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Abstract

Frozen models trained to mimic static datasets
can never improve their performance. Models
that can employ internet-retrieval for up-to-date
information and obtain feedback from humans
during deployment provide the promise of both
adapting to new information, and improving
their performance. In this work we study how
to improve internet-driven conversational skills
in such a learning framework. We collect de-
ployment data, which we make publicly avail-
able, of human interactions, and collect vari-
ous types of human feedback – including bi-
nary quality measurements, free-form text feed-
back, and fine-grained reasons for failure. We
then study various algorithms for improving
from such feedback, including standard su-
pervised learning, rejection sampling, model-
guiding and reward-based learning, in order to
make recommendations on which type of feed-
back and algorithms work best. We find the
recently introduced DIRECTOR model (Arora
et al., 2022) shows significant improvements
over other existing approaches.

1 Introduction

Large language models employed as dialogue
agents are primarily trained on human-written
documents and human-human conversations col-
lected from the web for pre-training (Conneau
et al., 2019; Baumgartner et al., 2020), and human-
human crowdsourced conversations (Smith et al.,
2020) for fine-tuning. The models are then used
at inference time to conduct conversations with
humans, with no further learning taking place (Adi-
wardana et al., 2020; Roller et al., 2020). Human-
model conversations – which are never seen at train-
ing time – can have a quite different distribution to
the original human-human training data used, and
our current techniques can lose performance due
to lack of robustness to such deviations (Chollet,
2019; Bengio, 2019).

Search:     F1 metric 

Search Engine

Retrieved Documents
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for classification.
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Bad Search?

Bad Knowledge?

Bad Final Response?
Explanation what’s wrong 
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Search was the wrong 
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Figure 1: Using human feedback to improve open-
domain internet-driven dialogue agents. We compare
various types of feedback (and corresponding learn-
ing algorithms) in this work, such as binary feedback
(good/bad), free-form text or supervised responses (bet-
ter suggestions) for different modules of the system.

In this work, we study learning from the feed-
back collected during deployment of models in
human-model conversations. Such a setting has
the opportunity to learn from within-distribution
data, both in terms of the input contexts, but also
the responses required (targets). Not only can
this mean improvement in skills that are similar
to the pre-train and fine-tune data, but potentially
the learning of completely new skills – that are
desired by users of the system. We thus take ex-
isting state of the art internet-augmented models
such as BlenderBot 2 (Komeili et al., 2021; Xu
et al., 2021) and SeeKeR (Shuster et al., 2022a),
deploy them to human crowdworkers, and exper-
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iment with various methods to learn from such
interactions. We thus first ask crowdworkers what
topic and task they would like to talk about, in
order to collect in-domain data, and then collect
conversations involving these skills. During the
conversations we collect various kinds of human
feedback, including binary feedback (good/bad),
free-form conversational feedback, and the type
of failure (search query-based, results-based, or
final response-based), as well as suggestions for
improvements (see Figure 1).

We then explore a variety of methods for learn-
ing from feedback, and compare them in detailed
experiments. In particular, we compare supervised
learning methods, rejection sampling, model guid-
ing and reward-based learning. Our findings are:

• Taking advantage of modular feedback (feed-
back about particular errors from modules of
the model, such as the search engine com-
ponent) outperforms feedback about just the
final response.

• Textual and binary feedback are also very use-
ful signals, but not as much as modular feed-
back.

• The recently introduced DIRECTOR method
(Arora et al., 2022), when learning from bi-
nary feedback, works better than reranking or
reward-based learning.

• Combining multiple types of feedback, such
as modular and binary feedback with DIREC-
TOR provides the best results we obtained.

• Continual learning, whereby we retrain mod-
els on the feedback from previous rounds of
deployment, improves results even further.

• Despite collecting feedback from smaller (3B
parameter) models, the data collection is use-
ful for improving much larger (175B parame-
ter) models.

We make the collected data and feedback, the mod-
els, and the code publicly available for this work1.

2 Related Work

There are a number of existing methods for col-
lecting human feedback from human-model con-
versations. Deployed models can be improved in

1https://parl.ai/projects/fits/

symmetric conversations conducted between mod-
els and humans by learning to mimic human con-
versationalists, as shown in the LIGHT dialogue
game (Shuster et al., 2020). This is not directly
applicable if the conversations are asymmetric, for
example in the case of one speaker (human) who
asks the questions, and the other (bot) who always
answers, as there would be no human supervision
of the answers. In the non-symmetric case, one can
however try to make use of the textual response
from humans when conversing with the bot, but
alternative learning methods must then be used. Li
et al. (2016b) studies models that learn how to ask
questions in order to learn from the answers, while
Li et al. (2016a) learns from general textual feed-
back/comments, particularly in the case where the
bot has produced a low quality response. Another
approach is to learn a reward signal (positive or neg-
ative reaction) based on user textual responses, as
shown in the “self-feeding chatbot” (Hancock et al.,
2019). Finally, rather than using conversational
feedback, one can use sophisticated web-based UIs
to collect data, for example stack ranking potential
responses (Ouyang et al., 2022; Bai et al., 2022).

Outside of the dialogue domain, there are nu-
merous studies attempting to improve language
skills from deployment, including never-ending-
learning from language data (Carlson et al., 2010),
learning for the web search task directly (Agichtein
et al., 2006) or the Dynabench system which cov-
ers a number of NLP tasks (Kiela et al., 2021).
Nakano et al. (2021) also learns to use internet-
augmentation for generation, like this work, but for
question answering, not multi-turn dialogue.

3 Deploying and Collecting Feedback

3.1 Open-domain internet-driven skills

To select an input distribution closely aligned with
human preferences, we first collected a set of skills
humans would like an AI powered text-messaging
chatbot to possess. We instruct that the hypothetical
chatbot can talk about any topic, and has the ability
to surf the internet for information. We then asked
each human annotator to provide:

(i) a topic (1-10 words),

(ii) three tasks related to the topic; and

(iii) descriptions of how they would assess if the
chatbot has completed those tasks.
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Topic Specific Task Task Completion Description
Making healthy food Find recipes on healthy foods If the chatbot provided specific recipes on making healthy

foods
I would like to learn about
a type of pet

I would like to learn about some
hypoallergenic breeds of dogs,
specifically, small dogs.

If the chatbot could tell me some small dog breeds that
are hypoallergenic, along with details about the breed’s
temperament, personality and any special requirements.

getting started with cy-
cling

what do I need to do to get
started with road cycling

The chatbot would tell me what kind of bicycle would be
best for road cycling and the necessary accessories that a
beginner needs.

Find child friendly places
in a city

Find child friendly resorts in
Nassau Bahamas

Pull up resorts in Nassau Bahamas, only show the resorts
that are child friendly, give the star rating for each resort,
show the child programs in the resort.

Table 1: A sample of the collected topics and task definitions. See Table 2 for statistics on the overall dataset.

See Appendix subsection A.1 for a screenshot of
the task definition collection instructions, and fur-
ther details.

Overall, we collected 1108 task types via 152
annotators, which cover diverse topics – from mak-
ing healthy food to loom weaving to Caribbean
holidays. Grouping them into types, they include
question answering followed by discussion, pro-
viding ranked lists, providing reviews, summary
generation, personal recommendations, reason-
ing/deductions (e.g., how to perform calculations),
creativity (e.g., tell a joke), tutorials, instructions,
and more. Many of these tasks require, or else are
made simpler, by use of the internet, e.g., search-
ing for particular entities or topics, and responding
conditioned on pertinent results. Some examples
are given in Table 1.

3.2 Conversing with models and receiving
feedback

After collecting topic and task definitions, the next
step is to deploy conversational models (bots) that
are asked to exhibit these skills. Human conversa-
tionalists select a task (out of two randomly chosen
tasks) from the set collected in subsection 3.1 and
then ask the model to help them complete it over a
series of conversational turns. The instructions em-
phasize that this should be a dialogue (“a back and
forth conversation”), and hence the speakers should
break up requests or information across messages
so that it remains conversational.

Feedback types The human conversationalist is
instructed that the bot might not be perfect, in
which case feedback can be given in order to im-
prove the bot in the future. We collect various kinds
of feedback, from lightweight feedback (binary la-
bel or free-form response) to detailed (multiple
choice and fine-grained responses) such that in our
experiments we can compare and contrast them in

order to make recommendations on which kinds of
feedback work best.

Hence after each dialogue turn we collect the
following set of feedback types:

• Binary feedback on whether the response was
considered satisfactory or not.

• Free-form textual feedback on what was
wrong in the case of an unsatisfactory re-
sponse.

• Multi-choice input on how the bot could im-
prove this turn:

(a) using a better search query; or
(b) paying more attention to relevant search

results;
(c) some other issue; or
(d) no issue (a good response).

• In the case of selecting (a), the human is
then asked what would be a more appropriate
search query.

• In case (b), the human is shown the search
results and asked to select a relevant portion.

• In case (c), the human is asked what would be
an improved overall response.

Continuing the conversation After feedback
has been given, the conversation is continued. If
multiple-choice option (a) was selected previously,
the bot on this next turn is forced to use the “gold”
search query given by the user. Similarly, for (b),
the provided gold knowledge context is added to
the input of the model. In the case of (c), the bot
is simply bypassed, and it is assumed to have pro-
vided the given gold response. In this way, even
for a poorly performing bot, headway can be made
in the conversation towards completing the task,
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v1 v2
Collected Data Train Valid Test Seen Train Valid Test Seen Test Unseen
Number of Unique Tasks 963 524 709 980 814 824 114
Number of Dialogues 5592 737 1230 9817 1848 1848 1221
Number of Utterances 77946 8490 19452 140702 22560 29860 17814
Number of Bot Utterances 38523 4245 9726 70351 11280 14930 8907
Average Bot Utterances per Dialogue 6.89 5.76 7.91 7.17 6.10 8.08 7.29
Feedback Breakdown
Better Search Query 5179 605 1167 8778 1425 1706 1036
Better Results Usage 6875 756 1527 11429 1796 2340 1310
Better Response 6601 714 1493 10812 1472 2382 1372
Good Response 19868 2170 5539 39332 6587 8502 5189
Average Good Utterances per Dialogue 3.55 2.94 4.50 4.01 3.56 4.60 4.25

Table 2: Collected human-bot conversations and feedback data statistics for the dataset FITS (Feedback for
Interactive Talk & Search), which we publicly release. Train v1 and v2 correspond to two rounds of continual
learning, where the v1 data consists of conversations and feedback from our deployed base models, and the v2 data
consists of conversations and feedback from deployed models trained using the v1 data.

and collecting feedback on its subsequent stages.
(Without such a procedure, the bot may just get
stuck in a poor quality loop, and then there would
be no choice but to abandon the conversation.)

The conversation is continued until the human
marks the task as complete or a minimum of 4 turns
has been completed. When the task is complete we
also collect a final rating (out of 5) for the bot’s
performance.

3.3 Deployed Models
We consider the following set of state of the art
publicly available conversational models:

• BlenderBot (BB1) (Roller et al., 2021); a 2.7B
parameter Transformer model pre-trained and
fine-tuned on dialogue data to exhibit conver-
sational skills; however these models have no
ability to use the internet, but simply generate
responses given the dialogue context.

• BlenderBot 2.0 (BB2) (Komeili et al., 2021;
Xu et al., 2021), a 2.7B parameter model
multi-tasked on the same tasks as BB1, and
also with additional tasks which give it the
ability to execute internet search queries and
condition on the results using a fusion-in-
decoder (FiD) (Izacard and Grave, 2020) style
approach. The search query generator is a
separate 400M parameter transformer.

• SeeKeR (Shuster et al., 2022a); uses a simi-
lar 2.7B parameter architecture, but utilizing
the Knowledge-to-response (K2R) approach
(Adolphs et al., 2021) which performs a multi-
step generation procedure: first generating a
relevant knowledge response, and then con-
ditions on that to generate a final dialogue

response. It is multi-tasked on the same train-
ing data as BB2, and in addition on some other
knowledge-intensive tasks, such as QA tasks,
as well.

• OPT-175B (Zhang et al., 2022) and BB3-
175B (Shuster et al., 2022b): we compare the
175B language model OPT (either 0-shot or
few-shot, following Shuster et al. (2022b))
with BlenderBot 3, which is fine-tuned with
conversational datasets including modular su-
pervision, and internet-augmentation , from
our task. This setting examines if our experi-
ments and results are applicable to very large
language models.

3.4 Evaluation
We can evaluate model performance during con-
versations between humans and the deployed mod-
els, as humans are providing direct feedback on
the conversational responses from the model. In
particular we can measure the number of good re-
sponses (with no issue), the average final rating,
and compute a breakdown of error types (better
search query, results or other issue).

3.5 Collected Data
Overall, we collect over 210k human-bot utterances
in over 14k dialogues (episodes), with feedback for
each of the bot utterances. The data is split into
three major portions: v1, v2, and test unseen splits,
see Table 2 for a full breakdown.

The v1 split consists of dialogues conducted
with one of our base deployed models (subsec-
tion 3.3), and feedback was collected from those
dialogues. We then split that data into train, valid
and test dialogues. We use this data to train several
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learning methods using the feedback from the v1
models. These new models are then redeployed.

The v2 split consists of dialogues and feedback
with the new models that were trained using the v1
data. This data is again split into train, valid and
test dialogues. We can then repeat this process and
train models on the v2 data as well.

Finally, the unseen test split consists of com-
pletely new skills (topics and tasks) unseen in the
v1 and v2 splits, and is used to test transfer of v1
or v2 based models to these new skills.

Data Quality and Verification We also verified
the quality of our data. For each conversation, we
ask 3 human crowdworkers to rate the bot and hu-
man’s performance and also assess if the bot was
able to complete the given task. We consider the
task as complete if 2 out of the 3 annotators la-
beled the task as complete. We see that in 90.4%
of the cases the task is completed. Note that with
the feedback from the human (see section 3.2) the
human-model conversation should always progress
even if the model has errors so ideally if the human
is doing a perfect job this would be 100%. We also
assess the quality of the human conversationalist
directly and ask annotators to “rate the human’s
messages in defining, clarifying, and helping the
bot complete the task on a scale from 1-5 (1 =
was not helpful at all in helping the bot complete
the task, 5 = guided the bot to complete the task).”
For conversations where the task was completed,
the human conversation partner’s messages were
rated at an average of 3.8. For conversations where
the task was incomplete, the human conversation
partner’s messages were rated at an average of 3.5.

4 Feedback Learning Methods

In the following, we will describe the methods we
will experiment with for learning from the collected
human feedback.

4.1 Supervised Learning of Responses
The easiest to use type of feedback, with perhaps
the strongest learning signal, is a provided gold
response by the user for a given dialogue context.
One can simply continue to fine-tune the model
on the set of collected gold responses (from case
(c) in section 3.2). One can optionally also add
all the bot responses that were marked as good to
the fine-tune set as well (case (d) in section 3.2).
We use the validation set to choose the weighting
between these two types of supervised data.

4.2 Fine-grained Module supervision

Using the multiple-choice feedback on the types of
improvement, the model can learn to improve those
individual components of the model. For BB2 and
SeeKeR one can use provided gold search queries
(case (a) in section 3.2) directly to fine-tune the
search query generation.

Provided gold knowledge responses (relevant
search results, case (b) in section 3.2)) are similarly
easy to use for fine-tuning in the SeeKeR model
because the model is already trained to generate
such responses directly. For BB2, there are no di-
rect knowledge responses as this is implicit in FiD,
so in that case we use a similar method to Han-
cock et al. (2019) whereby we train in a supervised
fashion with the knowledge response as a target,
but add special tokens to both input and target to
indicate this is not a standard dialogue response
task. The goal is that this additional training signal
can then help learn useful features for the actual
overall response task.

4.3 Free-form Textual Feedback

For free-form textual feedback, we can also use
a similar approach and simply fine-tune with the
feedback as targets, with special tokens appended
to both the input context and the feedback tar-
get, again following Hancock et al. (2019) which
showed this approach can work.

4.4 Rejection Sampling/Reranking

Using the binary satisfaction feedback signal one
can train a reward model. We employ a 311M
parameter transformer pre-trained on pushshift.io
Reddit (Baumgartner et al., 2020) using a masked
language model objective. Then, given the con-
text and response concatenated as input, we train
it with a standard classification loss on our satis-
faction task. Such a model has multiple uses (see
following subsections) but one obvious approach
is to rerank generation candidates from the conver-
sational model using the reward model with the
aim that the highest ranked provide the highest sat-
isfaction. Such approaches have been employed
in many use cases previously (Nie et al., 2020;
Nakano et al., 2021; Askell et al., 2021; Thoppilan
et al., 2022).

4.5 Reward-based Learning

Rejection sampling/reranking relies on the set of
generated candidates containing at least one good
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candidate, and has no effect on the initial qual-
ity of the candidate generations themselves – it
only scores the final generated sequences. We
next consider using a reward model trained via
subsection 4.4 to train the generation model itself.
Given training set contexts, we generate candidates,
rerank the candidates, and select the highest rank-
ing. We then train the generation model to use
those highest ranking candidates as targets, i.e. by
fine-tuning with those targets. This is similar to the
approach used in Thoppilan et al. (2022).

4.6 Model-guiding with DIRECTOR

The recently introduced DIRECTOR model (Arora
et al., 2022), instead of using a reward model, trains
a unified decoder-classifier architecture. It predicts
for every token both: (i) the language modeling
(LM) next token probability using the standard LM
head; and (ii) a task-suitability probability using
a second classifier head. Both heads are fed the
output of the last decoder block, and map from the
embedding dimension to the size of the vocabu-
lary, with all the parameters jointly trained using
both positive generation data (that can train the lan-
guage modeling head and also be positive examples
for the classifier) and negative data (that trains the
classification head only). Finally, during decoding,
left-to-right generation is conducted by combining
the two probabilities from the two heads to incorpo-
rate negative feedback into the generation process.
This method was shown to outperform other model
guiding approaches, in addition to being more ef-
ficient as many other methods employ a separate
reward or language model to perform the guiding
(Krause et al., 2020; Yang and Klein, 2021; Shuster
et al., 2021).

5 Experimental Results

We provide automatic evaluation results in Table 3
and human evaluation results in Table 4 comparing
various methods described in the previous section.

Internet-augmentation helps First, this is an ex-
pected result, due to the nature of our tasks, but
we find that using internet-augmentation helps in
line with other internet-based dialogue tasks (Di-
nan et al., 2019; Komeili et al., 2021; Shuster et al.,
2022a). We find that BB2 and SeeKeR, which
both perform internet search and condition on doc-
uments, outperform BB1 that does not. This im-
provement is quite large, e.g. BB1 has 24.8%
Good responses, compared to BB2 and SeeKeR

having 33.2% and 49.3% respectively. SeeKeR,
which has a modular search architecture that aims
to use retrieved knowledge more accurately, per-
forms markedly better than BB2, which is in line
with previous results on other datasets (Shuster
et al., 2022a).

Human feedback helps Across the board we
find different kinds of feedback can improve our
base models BB2 3B and SeeKeR 3B; we will
analyse specific methods further in the subsequent
discussion. These overall improvements can be
seen in terms of all the human evaluation metrics
measured (Good response%, Rating, and all three
Error Breakdown types), as well as the automatic
evaluation metrics we measured (F1 and PPL). We
also generally (although not in every single case)
see correlation between automatic and human eval-
uation metrics, e.g. the best methods are best in
both types of metric.

Modular superior to non-modular feedback In
the modular feedback setting humans give feedback
about what has gone wrong in the pipeline of the
model: whether the internet search query was poor,
or the document/knowledge chosen after searching
was poorly chosen. Taking into account modular
feedback outperforms using only supervised feed-
back of final responses in both automatic metric
and human evaluations for both BB2 and SeeKeR
models. For BB2 we see close to 2% improvement
in Good responses for modular feedback compared
to supervised feedback (40.3% → 42.0%), with
both far superior to BB2 without feedback (33.2%).
However, SeeKeR which has a modular design, and
hence is much easier to supply modular feedback
to (as the supervision can directly train each mod-
ule) sees a larger improvement of 4.5% (52.2% →
56.7%).

Free-form feedback is useful (but not as much as
gold labels) Free-form feedback also gives clear
gains over the baseline model for both BB2 and
SeeKeR, but falls short of supervised feedback by
3% and 1% respectively for the two model variants.
This does not seem surprising as supervised feed-
back directly gives a clear loss to optimize (simply
try to generate the suggestion) whereas feedback is
less clear a signal, depending on how it is phrased.
However, we do not rule out other free-form feed-
back algorithms giving better results in the future,
see e.g. Scheurer et al. (2022) for a recent method.
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Valid Seen v1 Test Seen v1 Test Unseen
Model F1 ↑ PPL ↓ F1 ↑ PPL ↓ F1 ↑ PPL ↓
BB1 3B 14.4 11.9 15.0 11.2 16.4 9.9

BB2 3B 14.4 10.6 14.7 10.3 15.3 9.3
+free-form textual feedback 15.5 9.7 15.6 9.5 16.8 8.7
+supervised feedback 14.7 8.2 15.5 8.0 17.0 8.0
+module supervision 14.9 7.6 15.5 7.5 15.4 8.3
+reward-based learning 15.1 11.0 14.2 10.7 14.3 9.6
+reranking binary feedback 15.8 n/a 15.8 n/a 16.3 n/a

+supervised & reranking 15.6 n/a 16.0 n/a 18.0 n/a

+DIRECTOR binary feedback only 16.2 n/a 16.2 n/a 17.6 n/a

+DIRECTOR module+binary feedback 17.2 n/a 16.6 n/a 16.0 n/a

SeeKeR 3B 18.1 17.5† 18.2 15.5† 20.8 12.8†

+free-form textual feedback 18.3 16.8† 17.7 14.7† 19.7 12.6†

+supervised feedback 18.3 14.9† 17.8 13.7† 19.5 11.4†

+module supervision 18.4 14.0† 18.6 12.9† 19.9 11.0†

+reranking binary feedback 18.4 n/a 18.3 n/a 20.9 n/a

+supervised & reranking 18.7 n/a 18.1 n/a 19.8 n/a

+DIRECTOR binary feedback only 19.1 n/a 18.2 n/a 20.7 n/a

+DIRECTOR module+binary feedback 19.3 n/a 19.0 n/a 20.9 n/a

+DIRECTOR v2 module+binary feedback 20.1 n/a 19.5 n/a 21.5 n/a

Table 3: Automatic Evaluation results of baselines and various methods learning from human feedback. Perplexities
marked with † from the SeeKeR model use a different dictionary to the BB2 model and are comparable amongst
SeeKeR variants, but not comparable to BB2. We also mark the perplexity column with “n/a” for reranker models
that are not predicting the next token with a language model.

Error Breakdown ↓
Model Good response % ↑ Rating ↑ Search Query Search Results Response
BB1 3B 24.8% 2.63 11.9% 17.6% 22.8%

BB2 3B 33.2% 3.09 12.1% 18.6% 18.1%
+reward-based learning 36.4% 2.83 11.3% 18.6% 17.0%
+free-form textual feedback 37.0% 3.22 11.6% 17.6% 17.0%
+supervised feedback 40.3% 3.37 11.6% 18.3% 15.0%
+module supervision 42.0% 3.35 8.4% 20.8% 14.4%
+reranking binary feedback 36.1% 3.00 11.4% 18.0% 17.3%
+DIRECTOR binary feedback only 37.8% 3.07 11.4% 17.3% 16.9%
+DIRECTOR module+binary feedback 47.0% 3.38 8.4% 16.1% 14.3%

SeeKeR 3B 49.3% 3.52 11.9% 12.5% 13.2%
+free-form textual feedback 51.3% 3.55 11.6% 12.7% 12.3%
+supervised feedback 52.2% 3.47 11.1% 12.7% 12.0%
+module supervision 56.7% 3.64 8.6% 10.5% 12.2%
+reranking binary feedback 53.7% 3.55 11.7% 12.3% 11.2%
+DIRECTOR binary feedback only 55.5% 3.48 10.9% 12.3% 10.7%
+DIRECTOR module+binary feedback 59.1% 3.73 7.8% 10.2% 11.6%

OPT-175B 0-shot 31.0% 2.67 9.3% 16.8% 21.6%
OPT-175B few-shot 43.0% 3.19 8.0% 18.5% 15.4%
BB3-175B + v2 modular supervision 64.8% 4.08 7.5% 11.6% 8.2%

Table 4: Human Evaluation results of baselines and various methods learning from human feedback. We bold
statistically significant improvements (independent two-sample t-test, p < 0.05) of methods over their respective
baselines (BB2 3B or SeeKeR 3B). We also bold statistical significance of BB3-175B over all the 3B baseline
models (BB1, BB2, SeeKeR) and the OPT-175B few-shot model.

Binary feedback can work well Non-textual
feedback that consists only of a rating can also
be helpful for improving systems, in this case bi-
nary feedback (good or bad). All three algorithms
we employ that use this type of feedback (rerank-
ing, reward-based learning, and DIRECTOR) all
show gains over the baseline without feedback,

with improvements consistent across both BB2 and
SeeKeR model variants. Reranking and DIREC-
TOR work better than reward-based learning with
automatic metrics, so we run those two methods in
human evaluations. In some cases these methods
then show improvements superior to supervised
feedback, e.g. DIRECTOR has a 3.3% Good re-
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sponses improvement over supervised feedback for
SeeKeR (but not for BB2, although for both base-
line models DIRECTOR has superior F1).

DIRECTOR is better than reranking and reward-
based learning DIRECTOR outperforms rerank-
ing and reward-based learning (where all three
models utilize binary feedback) for both base mod-
els BB2 and SeeKeR. This is both in terms of au-
tomatic metrics, e.g. DIRECTOR with a BB2 base
model has an F1 of 16.2, whereas reranking and
reward-based learning have 15.8 and 15.1 respec-
tively, as well as in terms of human evaluations.
For human evaluations, we see a 1-2% improve-
ment in Good response % over reranking for both
base models. Presumably this is because DIREC-
TOR can guide the generation to a higher quality,
whereas reranking can only perform well if a good
candidate has been generated by the base model.

Combining multiple feedback signals (where DI-
RECTOR works best) If one has access to multi-
ple feedback signal types, some of the algorithms
we have tried are capable of using them all. In par-
ticular, we can train DIRECTOR with both binary
feedback (to train the classifier head) and module
feedback (to train the language modeling head for
the different modules). This gives the best results
out of all methods for both base models by quite a
margin in both automatic and human evaluations.
E.g., for improving the BB2 base model this gives
47.0% Good responses, compared to the original
baseline of 33.2% or even DIRECTOR with only
binary feedback of 37.8%. We see this trend is also
apparent in other algorithms, as we also measure
the performance of supervised feedback + rerank-
ing, which also gives gains over either of those
methods alone in automatic evaluations, although
it still lags behind DIRECTOR.

Iterative deployment and feedback collection
improves results further During the process of
evaluating all the models that were trained with
v1 data described above, more data was collected
from those models, which we refer to as the v2 split
(see subsection 3.5). We can thus then train models
on the v2 split, yielding potentially improved mod-
els. In the ideal case one could conduct an iterative
continual learning setup, each time retraining on
the data collected from previous rounds, improving
further each time. We test this setup by training
DIRECTOR (module+binary feedback), our best
system from v1, with the v2 data split. The result

shown in Table 3 (last row) indicates there are sig-
nificant gains from this procedure, as this method
obtains our best results across all data splits (valid,
test seen v1 and the unseen set).

Very large models benefit from feedback from
smaller models OPT-175B, either in zero-shot
or few-shot variants is only pre-trained on dialogue
data, and not fine-tuned on our task, and performs
reasonably – but not better than smaller models that
are fine-tuned. BlenderBot 3 (Shuster et al., 2022b)
is trained with the modular supervision feedback
data collected from the smaller (3B parameter)
models, in addition to fine-tuning on other stan-
dard dialogue datasets. This model provides the
best human evaluation metrics of all the systems
we test, with a good response rate of 64.8% and a
rating of 4.08. This indicates: (i) how important
fine-tuning with relevant data is even to very large
models; and (ii) even though our data was collected
with feedback from small models fine-tuning using
this data still brings large gains to larger models.
This is an encouraging result as models are improv-
ing in architecture and increasing in scale over time,
but data we have collected in the past should still
remain useful for these models in the future. We
provide cherry picked and lemon picked examples
of BB3-175B in Appendix B, as well as compar-
ing to OPT-175B. While there a number of success
cases, even our best models still make factual er-
rors and contradictions in some cases. Hence, it
appears that continued interaction with further feed-
back collection in the future will be beneficial for
further improvements.

6 Conclusion

In conclusion, we have studied whether a conversa-
tional model can learn new skills after the standard
pre-training / fine-tuning setup by interacting with
humans during its deployment. We study the use of
different kinds of user feedback data and different
learning algorithms for leveraging them, in order to
compare their performance. We find that granular
(modular) feedback about types of errors can yield
strong performance, which can also work very well
in conjunction with binary feedback using the re-
cently introduced DIRECTOR model, yielding our
best results. Evidence also suggests that iterative re-
training and redeployment also brings further gains,
and that the feedback collected is useful for models
differing from the ones originally conversed with,
e.g., if much larger models are used in the future.
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7 Limitations and Discussion

All of our experiments have taken place by deploy-
ing conversational agents on Amazon Mechanical
Turk with crowdworkers2, using English-language
responses written by workers located in the United
States. While these workers are reasonably diverse
(Moss et al., 2020), this is quite different to a pub-
lic deployment with organic users, who are using
the system not because they are being paid but be-
cause they are genuinely engaged. In that case,
collecting feedback will have different tradeoffs
which we could not factor into the current work.
For example, asking to provide detailed feedback
might dissuade users from wanting to interact with
the system, lowering engagement and hence the
amount of collected data. We believe either more
natural free-form or lightweight feedback might
be best in that case, which is why we study and
compare feedback methods in this work to evaluate
their relative impact.

In public deployments with organic users, safety
issues also become a much more important fac-
tor – in particular dealing with noisy or adversar-
ial inputs and feedback. In the worst case this
could mean human conversationalists could teach
the model erroneous reasoning, misinformation,
toxic or other undesirable behavior. We note that
steps to address this issue are studied elsewhere,
for example Ju et al. (2022).

2Our crowdsourcing tasks pay workers well above mini-
mum wage. The tasks do not request any personal information
from workers.
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A Data Collection

The data collection lasted for around 6 months and in total over 700 crowdworkers who are English-
speaking annotators located in the United States were recruited and compensated through the Amazon
Mechanical Turk platform. Before the data collection starts, all crowdworkers are informed that any
message they send may be publicly disclosed for research purposes, and are instructed not to send any
personal identifiable information (for example, name, address, email, or phone number etc.) in their
messages.

A.1 Task Definition Collection

A.2 Dialogue Collection

A.3 Dialogue Statistics

The FITS task contains data from all the deployed models (including the 3 baseline models and their
fine-tuned versions). The breakdown by model types in the FITS dataset: 70% are BB2-based, 25%
SeeKeR-based models and 5% other model types including OPT-based models.

B Success and Failure Cases

We provide several example outputs of our models on the FITS dataset, including examples that showcase
both the successes and failures.
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Figure 2: Comparison of BB3-175B vs. OPT-175B on model outputs to the same topic & skill during deployment:
the BB3-175B model (left) is able to successfully provide satisfying responses - unlike the OPT-175B few-shot
(right) which either generates imperfect search queries, or simply ignore the search results.

Successes In Figure 2, we compare the model outputs of the BB3-175B model that has been trained on
the FITS task and the OPT-175B few-shot model that has not, given the same topic. Unlike the OPT-175B
few-shot model, BB3-175B is able to generate better search queries and pay attention to search results.
In Figure 3, we show two success cases for BB3-175B. In both cases the model is able to engage with
human speakers on the topic, and listen to human feedback to improve the results even further.

Failures Despite showing continual improvement by re-training on collected human feedback, our
models, like other state-of-the-art dialogue models, can still make common mistakes during deployment.
Failure cases are shown in Figure 4 for our BB3-175B model where it generates contradicting or factually
incorrect outputs.

C Model Training Settings

We use the openly available ParlAI framework for all 3B model training runs, as well as for evaluations,
where metrics are measured using default settings. All the 3B fine-tuned models are trained with a
maximum of eight 32GB GPUs (NVIDIA V100), optimized with Adam using β1 = 0.9, β2 = 0.999,
ϵ = 1e− 08. Models are trained up to 8000 updates with batch size up to 128. The typical fine-tuning
time for the 3B retrieval-based BB2 and SeeKeR models is around 24 hrs before it early stops.
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Figure 3: Success cases: model outputs collected during deployment. The BB3-175B model is able to successfully
engage with human speaker using search results (left), or revise its error with provided human feedbacks on relevant
search results (right).

Figure 4: Failure cases: model outputs collected during deployment. The BB3-175B model can still contradict itself
(left) or hallucinate (right).
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