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Abstract

Previous research has demonstrated the po-
tential of multi-task learning to foster a con-
versational agent’s ability to acquire a vari-
ety of skills. However, these approaches ei-
ther suffer from interference among different
datasets (also known as negative transfer), or
fail to effectively reuse knowledge and skills
learned from other datasets. In contrast to
previous works, we develop a sparsely acti-
vated modular network: (1) We propose a well-
rounded set of operators and instantiate each
operator with an independent module; (2) We
formulate dialogue generation as the execution
of a generated programme which recursively
composes and assembles modules. Extensive
experiments on 9 datasets verify the efficacy of
our methods through automatic evaluation and
human evaluation. Notably, our model outper-
forms state-of-the-art supervised approaches on
4 datasets with only 10% training data thanks to
the modular architecture and multi-task learn-
ing. 1

1 Introduction

Building an open-domain dialogue system is an in-
triguing and challenging task. A good open-domain
chatbot should be equipped with a well-rounded
set of skills (Roller et al., 2021) including but not
limited to providing an informative response, show-
ing different emotions, keeping a consistent per-
sona and conducting commonsense inference. Up
to now, with more and more datasets proposed to
train multiple conversation skills (e.g., Wizard of
Wikipedia (Dinan et al., 2019), Personachat (Zhang
et al., 2018)), multi-task learning is an efficient way
to grasp all the versatile skills and quickly transfer
to newly emerging datasets (Roller et al., 2021).
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However, as a core problem in multi-task learn-
ing, it is not easy to strike a balance between trans-
fer and interference (negative transfer) among mul-
tiple datasets (Rosenbaum et al., 2019). For this,
recent researchers mainly follow two lines of re-
search. On one line, Roller et al. (2021) and Shuster
et al. (2022a) simply mix all the datasets together
to embody the blended skill required in dialogue.
They update all the model parameters to minimize
the loss of all of the data, which is also dubbed
dense training (Gururangan et al., 2022). In spite
of its simplicity, it easily incurs interference among
different datasets (Aribandi et al., 2022). On the
other line, Li and Liang (2021) learn multiple skills
and store the knowledge from different datasets
with different sets of parameter-efficient architec-
tures. This approach eliminates underlying nega-
tive transfer among different corpora, but hinders
positive transfer at cost. The model has to learn
from scratch rather than reuse past knowledge ev-
ery time a new corpus comes.

Inspired by recent advancements in neuro-
science (Dehaene et al., 2021) suggesting that the
human brain represents knowledge in a modular
way, we incorporate this as an inductive bias and
present a compositional modular architecture to bal-
ance transfer and interference (Rosenbaum et al.,
2019). By decomposing the knowledge for dia-
logue into relative independent modules (Mittal
et al., 2022), a neural model thus decides which
module to invoke for different tasks or different
samples. However, there are two challenges in ap-
plying modular architecture to building a versatile
open-domain chatbot. First, the generation task
is different from question answering, where the
neural module network accomplishes impressive
performance (Andreas et al., 2016; Hu et al., 2017;
Gupta et al., 2020). It is untouched how to apply the
ideology of modularity to the auto-regressive gener-
ation process. Second, the modules used in neural
module network (Andreas et al., 2016) are typically
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trained with end-task supervision. Without inter-
mediate supervision or specialized training data for
each module (Ponti et al., 2022), modules might
perform homogeneous functions rather than per-
form their predefined functions as intended (Gupta
et al., 2020, 2021).

To deal with the above problems, in this pa-
per, we present a neural modular framework for
blended-skill dialogue generation. The principle of
our approach is to decompose the generation pro-
cess into the recursive execution of basic operators
by various modules. Specifically, (1) as an attempt
to conduct generation tasks in a modular way, we
introduce content modules for basic content syn-
thesis and linguistics modules for linguistically-
related surface realization. In addition, a program-
mer is trained to produce a reverse-polish-style
code (Burks et al., 1954) which schedules the mod-
ules to produce the final response. (2) To overcome
the homogeneity of modules, we construct pseudo
labels and provide weak supervision signals to facil-
itate the training of each module. Since the output
of the programmer and the modules are discrete
and thus not differentiable, we employ Gumbel-
Softmax trick to produce “soft” sentences as the
output of modules at training time, and employ re-
inforcement learning to bridge the gap between the
programmer and the modules.

Extensive experiments are conducted on 9 open-
domain datasets. Our approach surpasses other
models on a similar parameter scale and achieves
a new state-of-the-art by multi-task training on all
the 9 corpora. Notably, our model outperforms
state-of-the-art supervised approaches on DailyDia-
log, EmpatheticDialog, LIGHT and Cornell Movie
with only 10% training data, demonstrating that our
modular framework could compose existing skills
more efficiently to attain superior performance on
out-of-distribution data.

2 Related Work

2.1 Open Domain Dialogue

Most early attempts on dialogue generation con-
struct dialogue systems using manually created
rules or templates (Weizenbaum, 1966; Wallace,
2009). The advancements in the field of machine
translation (Ritter et al., 2011; Gehring et al., 2017;
Vaswani et al., 2017) have served as inspiration for
a number of explorations to construct end-to-end
open-domain dialogue generation models (Shang
et al., 2015; Vinyals and Le, 2015). Following

that, the vanilla encoder-decoder architecture is
widely employed to improve response quality, and
it has undergone several revisions to enhance re-
sponse diversity (Xing et al., 2017; Zhao et al.,
2017; Tao et al., 2018), model conversation context
structure (Xing et al., 2018; Zhang et al., 2019),
and regulate response characteristics (Wang et al.,
2018; See et al., 2019; Wang et al., 2020a). Smith
et al. (2020) and Shuster et al. (2020) initiate the
study of equipping the open-domain conversation
agent with a well-rounded set of skills, whose key
idea is to conduct simultaneous multi-task training
on the blended data. These models have demon-
strated encouraging results in skill blending and
skill selection thanks to the careful design of the
training scheme. BlenderBot (Roller et al., 2021)
demonstrates how large-scale models can further
promote the concurrent acquisition of several skills.
BlenderBot 2.0 is created as a result of the additions
made by Komeili et al. (2022) and Xu et al. (2022),
who offer BlenderBot the capacity to access the In-
ternet and memorize lengthy history respectively.

2.2 Multi-task Learning with Pre-trained
Language Models

Multi-task learning is a common paradigm to
transfer knowledge from multiple related tasks to
enhance generalization capacity and has shown
promising results in a variety of NLP tasks (Zhang
and Yang, 2021; Crawshaw, 2020). Large-scale
pre-trained language models (PLMs) have pre-
sented brand-new difficulties for multi-task learn-
ing. Aghajanyan et al. (2021) propose pre-
finetuning which refines the pre-trained represen-
tations through massively multi-task learning. In
spite of its efficiency, pre-finetuning may result
in catastrophic forgetting of the pre-training task.
To alleviate this issue, Aribandi et al. (2021) pro-
pose multi-task pre-training which bridges the gap
between pre-training and finetuning data distribu-
tions. T0 (Sanh et al., 2021) is an early attempt to
induce the zero-shot generalization capability of
PLMs through explicit multi-task learning, which
converts NLP tasks into a manually-collected
prompted form. Another prevalent paradigm in
multi-task learning using PLMs is instruction tun-
ing, in which the PLMs encode task-specific in-
structions together with input and produce task out-
put (Wei et al., 2021; Mishra et al., 2022; Wang
et al., 2022). Despite promising results, these meth-
ods may suffer from the negative transfer problem
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A: …I've seen the junior one.
B: I like that kids are getting involved.
A: The show in produced by magical 
elves productions, the same company 
that created project runway

SP CO SP IN NO SP IN VE

SPAN

24 27

SPAN

13 23

that created 
project runway

COPY

the show is produced by 
magical elves productions , 

the same company

INFER

that created project 
runway

NOUN_MODIFY
when I found out that it 

was produced by the 
same company

I like that kids are 
getting involved.

INFER

SPAN

5 12

when I found out that it was 
produced by the same company 

that created project runway

VERB_MODIFY

I was surprised

I was surprised when I found out that it was produced 
by the same company that created project runway

Program Generation Program Execution

Code Response

Context

MiniLM

GRU

Figure 1: The workflow of the proposed modular generation framework. We use the following abbreviations:
SP=SPAN, CO=COPY, IN=INFER, NO=NOUN_MODIFY, VE=VERB_MODIFY. We omit the operands of SPAN
from program generation to reduce redundancy.

due to the practice of activating all parameters for
different tasks. To mitigate this issue, researchers
have resorted to parameter-efficient methods which
allocate separate adapters for each task (Mahabadi
et al., 2021), and compositional modules which
only activate relevant parts of the models (Ponti
et al., 2022). Our method is orthogonal to earlier
efforts in that it attempts to mitigate the unexplored
negative transfer problem in auto-regressive decod-
ing.

2.3 Neural Modular Network

The concept of neural module networks has drawn
a lot of interest in a variety of computer vision and
natural language processing tasks. Andreas et al.
(2016) initially propose neural module network,
which parses questions into linguistic substructures
and builds question-specific deep networks from
compositional modules, to conduct visual question
answering. Following this work, several attempts
have been made to eliminate the need for mediate
supervision on semantic parsers (Hu et al., 2018;
Mao et al., 2019), directly forecast the instance-
specific network architectures in an end-to-end
way (Hu et al., 2017), infer the answer with a purely
symbolic executor (Yi et al., 2018), and perform
visual co-reference resolution (Kottur et al., 2018).
Gupta et al. (2020) and Chen et al. (2020) propose
employing neural module networks in response to
questions in machine reading comprehension. An-
other line of closely related works to ours are gen-

erative neural module networks, which activate a
module when generating the next token (Yang et al.,
2019; Tian and Oh, 2020) or only utilize modular
architecture for encoder (Le et al., 2022). Our re-
search differs significantly from theirs in that we
break down dialogue response generation into inde-
pendent operations in order to reduce catastrophic
forgetting in each module.

3 Preliminary

For open-domain dialogue generation, each datum
can be thought of a pair (x,y), where y is the re-
sponse and x is the dialogue context composed of
history utterances and other external resources such
as background knowledge (CMU_DoG (Zhou et al.,
2018b)), persona of speakers (ConvAI2 (Zhang
et al., 2018)) or conversation setting (LIGHT (Ur-
banek et al., 2019)). The goal of an open-domain
dialogue generation model is to generate y given x
and exhibit the necessary skills to be more human-
like.

In the proposed modular generation framework,
a programmer pθ(c|x) takes the dialogue con-
text as input and produces a code sequence c =
[c1, c2, · · · , cn], where n is the length of the code.
Based on the generated code, different modules
are activated to perform different functions. The
execution of the code produces a response in the
end. The workflow of our framework is shown in
Figure 1.

The rest of our paper is structured as follows.
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We illustrate the modular architecture in §4, in-
cluding the implementation of the programmer and
execution of the code with modules. In §5, we
elaborate the training algorithm to cope with the
paucity of human annotation and discrete optimiza-
tion. The experiment results and further analysis
are displayed in §6 and §7 respectively.

4 Modular Framework

In this section, we elaborate on how the modu-
lar generation framework works. Briefly, a pro-
grammer first generates a code in a special reverse-
polish-style programme language. Then we exe-
cute the code with a stack to store the intermediate
result. When encountering some specific operators
in code, we just activate corresponding modules to
fulfill the function of the operator.

4.1 Module Definition

Our modules are devised to perform basic atomic
tasks and realize the function of some operators.
From another perspective, operators are high-level
abstractions of modules. According to their func-
tions and the format of input and output, there are
3 types of modules, namely span operator, content
operator and linguistics operator. The Span oper-
ator is responsible for selecting a span from the
dialogue context given the start index and the end
index, whose role is similar to QUESTION_SPAN
and PASSAGE_SPAN in Chen et al. (2020). Con-
tent operators (COPY, PARAPHRASE and INFER)
generate diverse new content based on the in-
put text. The linguistics operators (COMPOUND,
VERB_MODIFY and NOUN_MODIFY) combine
two texts together to form complex sentence or
compound sentence. The computation result of
the linguistics operators could also serve as the
operands to other linguistics operators and content
operators. We list all the operators used in our
framework in Appendix A.

In the implementation, each content operator and
linguistics operator are corresponding to an auto-
regressive generation module M(ymi |xm, ym<i),
where xm, ym are the input and output of the mod-
ule M. They are parameterized as standard trans-
formers. We initialize the parameters of these mod-
els using pre-trained T5-small (Raffel et al., 2019).
Customizing different modules according to their
intended purpose might lead to better performance,
but we focus on the overall framework in this paper
and leave the sophisticated design of modules for

future work.
The key insight behind the module instantiation

is to decompose the response generation process
into relatively independent and composable pieces.
Although our framework bears similarities with
previous works in visual QA (Andreas et al., 2016;
Hu et al., 2017) and image captioning (Tian and
Oh, 2019; Yang et al., 2019), the crucial differ-
ence of our framework lies in the sparsity of de-
pendency between these highly abstract operators,
which allows the respective learning of each mod-
ule possible and thus eliminates the intra-operator
interference.

4.2 Programme Generation

The programmer maps the natural language di-
alogue context to an executable programme in
a reverse polish notation style. The code to-
kens (the vocabulary of the programmer) consist
of two parts, namely the operator defined in Ta-
ble 8 and the position index of the dialogue con-
text. Following the design of Gupta et al. (2019)
and Chen et al. (2020), the core architecture for
programme generation is a MiniLM (Wang et al.,
2020b) reader and a 1-layer GRU. At the t-th
timestep, assume the embedding of past gener-
ated code tokens are [hc

1,h
c
2, · · · ,hc

t−1] and the
dialogue context representation encoded by BERT
is Hx = [hx

1 ,h
x
2 , · · · ,hx

l ], where l is the length of
the context. We first calculate ht, the hidden state
of GRU at the current step:

ht = GRU(ht−1,h
c
t−1). (1)

Then we apply the attention mechanism to compute
the context vector sx:

sx =
l∑

i=1

wih
x
i ,

w = Softmax(hT
t H

x),

(2)

The history code vector sc is computed in the same
way. Afterwards, we concatenate the sc, sx and
GRU hidden state ht together and computes:

s = W[sx; sc;ht], (3)

where [·; ·] denotes the vector concatenation oper-
ation. Finally, the probability distribution of the
next code token ct is:

Pr(ct) = Softmax(sT[Hx;Eo]), (4)
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where Hx plays the role of position index embed-
ding and Eo is a trainable operator embedding. We
refer our readers to Chen et al. (2020) for more
details about the programmer.

4.3 Programme Execution
As mentioned before, the generated programme is
essentially a reverse polish expression (Burks et al.,
1954). Therefore, we maintain a stack to assist the
execution of the programme. To be more specific,
given a generated code c = [c1, c2, · · · , cn] and an
empty stack, we scan every code token in c one by
one and take actions according to the current code
token ci:

• If ci is a position index, push it into the stack;

• If ci is SPAN operator, pop the top two items
in the stack. Take the two items as the start
index and end index to select a span. Push the
span into the stack.

• If ci is one of the content operators, pop the
top one items in the stack and send it into
the corresponding content module. Push the
generated text into the stack.

• If ci is one of the linguistics operators, pop the
top two items in the stack, which should be
two sentences. concatenate them together and
send them into the corresponding linguistics
module. Push the generated sentence into the
stack.

Generally, the execution of programme bears
similarity to that of push-down automata. The mo-
tivation behind this is to isolate different procedures
in dialogue generation and use a stack to temporar-
ily store the intermediate result, which is the only
medium for message passing between modules.

At the end of the code execution, the item(s) left
in the stack is popped out. To improve fluency, we
attempt to polish the stack output with another neu-
ral network, but it seems that directly concatenating
the outputted sentences together is enough.

5 Learning Details

5.1 Weak Supervision
Training the programmer and the modules jointly
with the response as the only supervision signal is
challenging (Gupta et al., 2020). More importantly,
without the supervision of intermediate output, we
have no idea whether the modules differentiate into

Algorithm 1 A high-level algorithm for producing
pseudo labels.
1: Input: A pair of (x,y), a similarity function sim(·, ·), a

syntactic relation classifier dis(·, ·), threshold ψ1, ψ2,
2: Initialize an empty code sequence c and pseudo-labeled

datasets Dop for all modules
3: Use parsing tools to parse y into a tree T .
4: for Segment s among the in-order traverse sequence do
5: Search a span s′ from x that is most similar to s and
6: Locate the start and end position of the span and ap-

pend them into c.
7: Append SPAN into c
8: if sim(s, s′) > ψ2 then
9: Append COPY into c.

10: Add the pair (s, s′) into Dcopy

11: else if sim(s, s′) < ψ1 then
12: Append INFER into c.
13: Add the pair (s, s′) into Dinfer

14: else
15: Append PARAPHRASE into c.
16: Add the pair (s, s′) into Dparaphrase

17: end if
18: if One child of s has been visited (denoted as schi) and

the parent of s has not been visited yet then
19: Append OP=dis(s, schi) into c.
20: Add the pair (s, schi) into Dop

21: else if All children of s have been visited and the parent
of s has been visited too (denoted as spar) then

22: Append OP=dis(s, spar) into c.
23: Add the pair (s, spar) into Dop

24: end if
25: end for
26: Return The pseudo-code label c and Dop

intended functions. Annotating training data with
human labor for every module is costly and we
instead use heuristically obtained pseudo labels for
substitution.

Algorithm 1 is a high-level illustration of how
we make pseudo labels. More details could be
found in Appendix C.

5.2 Reinforcement Learning.
When trained respectively, the programmer and the
modules may not adapt to each other well when
directly assembled together. Therefore, we propose
to further optimize the programmer with policy
gradient (Sutton et al., 1999),

J(θ) = Ec∼pθ(c|x)[r(c)] (5)

and design the reward r(c) as the similarity be-
tween the generated hypothesis and the ground
truth response. Combining the ratio-likelihood
trick, we have

∇θJ(θ) = Ec∼pθ(c|x)[∇θ log pθ(c|x)r(c)], (6)

where g(y|x, c) represents the execution of the
code to generate response.
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Dataset Metric BART R2C2 Prefix MS Ours SOTA

Cornell Movies Rouge-1 10.93 9.97 7.11 11.37 11.56 12.11 (He et al., 2021)
DailyDialog BLEU-1 43.58 40.12 34.68 43.04 45.90 42.84 (Chen et al., 2022)
CMU_DoG Rouge-1 13.69 12.16 13.75 13.71 15.50 15.37 (Martins et al., 2022)
LIGHT unigram-F1 14.52 11.91 13.80 14.57 15.90 15.88 (Shuster et al., 2022b)
EmpatheticDialog Rouge-1 16.21 14.76 16.17 14.88 18.62 16.13 (Li et al., 2022a)
Wizard of Wikipedia unigram-F1 33.24 30.94 30.02 29.14 36.29 36.00 (Li et al., 2022b)
ConvAI2 unigram-F1 19.24 17.09 15.81 17.51 19.79 20.50 (Shuster et al., 2022a)
Mutual Rouge-L 17.22 18.03 17.77 15.33 17.26 22.70 (Liu et al., 2022)
CommonsenseDialog Rouge-1 14.95 13.79 13.67 13.03 15.15 14.97 (Zhou et al., 2021)

Table 1: Experiment results in all-task MTL setting. Numbers in bold means that the improvement over baselines is
statistically significant(t-test, p<0.05).

Dataset Metric BART R2C2 MS Ours

CM Rouge-1 10.16 9.73 10.83 11.08
DailyDialog BLEU-1 33.48 33.16 32.59 35.06
CMU_DoG Rouge-1 12.78 11.49 11.51 13.05
LIGHT unigram-F1 9.79 10.47 10.98 13.30
ED Rouge-1 15.15 11.13 13.69 15.58
ConvAI2 unigram-F1 14.22 14.66 14.75 15.36
WoW unigram-F1 19.56 17.36 20.10 23.80
Mutual Rouge-L 12.82 10.43 13.33 13.63
CD Rouge-1 13.13 13.30 12.51 14.50

Table 2: Experiment results in the leave-one-out setting.
CM = Cornell Movies, ED = EmpatheticDialog, WoW
= Wizard of Wikipedia and CD = CommonsenseDia-
log. Numbers in bold mean that the improvement over
baselines is statistically significant(t-test, p<0.05).

In addition, to facilitate end-to-end training, we
apply Gumbel-Softmax trick (Jang et al., 2017) to
overcome the differentiable obstacle owing to the
discrete nature of natural language when optimiz-
ing the modules. Formally, instead of selecting
one token from module-predicted vocabulary distri-
bution M(ymi |xm, ym<i), the content modules and
linguistics modules sample a “soft word”:

y∗i = Gumbel(M(ymi |xm, ym<i), τ), (7)

where τ is the temperature of sampling.

6 Experiment

6.1 Experimental Setup

Setting. To comprehensively evaluate the multi-
task learning ability and the generalization ability,
suppose we have N datasets, we evaluate our pro-
posed framework in three settings: (1) All Task
MTL. In this setting, we train our model on the
mixed union of N datasets and evaluate it on each
individual dataset. (2) Leave-one-out. In this set-
ting, we train our model on N − 1 datasets and
test on the left one dataset to evaluate a model’s

zero-shot generalization ability. (3) Low-resource.
To further evaluate the generalization capability of
our method, after training on other N − 1 datasets
in the leave-one-out setting, we fine-tune the model
on the left dataset with only 10% data available,
and test the model on the left one dataset.

Datasets. We use N = 9 datasets to evaluate our
framework: Cornell Movies (Danescu-Niculescu-
Mizil and Lee, 2011), DailyDialog (Li et al., 2017),
CMU_DoG (Zhou et al., 2018b), LIGHT (Urbanek
et al., 2019), EmpatheticDialog (Rashkin et al.,
2019), ConvAI2 (Dinan et al., 2020), Wizard of
Wikipedia (Dinan et al., 2019), Mutual (Cui et al.,
2020) and CommonsenseDialog (Zhou et al., 2021).
Each dataset embodies one or more specific skills.
More details about the datasets could be found in
Appendix B.

Baselines. We use BART (Lewis et al., 2020) as
one of our baselines, which is a standard sequence-
to-sequence transformer pre-trained on the same
corpus as Liu et al. (2019); We also compare
against R2C2, a BlenderBot-like open-domain
dialogue model trained in a multi-task way by
Shuster et al. (2022a) and hold the current state-
of-the-art on many datasets (Zhang et al., 2022).
For parameter-efficient technique in multi-task
learning, we compare our method with prefix-
tuning (Li and Liang, 2021). We also draw a com-
parison with the recent proposed Modular Skill
(MS) (Ponti et al., 2022), a modular network that
allows each task to choose its skill toolkit and op-
timize the global skill inventory together with the
choice of each task jointly. For a fair compari-
son, we use BART-large ( 406M) and R2C2-base
( 400M) in our experiments. The parameter scale
of Prefix-tuning ( 415M) and MS ( 448M) are both
comparable with ours.
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6.2 Main Result

All Task MTL. The experiment results are
shown in Table 1. We could observe that (1) our
proposed approach outperforms BART and R2C2
on most datasets. The advantage of our modular
framework over prefix-tuning is also obvious, pos-
sibly because prefix-tuning hinders positive trans-
fer among corpora. To have a more comprehen-
sive understanding of our approach, we investigate
the schedule frequency of modules on different
datasets and it reveals that our modular design cap-
tures some distinctive patterns in different corpora.
More information could be found in Appendix F.

(2) Meanwhile, we also provide the performance
of the current state-of-the-art for each individual
dataset2. We could observe that when trained in a
multi-task way, our framework is superior or com-
parable to the SOTA without a sophisticated design
of model architecture and learning algorithm for
each individual dataset, which further verifies the
capacity of our model to transfer knowledge from
other corpus and manipulate multiple skills.

Leave-one-out. The results are shown in Table 2.
There is a gap in performance between the base-
line and ours, especially on Wizard of Wikipedia.
It can be understood that Wizard of Wikipedia is
less similar to other datasets since it contains some
formal sentences from Wikipedia. Thus, zero-shot
generalization on the dataset is more difficult. We
can conclude that our model generalizes better than
BART and R2C2, possibly because the modular
framework could recursively compose the compu-
tations by modules to cope with new situations with
existing knowledge. Besides, the comparison with
MS further verdict the necessity of intermediate
supervision for each module.

Low-resource The results are shown in Table 3.
The proposed method attains a better performance
than BART. Notably, our modular generation
framework surpasses the fully supervised approach
on DailyDialog, EmpatheticDialog, LIGHT and
CommonsenseDialog, validating the potential of
the compositional modular paradigm as a general
method in the low-resource setting.

2Some numbers are directly cited from the papers

7 Further Analysis

7.1 Single Transfer Relation

To explore whether our framework enhances trans-
fer in a multi-task learning scenario, we further
draw a comparison in a single-task scenario where
we train and test our model and all the baselines
on each individual dataset. The experiment results
are shown on Table 4. When comparing with Ta-
ble 1, we could see that our approach achieves a
positive transfer on most datasets while negative
transfer is more common for baseline methods. It
demonstrates that our modular design effectively
alleviates the intra-operator transfer.

7.2 Pair-wise Transfer Relations

To have a closer look at the transfer relation
among the datasets, we evaluate the transfer among
datasets in a pair-wise multi-task learning setup.
We use CommonsenseDialog, LIGHT, CMU_DoG
and EmpatheticDialogie since they are diverse
enough to be representative. The experiment re-
sults are shown in Table 5. Our approach attains
positive transfer or at least avoids drop on most
dataset pairs, while for BART the opposite is true.
Besides that, an interesting trend manifests in in-
dividual relationships. For example, CMU_DoG
and EmpatheticDialog seem to promote each other
whilst LIGHT and CommonsenseDialog tend to
hurt each other.

7.3 Ablation Study

An ablation study is conducted to explore how dif-
ferent mechanisms and components contribute to
the performance. We compare our approach with
the following variants: (1) -span: The SPAN op-
erator is removed and we always select the entire
dialogue context as a “span”. (2) -linguistic: The
linguistics operator is replaced with a direct con-
catenation of two input segments. (3) -warm: The
warm-up procedure is removed. (4) -reward: The
reinforcement learning of programmer is removed.
The results are shown in Table 6. The result re-
veals that warm-up is indispensable to the proposed
method, and the conclusion is in coincidence with
Gupta et al. (2020, 2021). The span operator and
the linguistic operators are also helpful to the per-
formance. The decline in appropriateness of -span
and -linguistic validates the necessity of them.
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Dataset Metrics BART R2C2 Prefix MS Ours

Cornell Movie Rouge-1 10.70 9.19 8.03 9.31 12.21
DailyDialog BLEU-1 41.86 42.13 39.57 42.82 45.54
CMU_DoG Rouge-1 14.28 13.96 12.41 14.21 15.15
LIGHT unigram-F1 14.34 12.61 12.34 14.00 15.98
EmpathicDialogue Rouge-1 15.94 16.12 16.01 15.70 17.79
ConvAI2 unigram-F1 18.29 18.08 18.18 17.42 18.50
Wizard of Wikipedia unigram-F1 31.85 33.41 29.83 30.00 33.52
Mutual Rouge-L 18.28 10.43 13.33 13.64 18.66
CommonsenseDialog Rouge-1 13.97 13.92 13.42 12.97 14.61

Table 3: Experiment results for fine-tuning in low-resource (10% data) setting. Numbers in bold mean that the
improvement over the best supervised method is statistically significant. (t-test, p<0.05)

Dataset Metric BART R2C2 MS Ours

Cornell Movie Rouge-1 10.09 8.30 11.17 10.38
DailyDialog BLEU-1 43.00 42.25 43.73 43.72
CMU_DoG Rouge-1 15.04 12.92 13.78 15.16
LIGHT unigram-F1 15.46 14.71 14.35 15.14
EmpatheticDialog Rouge-1 16.43 17.43 15.11 17.35
Wizard of Wikipedia unigram-F1 35.30 34.85 34.37 36.70
ConvAI2 unigram-F1 20.72 19.89 19.11 20.16
Mutual Rouge-L 20.60 22.26 17.51 20.02
CommonsenseDialog Rouge-1 14.81 15.04 14.42 14.97

Table 4: Experiment results on each individual dataset.

LIGHT CMU_DoG ED CD

LIGHT 15.46 14.22 15.98 14.04
CMU_DoG 14.29 15.04 18.06 14.34
ED 15.00 15.27 16.43 14.41
CD 15.09 14.60 16.64 14.81

LIGHT CMU_DoG ED CD

LIGHT 15.14 14.93 17.71 14.64
CMU_DoG 15.63 15.17 18.03 15.19
ED 15.15 15.30 17.35 15.61
CD 15.05 15.37 18.30 14.97

Table 5: Pair-wise transfer relation of BART (top) and
our method (bottom) on four datasets. The entry at (row
i, column j) indicates performance on dataset j using a
model trained on datasets i and j. ED = EmpathicDialog
and CD = CommonsenseDialog.

CMU_DoG LIGHT ED CD

ours 15.50 15.90 18.62 15.15

-span 14.81 14.43 18.17 14.75
-linguistic 15.44 13.79 17.62 15.02
-warm 12.58 13.03 16.71 12.25
-reward 15.10 15.62 17.98 14.35

Table 6: Ablation results on four datasets. ED = Empa-
theticDialog, CD = CommonsenseDialog

1(%) 2(%) 3(%) Avg

BART 21 57 22 2.01
R2C2 12 59 29 2.17
Prefix 39 31 30 1.91
MS 17 52 31 2.14
Ours 9 47 44 2.35

Table 7: Human evaluation results in all-task MTL set-
ting.

7.4 Qualitative Evaluation

Automatic metrics are not perfect for evaluating an
open-domain task (Dinan et al., 2019) and human
evaluation is necessary. Concretely, in the all-task
MTL setting, we randomly sample 300 responses
from each dataset generated by ours and baseline
methods and recruit well-educated native speakers
to rate them. Each annotator is required to give a
score ranging from 1 to 3. 1 means the response
is correct in grammar and fluent; 2 means the re-
sponse is coherent to the context and satisfies the
requirements of 1. 3 means the response exhibits
versatile skills if necessary including showing em-
pathy, grounding on knowledge, commonsense in-
ference, etc. Besides, the response should also meet
the requirements of 2. Agreement of the annotators
is measured via Fleiss’ kappa (Fleiss, 1971). As
is shown in Table 7, the responses generated by
our approach enjoy a higher quality, demonstrating
the superiority of the modular generation frame-
work. The evaluation results are also consistent
with automatic evaluation.

A case study could be found in Appendix F.

8 Conclusions

In this work, we utilize the ideology of modular
networks to address the transfer-interference prob-
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lem in multi-task learning. We implement a model
architecture that allows the composition of differ-
ent modules to fulfill complicated functions and
eliminate interference among modules. We apply
our method to dialogue generation and conduct
extensive experiments to verdict its efficacy. We
hope our work would inspire relevant research in
the community.

Ethic Considerations

The use of our approach could result in improved
dialogue systems that enhance the quality of life
for many individuals, especially in light of the
widespread use of AI in everyday life. For instance,
a more effective chatbot integrated with electronic
gadgets will boost both productivity and user expe-
rience. On the other hand, the implementation of
conversation systems could result in employment
losses in some domains such as call centers.

Limitations

This work focuses on mitigating the negative trans-
fer and catastrophic forgetting issue in multi-task
dialogue generation. All technologies built upon
the large-scale PLM more or less inherit their po-
tential harms (Bender et al., 2021). Besides, we
acknowledge some specific limitations within our
methods:

1. The construction of pseudo labels requires de-
pendency parsing with spaCy, which is time-
consuming. But we only construct pseudo
labels offline in the training processing and it
causes no latency at inference.

2. We instantiate our modular framework using
MiniLM (Wang et al., 2020b) as the back-
bone of the reader within the programmer, and
T5 (Raffel et al., 2019) as the backbone for
the content operators and linguistic operators.
We did not try other instantiations although
the modular framework does not depend on
the specific initialization choice of modules.
Theoretically, any generative PLM could be
the backbone of these linguistic and content
modules.

3. We aim at decomposing the response genera-
tion into relatively independent and compos-
able operators. Currently, the division of di-
alogue skills and module functions is in a
heuristic way inspired by linguistics. Thus

it remains a future research question about
how to design modular architecture in a more
data-driven way.
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A Details about Operators

The operators used in our framework are listed in
Table 8.

B More Details about Datasets

Cornell Movies (Danescu-Niculescu-Mizil and
Lee, 2011) contains large-scale fictional conver-
sations extracted from raw movie script. thus cov-
ering abundant topics and emotional change. The
dataset is used for training and evaluating a chatbot
to quickly capture the emotional change in dialogue
and respond accordingly.

LIGHT (Urbanek et al., 2019) is about situated
interaction between characters in a text adventure
game. The dialogue context includes not only the
historical utterance but also the persona and ac-
tion of the speakers together with the background
setting. The skill in this dataset is grounding dis-
cussion on the dynamic environment.

EmpatheticDialogue (Rashkin et al., 2019) is a
crowd-sourced dataset in which a speaker describes
his or her situation and a listener responds with
empathy. The dataset provides the emotion labels
for interlocutors at each turn, but we do not include
that in the dialogue context of our experiment.

ConvAI2 (Dinan et al., 2020) is the dataset used
for NeurIPS 2018 competition and is adapted from
PERSONACHAT (Zhang et al., 2018). In conver-
sation, the interlocutors are required to exhibit a
given persona and try to know the persona of the
partner at the same time. The dataset mainly fo-
cuses on the skill of getting to know each other and
engaging in friendly greeting conversation.

Wizard of Wikipedia (Dinan et al., 2019) is a
knowledge-grounded dataset in which an interlocu-
tor plays the apprentice and asks questions while
the other interlocutor plays the wizard and gives
informative responses. The wizard has access to
background knowledge from Wikipedia. We only
include the golden knowledge in the dialogue con-
text. The dataset is for training and evaluating the
skill of grounding conversation on knowledge.

CMU_DoG (Zhou et al., 2018b) is also a dataset
for knowledge-grounded dialogue. In each con-
versation, two interlocutors discuss a given movie.
The basic information of the movie including rat-
ing, release year, review and main plots are pro-
vided as background knowledge. Similarly, we use
only the golden knowledge. The dataset focuses on
grounding knowledge.

Mutual (Cui et al., 2020) is collected from Chi-
nese students’ English listening comprehension ex-
ams. The model needs to generate a logically cor-
rect continuation of the conversation based on his-
torical utterances. The dataset facilitates reasoning
ability on social etiquette and relationships.

CommonsenseDialog (Zhou et al., 2018a) con-
sists of two parts. The first part is extracted from
the existing dialogue dataset using ConceptNet
while the second part is crowd-sourced asking the
crowd workers to exhibit social commonsense in
an interacting environment. We only use the crowd-
sourced part to avoid overlap with other datasets
used in our experiments. The dataset requires the
skill of performing latent or explicit commonsense
inference in communication.

DailyDialog (Li et al., 2017) is a dataset intended
to reflect conversations occurring in daily life, cov-
ering a wide range of domains and topics. The
dataset is also annotated with the topic, emotion
and utterance act, but we only use the history utter-
ance as the dialogue context.

Since the test set of ConvAI2 and Mutual is not
publicly released, we conduct validation on a sepa-
rate subset (10%) of the training set and test on the
original validation set.

The statistics of our datasets are listed in Table 9.

C More Details about Weak Supervision

Since algorithm 1 is only a high-level description,
we provide more details here about how to pro-
duce our pseudo training data. In implementation,
we use spaCy 3 as our parsing tool. It outputs a
parsing tree and every token in the sentence is a
node. We process the token-level parsing tree into
a segment-level parsing tree by merging the nodes
into verb phrases. Specifically, we merge all the
nodes and within the subtree of a verb node unless
it is another verb node or its nearest verb ancestor
is another verb node. The edge between the verb
nodes is kept unchanged. As a result, we parse the
golden response into a segment tree T . To traverse
all the segments in the tree, we use a pseudo in-
order traverse because in the parsing tree a node
may have more than two children and a traditional
in-order traverse does not work here. Precisely,
we for every node to visit, we first visit its first
child, then the node itself, and finally all the other
children. In algorithm 1, the similarity function

3
https://spacy.io/
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Operator Input Output Description

SPAN
v0: start index;
v1: end index

text Select a span from dialogue context

COPY v: text text Copy the input text

PARAPHRASE v: text text Paraphrase the input text

INFER v: text text Take the input as premise and infer a hypothesis

NOUN_MODIFY v0: text v1: text text Connect one clause to another to modify a noun

VERB_MODIFY v0: text v1: text text Connect one clause to another to modify a verb

COMPOUND v0: text v1: text text Connect the two sentences with a conjunct

Table 8: The operators used in programme generation.

Training Validation Test Resp.Length

Cornell Movies (Danescu-Niculescu-Mizil and Lee, 2011) 110,161 13,914 13,701 10.84
DailyDialog (Li et al., 2017) 76,005 8,069 7,740 11.61
CMU_DoG (Zhou et al., 2018b) 66,333 3,270 10,502 18.53
LIGHT (Urbanek et al., 2019) 93,784 5,623 11,268 12.98
EmpatheticDialogue (Rashkin et al., 2019) 64,635 5,738 5,259 11.72
Wizard of Wikipedia (Dinan et al., 2019) 74,092 3,939 3,865 13.02
ConvAI2 (Dinan et al., 2020) 131,438 7,801 - 11.48
Mutual (Cui et al., 2020) 7,088 886 - 13.02
CommonsenseDialog (Zhou et al., 2021) 25,552 3,268 1,158 8.86

Table 9: Statistics of the datasets used in our experiments. Resp.Length is the abbreviation for the length of
response (number of words).

sim(·, ·) is unigram F14 (Dinan et al., 2019). We
set ϕ1 to be 0.35 and ϕ2 to be 0.75. The syntactic
relation classifier cls(·, ·) is based on the depen-
dency relation r between the two verb nodes in two
segments:

cls(s1, s2) =





COMPOUND, r = conj,
VERB_MODIFY, r = advcl
NOUN_MODIFY, r ∈ {relcl, acl}

(8)

D More Implement Details

All the content modules and linguistics modules are
sequence-to-sequence transformers initialized with
T5-small (Raffel et al., 2019). The reader within the
programmer is a bidirectional 6-layer transformer
with an embedding size of 512. Its parameters are
initialized from MiniLM (Wang et al., 2020b). The
GRU in the programmer is 1-layer with the dimen-
sion of hidden state 512. All the models are learned
with Adam optimizer (Kingma and Ba, 2015) with
β1 = 0.9 and β2 = 0.999. We sweep learning rate
from [5e−6, 1e−5, 2e−5, 4e−5, 6e−6, 8e−5]
and sweep batch size from [16, 32, 64, 128, 256].

4
https://github.com/facebookresearch/ParlAI/blob/

master/parlai/core/metrics.py

CMU_DoG LIGHT ED CD

BART (406M) 626.06 617.95 619.94 623.17
Ours (327M) 308.39 355.43 310.22 406.97

Table 10: Average inference time (ms) of BART and
our method on four datasets. ED = EmpatheticDialog,
CD = CommonsenseDialog.

We set the weight decay as 1e− 2 and sweep the
warmup steps from [1000, 2000, 4000]. The gradi-
ent clip is set to 2.0 to avoid the explosion of the
gradient. The reward for reinforcement is imple-
mented as the unigram-F1. We keep the tempera-
ture τ to be 1.0 through our experiment. A cosine
learning schedule is applied to adjust the learning
rate during training. An early stop on the valida-
tion set is adopted. We truncate the input dialogue
context to a maximum length of 480. We conduct
experiments on two RTX 3090. We use greedy
search for decoding and report the performance
averaged in three repetitive experiments.

E Inference Speed

We further compare the decoding speed at infer-
ence time with BART to see whether the modular

13599

https://github.com/facebookresearch/ParlAI/blob/master/parlai/core/metrics.py
https://github.com/facebookresearch/ParlAI/blob/master/parlai/core/metrics.py


Context A: Excuse me, could you help me pick out a lotion?
B: Sure, what is the problem? 
A: I got poison oak while hiking, and I need something to help 
me with the itching. 
B: I can suggest a product called techne that comes in a lotion or 
cream. Which do you prefer? Hikers tell me that the cream is 
best because it stays on longer. 

BART I prefer the cream.

R2C2 I prefer the cream because it stays on longer.

Human Is there anything else I can do to help with the itching?

Code [36,42, SPAN, COPY, 44, 48, SPAN, PARAPHRASE, VERB_MODIFY, 
18, 24, SPAN, INFER, NOUN_MODIFY]

Ours I think it's better because the cream stays on longer than I do in 
my hiking shoes.

Table 11: A case study from DailyDialog dataset (Li
et al., 2017).

generation framework suffers from high latency.
We conduct experiments on CMU_DoG, LIGHT,
EmpatheticDialog and CommonsenseDialog with
an RTX 3090. The experiment results are shown in
Table 10. From the table, we could observe that our
model has a lower inference latency than BART.
We gauge the reason that the modules in our frame-
work are much smaller in scale. Meanwhile, those
modules only attend to the partial text selected by
SPAN rather than the entire dialogue context.

F Case Study

To have an intuitive understanding of how our mod-
ular framework takes effect, we show three cases
in all-task MTL setting in Table 12, Table 11 and
Table 13. Besides, we are also interested in whether
the schedule frequency of each module varies in
different datasets. We believe the difference of
schedule frequency exhibits some intrinsic feature
of the dataset. From Figure 2 to Figure 19, we con-
jecture that the schedule frequency gives out the
linguistic style of a dataset. For example, in Wizard
of Wikipedia (Dinan et al., 2019), a portion of sen-
tences are directly copied from the knowledge; In
ConvAI2 (Dinan et al., 2020), some sentences are
paraphrased from the given persona of speakers.

Context A: hi . I’m Billy. I work as an electrician in Texas.
B: I very rarely speak to people Billy , because I'm so famous. 
A: Really? How? I do a lot of work on my mom and dads farm.
Persona: I am a famous twitch streamer. I am working on a 
building a robot to be my body double. I helped design the game 
starcraft. I've an allergy to water.

BART That’s cool, I'm a famous twitch streamer .

R2C2 I'm a recluse.

Human I am working on a robot so I can have company that doesn't 
annoy me .

Code [6, 67, SPAN, COPY, 70, 77, SPAN, PARAPHRASE, NOUN_MODIFY]

Ours I'm an electrician and work on the game starcraft to be my body 
double

Table 12: A case study from ConvAI2 dataset (Dinan
et al., 2020).

Context A: Did you like Angelina Jolie's performance? Shame about the 
wings.... Would you watch it again? 
B: Do you agree with the rating of rotten tomatoes given to that 
movie? 
A: yes. the movie was ok. 
Knowledge: Maleficent is a powerful fairy living in the moors, a 
magical forest realm bordering a human kingdom.

BART I agree with that rating. I think it 's a good movie.

R2C2 Yes, I agree with you.

Human Yes, I like Angelina performance. She is a great actress .

Code 38, 43, SPAN, INFER, 40, 44, SPAN, INFER, 0, 9, SPAN, 
PARAPHRASE

Ours Yes, I liked her performance. She was very good. What did you 
think of her performance?

Table 13: A case study from CMU_DoG dataset. (Zhou
et al., 2018b)
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