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Abstract

Chinese Spelling Correction (CSC) aims to de-
tect and correct erroneous characters in Chinese
texts. Although efforts have been made to in-
troduce phonetic information (Hanyu Pinyin)
in this task, they typically merge phonetic
representations with character representations,
which tends to weaken the representation effect
of normal texts. In this work, we propose to dis-
entangle the two types of features to allow for
direct interaction between textual and phonetic
information. To learn useful phonetic repre-
sentations, we introduce a pinyin-to-character
objective to ask the model to predict the correct
characters based solely on phonetic informa-
tion, where a separation mask is imposed to
disable attention from phonetic input to text.
To avoid overfitting the phonetics, we further
design a self-distillation module to ensure that
semantic information plays a major role in the
prediction. Extensive experiments on three
CSC benchmarks demonstrate the superiority
of our method in using phonetic information1.

1 Introduction

Chinese Spelling Correction (CSC) is a task to de-
tect and correct erroneous characters in Chinese
sentences, which plays an indispensable role in
many natural language processing (NLP) applica-
tions (Martins and Silva, 2004; Gao et al., 2010).
Previous research (Liu et al., 2010) shows that
the misuse of homophonic characters accounts for
roughly 83% of the spelling errors. We present two
such cases in Table 1. In the first one, the erroneous
characters of “户秃” are difficult to be corrected
by only literal text because the input sample is too
short and the two characters are entirely unrelated
to the semantic meaning of this sample. However,
their pronunciation easily helps us associate them
with the correct answer “糊涂” which shares the
same pronunciation as “户秃”. The second case

∗Corresponding authors
1https://github.com/liangzh63/DORM-CSC

Source 可是我忘了，我真户秃(hu tu)。
But I forgot, I am so household bald.

Target 可是我忘了，我真糊涂(hu tu)。
But I forgot, I am so silly.

BERT 可是我忘了，我真护突。 �

PinyinBERT 可是我忘了，我真糊涂。 �

REALISE 可是我忘了，我真户涂。 �

Our DORM 可是我忘了，我真糊涂。 �

Source 可是现在我什么事都不济的(ji de)。
But I can’t do anything right now.

Target 可是现在我什么事都不记得(ji de)。
But I don’t remember anything now.

BERT 可是现在我什么事都不记得。 �

PinyinBERT 可是现在我什么事都不记的。 �

REALISE 可是现在我什么事都不记的。 �

Our DORM 可是现在我什么事都不记得。 �

Table 1: Two examples of Chinese Spelling Correction
and the predictions by different models. Misspelled
characters are highlighted in red and the corresponding
answers are in blue. The phonetic transcription of key
characters is bracketed. PinyinBERT is a special BERT
model which takes as input only phonetic features with-
out characters. REALISE is a state-of-the-art model.

exhibits a similar phenomenon but is more compli-
cated as the model must distinguish between “记
得” and “记的” further. These two examples illus-
trate that misspelled characters could be recognized
and corrected with the introduction of phonetic in-
formation. In Mandarin Chinese, Hanyu Pinyin
(shortened to pinyin) is the official romanization
system for phonetic transcription. It uses three com-
ponents of initials, finals, and tones to express the
pronunciation and spelling of Chinese characters.
As the pronunciation similarity of Chinese charac-
ters is primarily determined by their initial or final
sounds rather than their tones, we focus solely on
the initials and finals as the phonetic features of
Chinese characters.

As pre-trained language models like BERT (De-
vlin et al., 2019) have dominated various NLP tasks,
researchers explore incorporating pinyin features
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into pre-trained language models for the CSC task.
There are mainly two approaches. First, the pinyin
of a Chinese character is encoded and fused into
the character representation with a gate mechanism
(Wang et al., 2021; Huang et al., 2021; Xu et al.,
2021; Zhang et al., 2021). Second, a pronunciation
prediction objective is introduced to model the rela-
tionship among phonologically similar characters
(Liu et al., 2021; Ji et al., 2021; Li et al., 2022a).
Despite considerable performance gain, these meth-
ods suffer from two potential issues. First, pinyin
information may be neglected or dominated by tex-
tual information during training because of the en-
tanglement between pinyin and textual representa-
tions. As the first case shows in Table 1, a special
BERT model taking only the pinyin sequence as
input without Chinese characters can detect and
correct the erroneous characters, while REALISE
(Xu et al., 2021), which encodes and fuses textual
and pinyin information with a gate mechanism, ig-
nores one of the errors. Second, the introduction
of pinyin features may weaken the representation
of normal texts. Take the second case in Table 1
for example. While an ordinary BERT model can
correct the misspelled character “的” in the input,
REALISE fails to do that. This problem could be
explained by the over-reliance of REALISE on or
overfitting pinyin information.

Based on the above observations, we pro-
pose Disentangled phOnetic Representation Model
(DORM) for CSC. Our motivation is to decouple
text and pinyin representations to allow for direct
interaction between them to make better use of pho-
netic information. Specifically, we first construct
a phonetics-aware input sequence by appending
the pinyin sequence to the original textual input,
where a common set of position embeddings is
used to relate the two sub-sequences. In doing so,
textual features are allowed to capture phonetic in-
formation as needed from the pinyin part during
training and inference. Then, to learn useful pinyin
representations, we introduce a pinyin-to-character
prediction objective, where a separation mask is
imposed to disallow attention from pinyin to text to
ask the model to recover the correct characters only
from pinyin information. The pinyin-to-character
task is auxiliary during training and its prediction
will be discarded at inference time.

Intuitively, pinyin should serve to complement
but not replace textual information in CSC for two
reasons. First, there is a one-to-many relation be-

tween pinyin and Chinese characters, and it is more
difficult to recover the correct characters solely
from pinyin than from Chinese characters. Second,
pinyin representations are not pre-trained as tex-
tual representations in existing language models.
Therefore, the model should avoid overly relying
on pinyin which may cause overfitting. Inspired
by deep mutual learning (Zhang et al., 2018) and
self-distillation (Mobahi et al., 2020), we propose
a self-distillation module to force the prediction of
our model to be consistent with that when a raw-
text input is supplied. To this end, KL-divergence
is applied to the two sets of soft labels.

Experiments are conducted on three SIGHAN
benchmarks and the results show that our model
achieves substantial performance improvement
over state-of-the-art models. Further analysis
demonstrates that phonetic information is better uti-
lized in our model. The contributions of this work
are summarized threefold. First, we disentangle
text and pinyin representations to allow for direct
interaction between them. Second, we introduce a
pinyin-to-character task to enhance phonetic repre-
sentation learning with a separation mask imposed
to disable attention from pinyin to text. Third, a
self-distillation module is proposed to prevent over-
reliance on phonetic features. Through this work,
we demonstrate the merit of our approach to mod-
eling pinyin information separately from the text.

2 Related Work

2.1 Chinese Spelling Correction

Chinese Spelling Correction has drawn increasing
interest from NLP researchers. The current method-
ology of this task has been dominated by neural
network-based models, especially pre-trained lan-
guage models, and can be divided into two lines.

One line of work focuses on better semantic mod-
eling of textual features (Hong et al., 2019; Guo
et al., 2021; Li et al., 2022c). They treat CSC as a
sequence labeling task and adopt pre-trained lan-
guage models to acquire contextual representations.
Soft-Masked BERT (Zhang et al., 2020) employs
a detection network to predict whether a character
is erroneous and then generates soft-masked em-
bedding for the correction network to correct the
error. MDCSpell (Zhu et al., 2022) is a multi-task
detector-corrector framework that fuses representa-
tions from the detection and correction networks.

Another line of work is incorporating phonetic
information into the task, motivated by the obser-
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vation that the misuse of homophonic characters
accounts for a large proportion of the errors (Liu
et al., 2010). MLM-phonetics (Zhang et al., 2021)
and PLOME (Liu et al., 2021) employ a word re-
placement strategy to replace randomly-selected
characters with phonologically or visually similar
ones in the pre-training stage. REALISE (Xu et al.,
2021) and PHMOSpell (Huang et al., 2021) uti-
lize multiple encoders to model textual, phonetic,
and visual features and employ a selective gate
mechanism to fuse them. SCOPE (Li et al., 2022a)
imposes an auxiliary pronunciation prediction task
and devises an iterative inference strategy to im-
prove performances. However, these methods gen-
erally merge textual and phonetic features without
direct and deep interaction between them, which
may lead to ineffective use of phonetic information.
By contrast, our method decouples the two types of
features to learn isolated phonetic representations
and use them to assist textual information for CSC.

2.2 Self-Distillation

Knowledge distillation (Hinton et al., 2015) is a
technique that tries to distill a small student model
from a large teacher model. As a special distillation
strategy, deep mutual learning (Zhang et al., 2018)
allows several student models to collaboratively
learn and teach each other during training. Partic-
ularly, it is referred to as self-distillation (Mobahi
et al., 2020) when the student models share the
same parameters. Self-distillation has been ap-
plied in CSC and brings performance improvement.
SDCL (Zhang et al., 2022) encodes both original
and corresponding correct sentences respectively,
and adopts contrastive loss to learn better contex-
tual representations. CRASpell (Liu et al., 2022)
constructs a noisy sample for each input and applies
KL-divergence for the two outputs to improve the
performance on multi-typo sentences. Our method
differs from CRASpell in two aspects. First, one of
our student models takes as input a phonetics-aware
sequence with disentangled textual and phonetic
representations. Second, the purpose of our self-
distillation design is to reduce overfitting phonetic
information when training the model.

3 Methodology

The motivation of our Disentangled phOnetic
Representation Model (DORM) for Chinese
Spelling Correction (CSC) is to allow for direct and
deep interaction between textual and phonetic fea-

tures by decoupling Chinese character and pinyin
representations. To enable effective pinyin repre-
sentations, we introduce a pinyin-to-character ob-
jective that requires the model to restore the correct
characters purely from pinyin information. Inspired
by deep mutual learning (Zhang et al., 2018) and
self-distillation (Mobahi et al., 2020), we further
introduce a self-distillation module to prevent the
model from overfitting pinyin information. In the
following, we first formulate the task (§3.1) and
then introduce DORM in detail (§3.2). Finally,
we introduce how to pre-train the model for better
textual and pinyin representations (§3.3).

3.1 Problem Definition

Given a Chinese sentence X = {x1, x2, .., xn} of
n characters that may include erroneous characters,
we use Y = {y1, y2, .., yn} to represent the corre-
sponding correct sentence. The objective of CSC
is to detect and correct the erroneous characters
by generating a prediction Ŷ = {ŷ1, ŷ2, .., ŷn} for
the input X , where ŷi is the character predicted for
xi. Apparently, the CSC task can be formulated as
a sequence labeling task in which all the Chinese
characters constitute the label set.

3.2 Architecture

As illustrated in Figure 1, our DORM consists of
a phonetics-aware input sequence, a unified en-
coder with separation mask, a pinyin-to-character
objective, and a self-distillation module. The
phonetics-aware input is constructed by appending
the pinyin sequence to the original textual input.
The separation mask is imposed to disallow atten-
tion from pinyin to text to avoid information leaks.
The pinyin-to-character objective is designed to
learn useful phonetic representations. In the self-
distillation module, the model conducts two for-
ward passes with the phonetics-aware sequence
and the raw text as input respectively to obtain two
sets of distributions, and the difference between
them is minimized by KL-divergence.

Phonetics-Aware Input Sequence The pinyin
of each Chinese character is a sequence of
the Latin alphabet and is composed of initials,
finals and tones to denote the pronunciation. If
characters share the same initial or final, their
pronunciations are usually related or similar. In
our method, we only consider initials and finals
as pinyin information for CSC, as empirically
tones are not related to this task. Given the
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Figure 1: The architecture of the proposed DORM, which consists of a phonetics-aware input sequence S, an
encoder with separation mask, a pinyin-to-character objective, and a self-distillation module. X is the original input
sentence, R is the pinyin sequence of X , Y is the corresponding correct sentence, and Z is the prediction label
based on S. Pinyin sequences are underlined to distinguish them from English sentences. Misspelled characters are
shown in red and the corresponding correct characters are in blue. For self-distillation, the model conducts two
forward passes with different inputs, and the output distributions are constrained by KL-divergence.

input X , we denote its pinyin sequence as R =
{(init1, final1), (init2, final2), .., (initn, finaln)},
where initi and finali are the initial and final of
character xi, respectively. Then, we append R
to X and obtain a phonetics-aware sequence
S = {s1, s2, .., sn, sn+1, sn+2, .., sn+n} as the
final input, where si is defined as follows.

si =

{
xi, 1 ≤i ≤ n

initi−n, finali−n, n+ 1 ≤i ≤ n+ n
. (1)

Encoder with Separation Mask We adopt
BERT (Devlin et al., 2019) with a stack of 12 Trans-
former (Vaswani et al., 2017) blocks as our encoder.
Each Chinese character is encoded as the sum of
word embedding, position embedding, and segment
embedding. Similarly, the pinyin of each character
is encoded as the sum of initial embedding, final
embedding, position embedding, and segment em-
bedding, where the position embedding is the same
as the character. As a result, the representations
of the phonetics-aware input sequence S can be
denoted by H0 = {h01, h02, .., h0n+n}.

The contextual representation of each token is
updated by aggregating information from other to-
kens via multi-head attention networks (MHA). In

the l-th layer, the output Ol of each attention head
is computed as:

Ql,Kl, V l = Hl−1W l�
Q , Hl−1W l�

K , Hl−1W l�
V ,

Al = softmax(
QlKl�
√
d

+M),

Ol = AlV l.

(2)

where W l
Q, W l

K , W l
V are trainable parameters,

H l−1 is the output of the previous layer, d is the
size of the dimension, and M is a mask matrix.

Specifically, we apply a separation mask to allow
for attention from text representations to phonetic
representations but not vice versa. Thus, we define
the mask matrix M ∈ R2n×2n in Eq. (2) as:

Mij =

{ −∞, if n+ 1 ≤i ≤ 2n and 1 ≤ j ≤ n

0, otherwise
.

(3)

The separation mask ensures that pinyin representa-
tions cannot gather information from textual char-
acters when Mij = −∞. Next, Ol from all heads
are concatenated then passed through a linear trans-
formation network and a normalization network.
After that, the resulting representations are fed into
a feed-forward network followed by another nor-
malization network to generate H l.
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The final contextual representations H =
{h1, h2, .., hn+n} are produced by taking the last-
layer hidden states of the encoder. Then, we com-
pute the probability distribution for the i-th charac-
ter based on hi by:

Pi = softmax(E ∗ hi + b) ∈ R|V |. (4)

where E is word embedding parameters, |V | de-
notes the size of vocabulary, and b is a trainable
parameter. The prediction loss for the textual part
of S is computed as:

Ltext =
1

n

n∑

i=1

−logP (yi|S). (5)

Pinyin-to-Character Objective To design the
auxiliary pinyin-to-character task, we make a
copy of the gold output Y to obtain Z =
{z1, .., zn, zn+1, .., zn+n} as the prediction la-
bels of S, where z1, .., zn = y1, .., yn and
zn+1, .., zn+n = y1, .., yn. The prediction loss of
the pinyin part in S is defined as:

Lpinyin =
1

n

n+n∑

i=n+1

−logP (zi|S). (6)

At inference time, we obtain the prediction Ŷ =
{ŷ1, ..ŷn, ŷn+1, .., ŷn+n}, where ŷi = argmax(Pi).
We discard the prediction for the pinyin part and
use {ŷ1, ..ŷn} as the final output.

Self-Distillation Module After obtaining the out-
put distribution for each character by Equation (4),
the model conducts another forward pass with the
original sequence X as input, giving rise to another
output distribution Qi ∈ R|V | for each character xi.
The two sets of distributions are then forced to be
close by applying bidirectional KL-divergence:

Lkl =
1

n

n∑

i=1

1

2
(Dkl(Pi||Qi) +Dkl(Qi||Pi)). (7)

Besides, the prediction objective of the second
pass is also included in the training:

Lraw-text =
1

n

n∑

i=1

−logP (yi|X). (8)

Joint Learning To train the model, we combine
the phonetics-aware loss and the self-distillation
loss into a joint training framework as:

L = Ltext + αLpinyin︸ ︷︷ ︸
phonetics-aware loss

+ βLkl + γLraw-text︸ ︷︷ ︸
self-distillation loss

. (9)

where α, β, and γ are tunable hyperparameters.

3.3 Pre-training

Pinyin sequences can be regarded as a special form
of natural language sequences. Since they are not
presented in the original pre-training process of lan-
guage models, reasonably, they can be pre-trained
on large-scale corpora to obtain better pinyin repre-
sentations for fine-tuning. Therefore, we pre-train
DORM on two large corpora, namely wiki2019zh2

and weixin-public-corpus3. The format of input se-
quences and the model structure are the same as in
fine-tuning. DORM is trained by recovering 15%
randomly selected characters in the input, which
were replaced by phonologically similar or ran-
dom characters. Moreover, the pinyin-to-character
objective is also included. More implementation
details are given in Appendix A.

4 Experiments

In this section, we introduce the details of our ex-
periments to evaluate the proposed model.

4.1 Datasets and Metrics

We conduct main experiments on three CSC bench-
marks, including SIGHAN13 (Wu et al., 2013),
SIGHAN14 (Yu et al., 2014), and SIGHAN15
(Tseng et al., 2015). Following previous work
(Wang et al., 2019; Cheng et al., 2020; Xu et al.,
2021), we merge the three SIGHAN training sets
and another 271K pseudo samples generated by
ASR or OCR (Wang et al., 2018) as our training
set. We evaluate our model on the test sets of
SIGHAN13, SIGHAN14, and SIGHAN15, respec-
tively. Since the original SIGHAN datasets are in
Traditional Chinese, they are converted to Simpli-
fied Chinese by OpenCC4. We adopt the pypinyin
toolkit5 to obtain the pinyin of each character.

We use the metrics of sentence-level precision,
recall, and F1 to evaluate our model for detection
and correction. For detection, all misspelled char-
acters in a sentence should be detected correctly
to count it as correct. For correction, a sentence
is considered as correct if and only if the model
detects and corrects all erroneous characters in this
sentence. More details about the datasets and the
metrics are presented in Appendix B.

2https://github.com/brightmart/nlp_chinese_
corpus

3https://github.com/nonamestreet/weixin_
public_corpus

4https://github.com/BYVoid/OpenCC
5https://pypi.org/project/pypinyin/
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Dataset Methods Detection (%) Correction (%)
precision recall F1 precision recall F1

SIGHAN15

BERT 74.2 78.0 76.1 71.6 75.3 73.4
SpellGCN (Cheng et al., 2020) 74.8 80.7 77.7 72.1 77.7 75.9
DCN (Wang et al., 2021) 77.1 80.9 79.0 74.5 78.2 76.3
PLOME (Liu et al., 2021) 77.4 81.5 79.4 75.3 79.3 77.2
MLM-phonetics (Zhang et al., 2021) 77.5 83.1 80.2 74.9 80.2 77.5
REALISE (Xu et al., 2021) 77.3 81.3 79.3 75.9 79.9 77.8
LEAD (Li et al., 2022b) 79.2 82.8 80.9 77.6 81.2 79.3
DORM (ours) 77.9 84.3 81.0 76.6 82.8 79.6

SIGHAN14

BERT 64.5 68.6 66.5 62.4 66.3 64.3
SpellGCN (Cheng et al., 2020) 65.1 69.5 67.2 63.1 67.2 65.3
DCN (Wang et al., 2021) 67.4 70.4 68.9 65.8 68.7 67.2
MLM-phonetics (Zhang et al., 2021) 66.2 73.8 69.8 64.2 73.8 68.7
REALISE (Xu et al., 2021) 67.8 71.5 69.6 66.3 70.0 68.1
LEAD (Li et al., 2022b) 70.7 71.0 70.8 69.3 69.6 69.5
DORM (ours) 69.5 73.1 71.2 68.4 71.9 70.1

SIGHAN13

BERT 85.0 77.0 80.8 83.0 75.2 78.9
SpellGCN (Cheng et al., 2020) 80.1 74.4 77.2 78.3 72.7 75.4
DCN (Wang et al., 2021) 86.8 79.6 83.0 84.7 77.7 81.0
MLM-phonetics (Zhang et al., 2021) 82.0 78.3 80.1 79.5 77.0 78.2
REALISE (Xu et al., 2021) 88.6 82.5 85.4 87.2 81.2 84.1
LEAD (Li et al., 2022b) 88.3 83.4 85.8 87.2 82.4 84.7
DORM (ours) 87.9 83.7 85.8 86.8 82.7 84.7

Table 2: Overall results of DORM and baselines on SIGHAN13/14/15 in detection/correction precision, recall, and
F1. The best results are shown in bold and the second-best results are underlined. The results of baselines are cited
from the corresponding papers.

4.2 Baselines
We compare our DORM with the following base-
lines. BERT (Devlin et al., 2019) is initialized with
pre-trained BERTbase and fine-tuned on the train-
ing set directly. SpellGCN (Cheng et al., 2020)
models prior knowledge between phonetically or
graphically similar characters with graph convo-
lutional networks. DCN (Wang et al., 2021) uses
a Pinyin Enhanced Candidate Generator to intro-
duce phonological information and then models the
connections between adjacent characters. MLM-
phonetics (Zhang et al., 2021) integrates phonetic
features during pre-training with a special mask-
ing strategy that replaces words with phonetically
similar words. PLOME (Liu et al., 2021) utilizes
GRU networks to model phonological and visual
knowledge during pre-training with a confusion
set-based masking strategy. REALISE (Xu et al.,
2021) learns semantic, phonetic, and visual repre-
sentations with three encoders and fuses them with
a gate mechanism. LEAD (Li et al., 2022b) mod-
els phonetic, visual, and semantic information by a
contrastive learning framework. Additionally, the
implementation details of our DORM are presented
in Appendix C.

4.3 Overall Results
As the overall results show in Table 2, the pro-
posed DORM outperforms existing state-of-the-art

methods in both detection and correction F1 scores
on SIGHAN13/14/15 test datasets, which demon-
strates the effectiveness of this model. Compared
with other models utilizing phonetic and visual fea-
tures (e.g., REALISE and PLOME) and models pre-
trained on larger corpora (e.g., PLOME and MLM-
phonetics), which have access to further external
information, DORM still achieves favourable im-
provement in detection/correction F1. We also note
that the improvements in detection/correction recall
are prominent and consistent across different test
sets. These results suggest that our model is able
to capture phonetic information more effectively.
Although the improvement in precision is not as
encouraging as recall and F1, its performance is
still competitive compared with other methods also
including phonetic information in this task.

5 Analysis and Discussion

In this section, we further analyze and discuss our
model quantitatively and qualitatively.

5.1 Ablation Study
To investigate the contribution of key components
of our model, we ablate them in turn and report
the F1 performance for the correction task on
SIGHAN13/14/15 in Table 3. As shown in the
first group, eliminating the separation mask leads
to considerable performance declines, showing that
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Method Correction F1 (Δ)

SIGHAN13 SIGHAN14 SIGHAN15
DORM 84.7 70.1 79.6

w/o SM 83.6 (-1.1) 67.4 (-2.7) 79.0 (-0.6)
w/o SD 83.1 (-1.6) 69.1 (-1.0) 78.9 (-0.7)
w/o Lpinyin 84.2 (-0.5) 68.3 (-1.8) 79.2 (-0.4)
w/o pre-training 83.7 (-1.0) 66.9 (-3.2) 78.6 (-1.0)
w/o SD&SM 82.1 (-2.6) 68.3 (-1.8) 77.1 (-2.5)
w/o SD&Lpinyin 83.0 (-1.7) 68.7 (-1.4) 77.8 (-1.8)
w/o SD&Lpinyin&SM 81.4 (-3.3) 67.3 (-2.8) 76.9 (-2.7)

Table 3: Results of ablation study in correction F1 on
SIGHAN13/14/15, where “w/o” means without, “Lpinyin”
means the pinyin-to-character objective, “SM” denotes
the separation mask, “SD” denotes the self-distillation
module, and “Δ” denotes the change of performance.

preventing pinyin representations from attending
to textual information is necessary to learn useful
phonetic representations. Moreover, removing self-
distillation also leads to performance degradation,
which suggests that the module is useful to avoid
overfitting pinyin. When Lpinyin is discarded, the
performance drops correspondingly, meaning that
phonetic features tend to be ignored without the
pinyin-to-character objective. Moreover, a sharp
decline is observed when dropping the pre-training
phase, which implies that pre-training on large-
scale corpora indeed improves phonetic represen-
tations. More experimental results of various com-
binations in the second group further reveal the
contribution of these components.

5.2 Effect of Phonetic Knowledge
According to the assumption, more phonetically
similar misspellings should be restored with the
assistance of phonetic knowledge. To show this,
we focus on the recall performance of different
models on phonetically misspelled characters of
SIGHAN13/14/15. We collect 1130/733/668 such
misspellings from the three test sets, accounting for
about 93%/95%/95% of all misspellings, respec-
tively. From the results in Table 4, we can note
that our model achieves 93.5%/82.1%/90.0% recall
scores and outperforms two phonetic-based mod-
els (i.e., SCOPE (Li et al., 2022a) and REALISE)
consistently. In particular, it beats BERT by a large
margin. These results indicate that phonetic knowl-
edge is essential to CSC and our model is able to
utilize phonetic knowledge more effectively.

5.3 Effect of Self-Distillation
The self-distillation module is introduced for
DORM to avoid overfitting pinyin information. To
show the effect of this module, we record the num-
ber of normal characters that are mistakenly treated

Model
Recall (%)

SIGHAN13 SIGHAN14 SIGHAN15
DORM 93.5 82.1 90.0
SCOPE† 91.6 80.2 87.6
REALISE† 89.8 78.2 84.7
BERT 88.8 75.2 82.8

Table 4: The performance of models in restoring pho-
netically misspelled characters on SIGHAN13/14/15.
Results marked with “†” are obtained by executing re-
leased models from corresponding papers.

as misspellings (i.e., overcorrections), as well as
the number of misspellings not restored (i.e., un-
dercorrections) in the three test sets. The results
in Table 5 show that the number of undercorrec-
tions is significantly reduced when phonological
information but not self-distillation is introduced,
while the number of overcorrections generally stays
unchanged except on SIGHAN13. These results
demonstrate that after including the self-distillation
module, the numbers of overcorrections and un-
dercorrections are both reduced compared with the
baseline, demonstrating that self-distillation indeed
alleviates the overfitting issue.

Model
#Overcorrections/#Undercorrections

SIGHAN13 SIGHAN14 SIGHAN15
BERT 103/129 175/177 120/106
DORM w/o SD 118/75 172/134 119/63
DORM 107/77 161/136 116/65

Table 5: The effect of self-distillation in reducing over-
corrections and undercorrections on SIGHAN13/14/15.
“w/o SD” means without the self-distillation module.

Figure 2: Visualization of character representations, in
which (a) is fine-tuned BERT and (b) is our DORM.
Two pivot characters “数” (number) and “想” (want)
have different pronunciations.

5.4 Visualization

Ideally, the introduction of phonetic knowledge
should improve Chinese character representations
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Input

Prediction

Input

Prediction

Input

Prediction

na hui yuying

wo liu qimei tian tian ban chuang

xia qi shi wo de di di ri

X: (kua)
Fortunately, that lady can speak English.

Y: (kui)
Fortunately, that lady can speak English.

X: (di di)
Next week is my first birthday.

Y: (di di)
Next week is my brother’s birthday.

X: (tian)
I get up at half a day every day.

Y: (dian)
I get up at half past six every day.

jie

shengxing

xing wei xiao shuokua

Figure 3: Case study on SIGHAN15, where misspellings and corresponding answers are highlighted in red and blue,
respectively. The phonetic input is underlined and its prediction is discarded during inference. Attention weights
from misspellings to the input sequence are also visualized where darker colors mean larger weights.

in that phonetically similar characters are pulled
closer in the space. To show the effect, we employ
t-SNE (van der Maaten and Hinton, 2008) to vi-
sualize character representations generated by our
model, with fine-tuned BERT as the baseline. We
randomly select two characters “数” and “想” of
different pronunciations and collect about 60 pho-
netically similar characters provided by Wu et al.
(2013) for eacknow. We plot the two groups of rep-
resentations in Figure 2, from which we can note
that the representations produced by fine-tuned
BERT are scattered and less distinguishable be-
tween the groups. However, our model separates
them into two distinct clusters according to the
pivot characters, demonstrating that our model can
better model the relationships among phonetically
similar characters for CSC.

5.5 Case Study
Finally, we provide a case study with two good and
one bad examples to analyze our model. We visu-
alize the attention weights from each misspelled
character to the other positions in the phonetics-
aware sequence to show how our model utilizes
phonetic information. As presented in Figure 3, in
the first case both the textual and phonetic parts
make correct predictions. After looking into the
attention weights, we note the prediction for the
misspelled position pays much attention to its pre-
vious position, the current position, and its pinyin
position. In the second case, while the phonetic
part leads to a wrong prediction, our model focuses

more on the textual part and eventually makes a
correct prediction. In the third case, although the
prediction of the pinyin part is accurate, the textual
part fails to pay much attention to it and causes
a wrong prediction, suggesting that there is still
room for improvement in balancing phonetic and
semantic information. These cases intuitively show
how our model uses phonetic information to correct
misspelled characters.

6 Conclusion
In this paper, we propose DORM in an attempt to
improve the effect of using phonetic knowledge in
Chinese Spelling Correction (CSC). To this end,
we propose to disentangle textual and phonetic fea-
tures and construct a phonetics-aware input to al-
low for direct interaction between them. We also
introduce a pinyin-to-character objective to force
the model to recover the correct characters based
solely on pinyin information, where a separation
mask is applied to prevent exposing textual infor-
mation to phonetic representations. Besides, we
propose a novel self-distillation module for DORM
to avoid overfitting pinyin information. Extensive
experiments on three widely-used CSC datasets
show that this model outperforms existing state-
of-the-art baselines. Detailed analysis and stud-
ies show that direct interaction between characters
and pinyin is beneficial to better restore misspelled
characters. Through this work, we demonstrate
the merit of disentangling phonetic features from
textual representations when solving CSC.
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A Pre-training

There are 1 million and 0.7 million articles in
wiki2019zh corpus and weixin-public-corpus, re-
spectively. First, we generate continuous sentence
fragments of at most 256 characters from two cor-
pora as pre-training samples. Then, we randomly
sample 15% characters in each fragment and re-
place them with: (1) a phonologically similar char-
acter 80% of the time, (2) a randomly selected char-
acter 10% of the time, and (3) unchanged 10% of
the time. After that, we acquire the pinyin sequence
of the corrupted fragment and construct a phonetics-
aware sequence, and replicate the original fragment
to construct the prediction labels. We obtain a total
of 4.8 million samples for pre-training.

The architecture of the model for pre-training is
the same as described in Section 3.2. The model
is trained by recovering those selected characters
from the phonetics-aware sequence and the pinyin-
to-character objective, while the self-distillation
module is not required. The batch size is set to 72
and the learning rate is 5e-5.

B Datasets and Evaluation Metrics

The statistics of the training and test datasets for the
experiments are presented in Table 6. It is worth
mentioning that we post-process the predictions of
characters “的”, “得” and “地” on the SIGHAN13
test set following previous work (Xu et al., 2021),
because the annotations for these characters are not
accurate. Specifically, the detection and correction
of the three characters are not considered.

C Implementation of DROM

Our encoder contains 12 attention heads with a hid-
den size of 768 (about 110M parameters) and is
initialized with weights from Chinese BERT-wwm
(Cui et al., 2020). The embeddings of initials and
finals are randomly initialized. Our model is firstly
pre-trained and then fine-tuned on the CSC training
set. We apply the AdamW optimizer (Loshchilov

Train #Sent #Errors Avg. Length
SIGHAN15 2,338 3,037 31.3
SIGHAN14 3,437 5,122 49.6
SIGHAN13 700 343 41.8
271K pseudo data 271,329 381,962 42.6
Test #Sent #Errors Avg. Length
SIGHAN15 1,100 703 30.6
SIGHAN14 1,062 771 50.0
SIGHAN13 1,000 1,224 74.3

Table 6: Statistics of the SIGHAN training and test
datasets. We train our model on the combination of all
the training sets and evaluate it on each test dataset.

and Hutter, 2017) to fine-tune the model for 3
epochs on three 24G GeForce RTX 3090 GPUs.
The learning rate is scheduled to decrease gradually
after linearly increasing to 75e-6 during warmup.
The maximum sentence length is set to 140. The
batch sizes for training and evaluation are set to 48
and 32, respectively. The hyperparameters of α, β,
and γ are set to 1, 1.2 and 0.97, respectively. Our
implementation is based on Huggingface’s Trans-
former (Wolf et al., 2020) in PyTorch.
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