against, against, anti, con, undermine, deny, refute
Discuss discuss, observing, question, query, comment
Other unrelated, none, comment
Neutral neutral

Table 6: Hard stance label mapping employed in this
paper, following the stance detection benchmark by
Hardalov et al. (2021).

see a degradation of the F1 score between the base
and large versions of the models, which can be
attributed to the expressiveness the models possess.
We also experiment with the distilled version of the
model and can confirm that in terms of the final
F1 score, it works on par with the larger models.
This shows that we can utilise smaller and more
computationally efficient models within the task
with marginal degradation in overall performance.
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Figure 7: Distributions of top 20 most frequent topics for each dataset (left), Sampled dataset Dtrain=dataset (mid)
and their aggregated comparison (right).

Figure 8: Distributions of labels for top 20 most frequent topics for D (left), Sampled dataset Dtrain=dataset (mid)
and their aggregated comparison (right).
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TESTEDreberta-large 69.12 64.82 56.97 83.11 52.76 64.71 82.10 83.17 78.61 63.96 66.58 69.91 58.72 70.98 62.79 88.06 57.47
TESTEDxlm-reberta-large 68.86 64.35 57.0 82.71 52.93 64.75 81.72 82.71 78.38 63.66 66.71 69.76 58.27 71.29 62.73 87.75 57.2
TESTEDreberta-base 65.32 59.71 51.86 76.75 50.23 61.35 78.84 82.09 73.31 62.87 65.46 63.89 58.3 67.28 58.28 83.81 51.09
TESTEDxlm-reberta-base 65.05 60.26 51.96 76.2 51.82 58.74 74.68 77.9 72.61 62.71 66.08 69.74 53.27 65.83 59.09 87.92 52.08

TESTEDdistilroberta-base 68.86 61.78 56.94 80.36 46.29 64.1 79.26 81.37 73.44 62.6 63.4 63.75 56.53 68.35 57.27 81.93 56.3

Table 7: In-domain results reported with macro averaged F1, with varying backbones when using TESTED.
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