
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 13676–13694

July 9-14, 2023 ©2023 Association for Computational Linguistics

Holistic Prediction on a Time-Evolving Attributed Graph

Shohei Yamasaki1,∗,†, Yuya Sasaki2,∗, Panagiotis Karras3, Makoto Onizuka2

1Nomura Research Institute, Ltd., Japan, 2Osaka University, Japan
3Aarhus University, Denmark

s2-yamasaki@nri.co.jp, {sasaki,onizuka}@osaka-u.ac.jp, piekarras@gmail.com

Abstract

Graph-based prediction is essential in NLP
tasks such as temporal knowledge graph com-
pletion. A cardinal question in this field is, how
to predict the future links, nodes, and attributes
of a time-evolving attributed graph? Unfortu-
nately, existing techniques assume that each
link, node, and attribute prediction is indepen-
dent, and fall short of predicting the appearance
of new nodes that were not observed in the
past. In this paper, we address two interrelated
questions; (1) can we exploit task interdepen-
dence to improve prediction accuracy? and (2)
can we predict new nodes with their attributes?
We propose a unified framework that predicts
node attributes and topology changes such as
the appearance and disappearance of links and
the emergence and loss of nodes. This frame-
work comprises components for independent
and interactive prediction and for predicting
new nodes. Our experimental study using real-
world data confirms that our interdependent
prediction framework achieves higher accuracy
than methods based on independent prediction.

1 Introduction

Real-world language-based data such as blog posts,
documents, and user profiles is often intercon-
nected, as in social networks and co-author net-
works. This interconnection is modeled by graphs
where nodes represent objects and edges represent
relationships (Bansal et al., 2019; Bai et al., 2021;
Zhu et al., 2019; Wu et al., 2021). The structures
and node attributes of such graphs often evolve
over time by node addition/deletion, link addi-
tion/deletion, and node attribute changes. For in-
stance, social networks change over time in terms
of participating users, their profiles, and their links.
Such temporally malleable graphs are called time-
evolving attributed graphs (Rossi et al., 2020).

*These authors contributed equally to this work
†This work was done when Shohei Yamasaki was a student

at Osaka University

Graph-based methods are essential in various
NLP tasks (Zhou et al., 2021; Mondal et al., 2021;
Xie et al., 2021). NLP applications often call for
predicting the future of a time-evolving attributed
graph such as completing a temporal knowledge
graph (Goel et al., 2020; Mirza and Tonelli, 2016;
Xu et al., 2021a), predicting a profile in social net-
works (Hasanuzzaman et al., 2017), and recom-
mending news articles to readers (Wu et al., 2019);
the prediction task involved is composite, includ-
ing several sub-prediction tasks. Conventionally,
this composite prediction task is addressed in a
compartmentalized manner, separately applying a
technique for each component sub-prediction task.
This compartmentalized approach treats compo-
nent prediction tasks independently rather than as
an interdependent whole and utilizing one predic-
tion to inform another. Besides, to our knowledge,
existing works in time-evolving graph prediction
do not predict new nodes and their attributes.
Example 1.1 Let us consider profile prediction in
a social network over a span of time in the future,
e.g., job post in two years (Hasanuzzaman et al.,
2017). Profile information can be predicted from
posts and connections to other users. A social
network is time-evolving, user profiles change dy-
namically, new users register their accounts and
some users delete their accounts. Connections also
change; newly registered accounts acquire connec-
tions to existing accounts with whom they have
similar profiles; accounts connected to deleted ac-
counts may connect to other accounts. These pre-
dictions are interdependent.

In this paper, we introduce the problem of holis-
tically predicting the future in a time-evolving at-
tributed graph. Figure 1 illustrates the problem,
including multiple sub-predictions, such as those
of node loss and new node appearance. To achieve
high prediction accuracy, we need to capture the
interdependence between sub-prediction tasks. As
it is difficult for a single method to capture all in-
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Figure 1: Example of time-evolving attributed graph
prediction; node colors represent attributes; T is the
current time step; L is the number of time steps.

terdependences, we must effectively combine sev-
eral methods and interactively reuse the results of
one task in other tasks. Further, as existing meth-
ods cannot predict new node appearances, we need
novel prediction methods for this sub-problem.

We propose AGATE (A General framework for
predicting Attributed Time-Evolving graphs), a
holistic, versatile prediction framework that lever-
ages the interdependence between the tasks of pre-
dicting new nodes, lost nodes, appearing links, dis-
appearing links, and node attributes from observed
past graphs. AGATE comprises components for
predicting the future graph and capturing task in-
terdependence: (i) one to predict the size of an
evolving graph, (ii) one to predict existing-node
structure and attributes, as well as new nodes, and
(iii) a reuse mechanism that reuses the results of
(ii) to achieve predictions that capture the inter-
dependence between sub-predictions. Our frame-
work can use existing methods as components. We
develop a novel prediction method, PROSER for
predicting new node appearance with attributes.

We assess AGATE vs. the state of the art on three
real-world time-evolving attributed graphs, show-
ing that it benefits from allowing prediction tasks
to affect each other, its reuse mechanism improves
accuracy, and it effectively predicts new nodes with
attributes. Our source code is available.1

We summarize our contributions as follows:
(1) we study the problem of holistic prediction on
a time-evolving attributed graph, including new
node appearances; (2) we propose the AGATE
framework for such predictions, which allows pre-
diction tasks to affect each other; (3) we develop
PROSER, a method for the prediction of new nodes
with attributes, and (4) we put together best-of-
breed methods and show that AGATE improves
prediction accuracy and also accurately predicts
new nodes with attributes. Further, we validate that
tasks are interdependently affected by each other.

1https://github.com/yuya-s/AGATE/

2 Problem Statement

An undirected attributed graph is a triple G =
(V,E,X) where V is a finite set of nodes, E ⊆
V × V is a set of edges, and X ∈ R|V |×d is a
set of node attributes; X(v) denotes d-dimensional
attributes of node v. Each dimension in X may
be categorical or numerical. We consider a time-
evolving graph, where the number of nodes and
links and values of node attributes changing over
time, with d constant:

Definition 1 A time-evolving attributed graph is a
sequence of attributed graphs ⟨G1, · · · , GT ⟩ over
discrete time steps, where T is the number of ob-
served time steps and Gt := (Vt, Et, Xt) the at-
tributed graph at time step t. It is known as discrete-
time dynamic graph (DTDG).

In a time-evolving graph, nodes and links appear
and disappear dynamically. We discern three types
of nodes at time step t: existing nodes V e

t , new
nodes V n

t , and lost nodes V l
t :

V e
t = Vt∩Vt−1, V n

t = Vt\Vt−1, V l
t = Vt−1\Vt.

Nodes in V e
t exist at both time steps t and t−1,

while those in V n
t appear and those in V l

t disap-
pear at time step t. Likewise, we discern existing
links Ee

t , links connected to new nodes En
t , appear-

ing links Ea
t , and disappearing links Ed

t :

Ee
t = Et ∩ Et−1, En

t = Et \ (Vt−1 × Vt−1)

Ea
t = (Et \ Et−1) \ En

t , Ed
t = Et−1 \ Et

We define the problem as follows:

Problem 1 Given a time-evolving attributed graph,
⟨GT−L+1, GT−L+2, . . . , GT ⟩, including appear-
ing and disappearing nodes and links and chang-
ing node attributes, the holistic time-evolving at-
tributed graph prediction problem asks to predict
the graph at time step T + 1, GT+1 = (VT+1,
ET+1, XT+1).

This problem calls to predict the whole of GT+1,
rather than one of its components.
Sub-prediction tasks: We define each sub-
prediction task; existing works address some of
these sub-prediction tasks independently.

Sub-prediction tasks on existing nodes aim to
predict graph structure and attributes on existing
nodes. Such tasks have been addressed in prior
studies, such as STGCN (Yu et al., 2018) and
DynGEM (Goyal et al., 2018). We have five sub-
prediction tasks; node loss, link appearance, link
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disappearance, and attribute values on existing
nodes. As these tasks are intuitive, we describe
them in Appendix.

Sub-prediction tasks on new nodes aim to predict
new nodes with their links and attributes. Link pre-
diction on new nodes has been addressed recently
in (Hao et al., 2020), but there exist no studies for
the prediction of new node attributes.

SubProblem 1 (New node attributes): Given a
time-evolving attributed graph ⟨GT−L+1, . . . , GT ⟩
across L time steps, this sub-prediction task is to
predict new nodes V̂ n

T+1 and their attributes X̂n
T+1.

As there is no previous work on the prediction
of new nodes with attributes, we define an evalu-
ation measure for this task. We evaluate the sim-
ilarity between the sets of attributes of predicted
and real new nodes based on a perfect bipartite
matching (Tanimoto et al., 1978):

Definition 2 (Perfect matching): Given a com-
plete bipartite graph K = (V, V ′, E) where E =
V × V ′, a perfect matching M in K is a set of
pairwise non-adjacent edges that cover all vertices
in V .

We construct a complete birpartite graph K from
predicted to real new nodes, and compute edge
weights by arbitrary similarity functions: K =
(V̂ n

T+1, V
n
T+1, V̂

n
T+1 × V n

T+1).
2 Similarity functions

between attributes of nodes w(·, ·) can be cosine
similarity and Euclidean distance-based functions,
for which we can select the types of node attributes
(e.g., word embedding and user profiles).

Our measure is the maximum similarity:
M-sim(V̂ n

T+1, V
n
T+1, X̂

n
T+1, X

n
T+1) =

max
M∈M

1

|M |
∑

(v̂,v)∈M

w(X̂
(v̂)
T+1,X

(v)
T+1) (1)

where M is the set of perfect matchings for the
given bipartite graph and |M | is the number of
pairs of matching in M . If the similarity is closer
to one, attributes on predicted new nodes are simi-
lar to those on corresponding real new nodes. By
this measure, we enforce that predicted attribute
values properly match real ones, rather than merely
reiterate values that appear frequently in new nodes
of GT+1. In general, the optimal M is hard to
compute due to the numerous patterns of perfect
matchings, so we use approximate methods such
as a greedy method.

2If |V̂ n
T+1| ≤ α|V n

T+1| (α is the minimum integer that satis-
fies this inequality), we duplicate all nodes in V n

T+1 at α− 1
times.

Regarding predicting links to new nodes, prior
work (Hao et al., 2020) assumes new nodes are
given along with attributes. Contrariwise, we pre-
dict links to predicted nodes.

SubProblem 2 (Links connected to new nodes):
Given a time-evolving attributed graph ⟨GT−L+1,
. . . , GT ⟩ across L time steps, new nodes V̂ n

T+1, and
corresponding attribute values X̂n

T+1 predicted by
subproblem 1, this sub-prediction task is to predict
any link between v and v̂, (v, v̂) ∈ VT × V̂ n

T+1.

These sub-prediction tasks on existing and new
nodes may be interdependent; for example, at-
tribute prediction affects link prediction and vice
versa. The way tasks affect each other is unknown,
and the interdependence between predictions re-
garding new and existing nodes is uncertain.

3 AGATE: Our framework

AGATE holistically predicts the future of time-
evolving attributed graphs, exploiting the interde-
pendence of sub-prediction tasks. Figure 2 illus-
trates its architecture, comprising three main com-
ponents for graph size, independent, and reuse pre-
dictions; the independent prediction component
is subdivided in parts for existing and new nodes.
AGATE is modular; it can employ any existing
method as a component in independent and reuse
predictions; as no existing method predicts new
nodes with attributes, we develop our own meth-
ods for this task. AGATE supports prediction in
attributed graphs that are either partially or fully
time-evolving, e.g., it can accommodate static at-
tributes or no link disappearance.

Algorithm 1 shows the pseudo code of AGATE.
AGATE first predicts the output graph size (lines 1–
3). Then it first conducts each sub-prediction task
independently to obtain a preliminary predicted
graph at time step T+1 (lines 4–6), and updates
the results of each such task by reusing the results
of other tasks (lines 6–10). We explain each com-
ponent.

3.1 Graph size prediction

We use a component to predict the sizes
of VT+1 and ET+1; we extract sequences of new
nodes {V n

T−L+1, . . . , V n
T }, lost nodes {V l

T−L+1,
. . . , V l

T }, appearing links {Ea
T−L+1, . . . , Ea

T },
disappearing links {Ed

T−L+1, . . . , Ed
T }, and links

to new nodes {En
T−L+1, . . . , En

T } from input
graphs {GT−L+1, . . . , GT }, count the elements
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Figure 2: AGATE architecture; input is observed graphs (time L− T + 1 to T ), and output is predicted graph (time
T + 1). Pink, green, and blue boxes indicate graph data, learning models, and predicted results, respectively.

Algorithm 1: AGATE
input :⟨GT−L+1, GT−L+2, . . . , GT ⟩, a natural number I
output : Ĝ(I)

T+1

/* Graph size prediction */
1 Extract sequences of new nodes, lost nodes, appearing links,

disappearing links, and links of new nodes from
⟨GT−L+1, GT−L+2, . . . , GT ⟩;

2 Count and normalize them by dividing its maximum value;
3 Predicting |V n

T+1|, |V l
T+1|, |En

T+1|, |Ea
T+1|, |Ed

T+1| from
each sequence of normalized values;

/* Independent prediction */

4 Predicting V̂ n
T+1, V̂ l

T+1, Ên
T+1, Êa

T+1, Êd
T+1, X̂T+1,X̂n

T+1

from ⟨GT−L+1, GT−L+2, . . . , GT ⟩;
5 V̂

(0)
T+1 ← VT ∪ V̂ n

T+1 \ V̂ l
T+1;

6 Ê
(0)
T+1 ← ET ∪ Ên

T+1 ∪ Êa
T+1 \ Êd

T+1;
/* Reuse prediction */

7 for i = 1, . . . , I do
8 Predicting V̂ n

T+1, V̂ l
T+1, Ên

T+1, Êa
T+1, Êd

T+1,

X̂T+1,X̂n
T+1 from ⟨GT−L+2, . . . , G

(i−1)
T+1 ⟩;

9 V̂
(i)
T+1 ← VT ∪ V̂ n

T+1 \ V̂ l
T+1;

10 Ê
(i)
T+1 ← ET ∪ Ên

T+1 ∪ Êa
T+1 \ Êd

T+1;

11 return Ĝ
(I)
T+1;

12 end procedure

in each sequence, normalize them through division
by its maximum value to avoid vanishing gradient,
and train the model using the sequence of numbers
of elements by time-series data prediction. In the
case the methods used in the individual tasks can
determine the numbers of nodes and links in the
output graph, we do not need a separate prediction
on graph size.

3.2 Independent prediction

This component makes initial predictions, which
may then be used in reuse prediction; independent

prediction is subdivided into parts regarding ex-
isting nodes and new nodes. After conducting all
prediction tasks, the independent prediction builds
GT+1

(0) to add/remove to/from GT .

Existing node prediction: This component in-
volves binary classification tasks regarding node
loss, link appearance, link disappearance, as well
as multi-class classification and regression tasks
regarding the attributes of existing nodes. We ob-
tain a probability for each target node/link from
each classification model and derive the predicted
results as a set of highest probability elements with
cardinality given by the respective size prediction
module. In node attribute prediction, we can select
models to either predict each attribute value individ-
ually, or all values simultaneously. We use suitable
models (e.g., LSTM (Hochreiter and Schmidhu-
ber, 1997) and DynGEM (Goyal et al., 2018)) to
predict categorical and numerical node attributes.
To our knowledge, only EvolveGCN (Pareja et al.,
2020) supports all tasks on existing nodes. How-
ever, EvolveGCN performs poorly compared to
other models (see Table 1).

New node prediction. To the best of our knowl-
edge, no previous work addressed new node pre-
diction. Thus, we develop three simple baseline
methods for this purpose (Random, FNN, and
PointNet), which aim to determine the correspon-
dence between the predicted and real new nodes
by maximizing the matching similarity in Equa-
tion (1): Random outputs randomly sampled nodes
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from V n
T with attributes from Xn

T . FNN is a
simple feedforward neural network, i.e., a multi-
layer perceptron, trained by constructing a bipartite
graph from predicted new nodes V̂ n

T+1 to real new
nodes V n

T+1, and learning to minimize the loss func-

tion: Ln = − log
M-sim(V̂ n

T+1,V
n
T+1,X̂

n
T+1,X

n
T+1)+1

2 .
FNN’s learning depends on the order of input nodes.
PointNet is a deep learning framework that deals
with order invariance (Qi et al., 2017), with input
and loss function the same as those of FNN.

We utilize the predicted new node attributes to
predict links to new nodes using DEAL (Hao et al.,
2020), which handles link prediction for nodes hav-
ing only attribute information, or any other similar
method. We evaluate prediction accuracy by the
correspondence between predicted and real nodes.

3.3 Reuse prediction

This component updates prediction results by ex-
ploiting task interdependence, aiming to capture
the effect of each sub-prediction on others. Reuse
prediction repeats the updates of GT+1 the given
number I of times; it predicts lost nodes, appeared
links, disappeared links, and attributes of nodes
from ⟨GT−L+2, · · · , GT+1

(i)⟩ for 0 ≤ i ≤ I − 1.
We can use any model/method in the reuse module.

Reuse prediction follows the specifications of
existing node prediction, while now each model
reuses already predicted graph characteristics to
update the results of all sub-prediction tasks. We
may use those independent results that are fit; we
study this matter in our experiments.

4 PROSER

We develop a novel method, Probabilistic Selection
Rule (PROSER), to predict new node attributes.

PROSER aims to maximize the matching simi-
larity in the prediction of new node attributes. In
a preliminary analysis, we observed that most new
nodes have similar attributes to those of new nodes
at the previous time step. Thus, accuracy is rela-
tively high when we randomly sample attributes
of new nodes at the previous time step. We refine
this process by selecting appropriate nodes to in-
crease the matching similarity. By simple random
sampling, matching similarity would be low when
the similarity of sampled attributes to any attributes
of new nodes at time step T+1 is low. PROSER
avoids selecting such attributes by estimating the
highest similarity between sampled attributes and
those of new nodes. Besides, matching similarity

would not increase by frequently sampling a few
attributes that are highly similar to some real node
attributes, as each match in a perfect matching is
unique. Instead, we sample attributes Xn

T having a
similar distribution to that of new node attributes
in time T+1, Xn

T+1.
PROSER employs logistic regression to learn

probabilities that similarities between sampled and
actual new node attributes are higher than a thresh-
old θ. Before model training, we compute θ to
maximize matching similarity, as:

θ=arg max
θ′∈R

∑

Gi∈T
M-sim(V n

i (θ′), V n
i+1, X

n
i (θ

′), Xn
i+1) (2)

where T denotes the set of training graphs, V n
i (θ′)

is the set of sampled attributes whose similarity
to those of the real nodes is higher than θ′, and
Xn

i (θ
′) is the set of their attributes. θ removes

nodes that do not increase the matching similarity.
To capture the distribution, we use a mean vector
of Xn

T as a representative attribute of GT . Our
model computes the probability to maximize the
matching similarity for future graphs leveraging
this mean and the threshold.

In the inference phase, PROSER randomly sam-
ples attributes from the set of new node attributes
at time T and calculates probabilities. If these are
higher than θ, we add these attributes to prediction
results, otherwise discard them. We repeat, until
the number of predicted attributes reaches that of
new nodes. Since we randomly select candidates
of predicted attributes, predictions are diverse.

5 Experiments

We experimentally validate the performance of
AGATE and analyze the performance gain due to
the exploitation of task interdependence. All ex-
periments are conducted on a Linux server with
Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz.
Dataset. We use three datasets with diverse time-
evolving features with linguistic node attributes:
NBA3, Reddit4, and AMiner5.

• NBA: Nodes represent NBA players, with at-
tributes for points, team, age, and position.
Two nodes are linked when the respective
players are teammates. Nodes, links, and at-
tributes change dynamically; there are 3,781

3https://www.basketball-reference.com
4http://snap.stanford.edu/data/soc-RedditHyperlinks.html
5https://www.aminer.cn/citation
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unique nodes, 95,203 unique edges, 35 at-
tributes, and 66 time steps.

• Reddit: Nodes stand for subreddits and links
represent posts between them; if a subred-
dit has no posts in a time step, the corre-
sponding node is removed at that time step.
Node attributes are embeddings of the subred-
dits (Kumar et al., 2018). Nodes and links
change dynamically, while node attributes are
static. Reddit includes 7,756 unique nodes,
23,554 unique edges, 300 attributes, and 14
time steps.

• AMiner (Tang et al., 2008): Nodes stand for
papers, links for citations, and attributes for re-
search field weights, extracted by computing
TF-IDF scores from paper titles. Nodes and
links appear over time, but nodes do not dis-
appear, while the links and attributes of exist-
ing nodes are static. Aminer includes 10,987
unique nodes, 6,708 unique edges, 9 attributes,
and 24 time steps.

We divide time steps into training, validation,
and test data with a 7:2:1 ratio; in NBA data, that is
time steps 1–48, 49–60, and 61–66, respectively; in
Reddit, time steps 1–11, 12–13, and 14; in AMiner,
time steps 1–18, 19–22, and 23–24.
Compared methods. We apply different meth-
ods for comparison in each sub-prediction task,
since not all methods are applicable to all tasks.
When predicting existing node features, we use 9
methods grouped in four categories: simple, dy-
namic graph embeddings, static graph GNNs, and
dynamic graph GNNs. Simple methods are: (1)
Baseline, which outputs GT as the predicted graph
for GT+1, (2) Random, which randomly samples
the predicted targets, (3) FNN, and (4) LSTM. We
use (5) DynGEM (Goyal et al., 2018) as a dynamic
graph embedding and (6) GCN (Kipf and Welling,
2017) as a static graph GNN. As dynamic graph
GNNs, we use (7) STGCN (Yu et al., 2018), (8)
EvolveGCN (Pareja et al., 2020), which has two
versions, EvolveGCN-H and EveloveGCN-O, and
(9) TGGNN that we modified gated CNN to graph
tasks (see Appendix in detail).

To predict new nodes with attributes, we use
PROSER and the three baseline methods described
in Section 3. To predict links connected to new
nodes, we use cosine similarity (CS for short),
FNN, and DEAL (Hao et al., 2020) based upon
the results predicting new nodes with attributes.

DEAL is the state-of-the-art method. AGATE re-
peatedly predicts GT+1; we identify the best model
for each sub-prediction task on the validation data,
and go on reusing the best model’s results.
Hyper-parameters. We run the model with at
most 1,000 training iterations, 10–100 early stop-
ping patience, batch size 1 or 2, and learning
rate 0.01 with the Adam optimizer. On temporal
graphs, we use 3, 3, and 5 as L for NBA, Reddit,
and Aminer, respectively. We set the number I of
repeated updates in reuse prediction to 3. We use
cosine similarity as w(·, ·) in Eq. (1). We note that
we tune hyper-parameters independently of models
close to the input, and in reuse prediction models
remain consistent. Thus, hyper-parameter tuning
is not hard compared to common graph prediction
tasks. Please see the appendix in detail.

The training time totally took about 500, 700,
and 200 CPU hours on NBA, Reddit, and Aminer,
respectively. Our framework can run in parallel.

5.1 Overall evaluation on Accuracy

We show results for independent prediction and
AGATE, which exploits task interdependence.
Prediction on existing nodes: First, we show the
results of attribute prediction on existing nodes,
which correspond to, for example, future user pro-
file prediction. Figure 3 shows results on the NBA
data; MAE and RMSE on the prediction of NBA
players’ points (where lower is better) and AUC
and Average Precision on the binary prediction of
whether a player transfers to another team (where
higher is better). Note that, Reddit and AMiner data
do not change the attributes of nodes. LSTM and
TGGNN perform well. However, other dynamic
graph GNNs cannot predict player’s points and fare
worse than the baseline. AGATE enhances accu-
racy through reuse prediction. In player’s point
prediction, AGATE reuses the results of LSTM and
all sub-prediction tasks; in team transfer prediction,
it reuses the results of TGGNN and those regarding
links connected to new nodes.

Second, Table 1 presents our AUC and average
precision results on node loss, link appearance, and
link disappearance predictions on NBA and Red-
dit; such results correspond to, for example, future
connections between users. Note that, in AMiner,
existing links and nodes do not change. We ob-
serve that, in independent prediction, TGGNN and
LSTM often achieve the best performances. This
result indicates that node attribute and/or topology
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Table 1: Node/link prediction on existing nodes; underlined: best results in independent pred.; bold: best results
among both independent and reuse pred. ROC AUC and Average precision are multiplied by 100.

Methods
Node prediction (loss) Link prediction (appearance) Link prediction (disappearance)

ROC AUC Average precision ROC AUC Average precision ROC AUC Average precision
NBA Reddit NBA Reddit NBA Reddit NBA Reddit NBA Reddit NBA Reddit

Baseline 50.00±0.00 50.00±0.00 18.71±0.00 51.10±0.00 50.00±0.00 50.00±0.00 1.37±0.00 0.05±0.00 50.00±0.00 50.00±0.00 41.36±0.00 39.29±0.00
Random 50.16±1.10 49.75±1.49 18.77±0.34 50.99±0.75 49.86±0.05 50.51±0.75 1.36±0.00 0.05±0.00 49.91±0.40 50.87±0.53 41.32±0.19 39.71±0.26
FNN 85.35±0.06 77.53±0.03 53.51±0.08 74.53±0.04 49.66±0.43 46.31±1.86 1.34±0.02 0.04±0.01 49.65±0.17 48.10±0.57 41.09±0.15 36.77±0.87
LSTM 85.44±0.31 82.55±0.10 53.52±0.88 81.69±0.14 49.83±0.23 83.07±0.35 1.34±0.01 6.05±0.42 49.53±0.61 72.13±0.17 40.52±0.46 56.21±0.37
DynGEM 48.67±1.24 67.53±0.15 18.71±0.41 63.67±0.20 49.66±0.42 44.61±1.56 1.36±0.01 0.04±0.00 50.28±0.68 46.81±1.12 41.47±0.93 35.70±0.61
GCN 56.84±0.97 75.14±0.15 23.40±1.49 71.98±0.40 49.67±0.41 82.10±0.94 1.34±0.02 2.05±0.14 50.79±0.34 63.97±0.90 41.95±1.15 48.77±1.30
STGCN 60.20±0.95 82.22±0.31 26.71±0.15 80.45±0.43 49.71±0.49 73.59±1.52 1.34±0.02 0.12±0.01 49.31±0.57 63.01±2.8 40.45±0.51 48.81±2.05
EvolveGCN-H 56.33±1.18 63.44±1.86 21.97±1.03 59.49±1.37 50.01±1.04 52.21±4.46 1.38±0.05 0.08±0.02 49.19±0.58 50.62±0.41 40.47±0.78 39.64±0.15
EvolveGCN-O 56.69±0.58 66.32±2.71 23.01±0.63 62.25±3.08 49.76±0.58 52.43±1.52 1.37±0.03 0.05±0.01 48.83±1.56 51.73±0.68 40.78±1.44 41.07±0.08
TGGNN 85.59±0.58 82.67±0.19 54.57±2.14 81.59±0.42 50.09±0.43 77.93±4.11 1.35±0.02 0.24±0.20 49.81±0.47 66.36±3.91 40.64±0.43 50.80±4.30
AGATE 98.19±2.60 93.49±3.62 92.00±11.4 93.92±3.51 50.36±0.73 81.27±1.89 1.38±0.02 0.45±0.26 51.34±0.01 71.99±1.61 43.38±0.21 56.39±2.18

Table 2: Results on new node attribute prediction; ‘mean’ indicates matching similarity; underlined fonts indicate the
best results in independent prediction; bold fonts indicate best results among both independent and reuse predictions.

Methods NBA Reddit
mean median min max mean median min max

Random 0.8143±0.00 0.8176±0.00 0.2055±0.00 1.0000±0.00 0.8317±0.00 0.8772±0.00 -0.2507±0.00 0.9947±0.00
FNN 0.7217±0.02 0.7650±0.02 0.2287±0.03 0.9004±0.02 0.7409±0.00 0.7876±0.01 -0.8723±0.01 0.9777±0.00
PointNet 0.6587±0.04 0.7075±0.03 0.2650±0.02 0.8337±0.04 0.6336±0.00 0.6016±0.00 -0.8697±0.00 0.9708±0.00
PROSER 0.8149±0.00 0.8164±0.00 0.2715±0.02 1.0000±0.00 0.8329±0.00 0.8780±0.00 0.0286±0.00 0.9947±0.00
AGATE 0.8280±0.00 0.8416±0.00 0.3775±0.01 0.9829±0.00 0.8513±0.00 0.8904±0.00 -0.0238±0.01 0.9948±0.00

changes affect the future graphs in these datasets.
AGATE improves on node/link prediction accuracy
via reuse prediction in most cases. In particular, the
accuracy of node loss prediction increases signifi-
cantly compared to that of independent prediction.
Interestingly, the node loss prediction is highly as-
sisted by new node prediction. We here note that
link prediction on time-evolving graphs is often dif-
ficult, so their AUC and Average precision are very
low (e.g., EvolveGCN (Pareja et al., 2020) reported
similar values of MAP on different datasets). In the
overall link prediction results, AGATE generally
achieved the best performance and we reconfirm
that prediction accuracy improves when we capture
task interdependence.

Prediction on new nodes. Third, Table 2 shows
results on attribute prediction on new nodes, which
corresponds to, for example, the prediction of user
profiles registered in the future. PROSER and Ran-
dom outperform FNN and PointNet. PROSER and
Random output node attributes appearing in the
previous time step without modification, whereas
FNN and PointNet modify them using neural net-
works. This result suggests that it is difficult to

learn how the attributes of new nodes change, even
while they are similar to those of new nodes at the
previous time step. Further, PROSER surpasses
Random, as it avoids sampling nodes that do not
contribute to matching similarity, and thus cosine
similarity significantly improves overall. AGATE
improves the matching similarity by means of reuse
prediction based on supervised learning on the cor-
respondences between predicted and real new node
attributes obtained from independent prediction. In
reuse prediction, AGATE trains on new nodes as
existing nodes, improving on matching similarity.

Finally, Figure 4 shows results on the predic-
tion of links connected to new nodes, which cor-
responds to future connections among new and
existing users. We predict links by the methods on
the horizontal axis, each following upon the results
on new node attribute prediction using the meth-
ods indicated in the bars. The results are generally
good when using the previous results of Random,
PROSER, and AGATE, which perform well in new
node attribute prediction. Among link prediction
methods themselves, DEAL outperforms others.
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Figure 5: Reuse gain on node loss prediction.

5.2 Task interdependence analysis

We examine how AGATE improves the accuracy
of a sub-prediction task by reusing other tasks’
results. Figure 5 shows the difference between
the AUC of independent and reuse predictions on
node loss. Task names on the horizontal axis in-
dicate the reused task; ‘all’ denotes the reuse of
all tasks. Each method and data reveals a differ-
ent task interdependence. For example, the ac-
curacy of STGCN improves when it uses results
from all sub-prediction tasks with NBA data, but
only slightly with Reddit data. The accuracy of
TGGNN improves when it uses new node predic-
tion results. Since TGGNN already achieves high
accuracy independently, this gain is small. Still,
these results confirm our hypothesis that leveraging
task interdependence improves performance when
it reuses proper sub-tasks. The tasks of new node
attribute/link prediction, though not studied previ-
ously, exercise a big impact upon other tasks. As
AGATE can select what tasks reuse in reuse predic-
tion using validation data, we can remove reused
tasks that have a negative impact on performance.

We examine the impact of reuse iterations, vary-
ing the number of repetitions i. Figure 6 shows
the accuracy of lost node and appeared and disap-
peared link tasks vs. i; ‘ind’ indicates the accuracy
of independent prediction. We reuse the results
of all sub-prediction tasks. Accuracy increases
perceptibly in most tasks from ‘ind’ to ‘reuse1’.
In node loss prediction, it keeps increasing with
reuses; in other tasks, accuracy stays stable or falls
after ‘reuse1’, due to error accumulation.

6 Related Work

We categorize graph prediction methods in four
groups: (1) static embedding methods (e.g., (Tsit-
sulin et al., 2018, 2021)), (2) dynamic embedding
methods (e.g., (Goyal et al., 2018, 2020)), (3) static
graph neural network methods (e.g., (Kipf and
Welling, 2017; Li et al., 2016; Velickovic et al.,

Figure 6: Impact of reuse iterations on node/link predic-
tion, exist. nodes (legend split among two figures).

2018; Hamilton et al., 2017; Zhang and Chen, 2018;
Hao et al., 2020)), and (4) dynamic graph neural
network methods (e.g., (Li et al., 2019; Xu et al.,
2019; Li et al., 2018; Yu et al., 2018; Sankar et al.,
2020; Pareja et al., 2020; Xu et al., 2021b; Gao
and Ribeiro, 2022; Fu et al., 2022)). Embedding
methods first derive an embedding independently
of target tasks, and then build a model for each
target task using the embedding as input; on the
other hand, graph neural network methods directly
build a model for each target task.

There are two types of graph prediction tasks:
static and dynamic. Most methods assume that the
underlying graph is static, and predict or recon-
struct links or attributes. Yet real-world systems
and data are dynamic. While it may be possible
to apply static graph methods (Liben-Nowell and
Kleinberg, 2007) to dynamic graphs ignoring tem-
poral evolution, this approach is sub-optimal (Xu
et al., 2020). Learning on dynamic graphs has
been recently studied, yet limited to the transduc-
tive case involving observed elements (e.g., (Goyal
et al., 2018; Yu et al., 2018).) Such approaches are
insufficient for real-world settings in which a graph
evolves with links and new nodes appearing any
time. Some methods (Sankar et al., 2020; Pareja
et al., 2020) support the inductive setting, involving
nodes unobserved in training.

Each method makes its own assumptions about
graph properties and inference, which may not ap-
ply to all prediction tasks.
Discrete vs Continuous. In this study, we assume
discrete-time dynamic network (DTDN) as time-
evolving graphs, while continuous-time dynamic
network (CTDN) have been actively studied re-
cently (Nguyen et al., 2018; Qu et al., 2020; Dai
et al., 2017; Kumar et al., 2019; Trivedi et al., 2019;
Liu et al., 2022; Wang et al., 2021). CTDNs are
represented by a sequence of temporal graph up-
dates instead of a sequence of temporal graphs.
CTDNs are often used for event-based graphs (e.g.,
e-commerce and message communication) as they
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assume each link temporally appears at a given time
instead of persistent existences (e.g., friend relation-
ships). They have different semantics and applica-
tions. Thus, neural network models for CTDNs do
not directly apply to DTDN tasks and vice versa.
Other similar tasks and methods. Graph gener-
ation (Leskovec et al., 2005; Wu et al., 2020; You
et al., 2018; Bojchevski et al., 2018) and comple-
tion (Shi and Weninger, 2018) cannot be applied in
our problem; they aim to generate dynamic graph
topologies without attributes, or fill out missing
information in a static graph.
Summary. There are numerous studies on time-
evolving attributed graphs, yet none studies holis-
tic time-evolving attributed graph prediction. In
addition, no prior study investigate task interdepen-
dence. Our work is the first to holistically predict
a future time-evolving graph including new node
appearance and analyze task interdependence.

7 Conclusion

We proposed AGATE, a framework for holistic
prediction on a time-evolving attributed graph that
exploits task interdependencem and uses a novel
method, PROSER, for predictions about new nodes
and their attributes. Our study showed that predic-
tion accuracy largely improves by exploiting task
interdependence.

8 Limitations

First, AGATE can handle DTDNs but does not han-
dle CTDNs. In addition, it currently handles neither
labeled nor directed edges. In the future, we intend
to extend AGATE to cover a more comprehensive
collection of graph types. Second, we assumed that
most new nodes have similar attributes to those of
new nodes at the previous time step, which were
observed in our preliminary experiments. We plan
to propose new strategies for the new node appear-
ance task. Third, we tuned the hyper-parameters
independently of models close to the input, so it
may not be the optimal combination of methods.
We plan to employ auto-ML techniques to enhance
performance and mitigate the learning process.
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A Full Sub Problem Definition

We define each sub-prediction task on existing
nodes. Note that existing works address some of
these sub-prediction tasks independently.

This group of tasks aims to predict graph struc-
ture and attributes on existing nodes. Such tasks
are frequently addressed in prior studies, such as
STGCN (Yu et al., 2018) and DynGEM (Goyal
et al., 2018):

SubProblem 3 (Lost nodes): Given time-
evolving attributed graph GT−L+1, . . . , GT across
L time steps, this sub-prediction task is to predict
the nodes V l

T+1 that are lost from VT .

SubProblem 4 (Link appearance): Given time-
evolving attributed graph GT−L+1, . . . , GT across
L time steps, this sub-prediction task is to predict
links appearing between any pair of nodes u, v ∈
VT , which also exist at time T + 1 and are not
connected at time step T .

SubProblem 5 (Link disappearance): Given
time-evolving attributed graph GT−L+1, . . . , GT

across L time steps, this sub-prediction task is
to predict links disappearing between any pair of
nodes u, v ∈ VT , which exist at time step T + 1
and are connected at time step T .

SubProblem 6 (Attribute values on existing
nodes): Given time-evolving attributed graph
GT−L+1, . . . , GT across L time steps, this sub-
prediction task is to predict a new attribute value
on an existing node at time T + 1.

B TGGNN

We develop TGGNN by extending from time-
directed convolution (Dauphin et al., 2016). We
design TGGNN as a node representation learn-
ing model taking into account the nature of sub-
prediction tasks: (1) sub-prediction tasks are in-
ductive, since test data graphs may be different
from those in the training data; (2) the topolo-
gies of graphs GT−L+1, . . . , GT may differ from
each other, hence we need to handle topological
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Figure 7: Number of nodes and edges per time step

changes as well as attribute changes. Thus, TG-
GNN supports inductive tasks on time-evolving
attribute graphs whose nodes, links, and node at-
tributes change dynamically.

While graph neural networks perform well on
node representation learning, they assume fixed
topologies, hence do not support time-evolving
graphs. We extend graph neural networks to
support induction on graphs with time-dependent
topologies and attributes. TGGNN learns node
embeddings in GT that capture topological and
attribute changes, informed by the local dynamic
graph structure, rather than the global static graph
structure; in particular, it aggregates embeddings
within each node’s k-hop neighborhood in all
observed time steps (GT−L+1, . . . , GT ) and cap-
tures node attributes by learning temporal attribute
changes as graph annotations (Li et al., 2016) inde-
pendently of graph structure.

TGGNN utilizes a suite of new gating
mechanisms, ST-Gate, which improves the ST-
Convolution Block (Yu et al., 2018) so as to handle
topological changes. ST-Gate first applies time-
directed convolution (Dauphin et al., 2016) on L
graphs and then aggregates hidden states of nodes
and their neighbors at each time step by GRU-like
updates (Cho et al., 2014). In parallel, it applies
time-directed convolution on graph annotations (Li
et al., 2016), which are initially concatenations of
node attributes over L time steps; then it aggregates
the embeddings of the aggregated hidden states and
the graph annotation and applies one more time-
directed convolution (Dauphin et al., 2016) on the
aggregated embedding.

The inputs to TGGNN are A ∈ Rn×L×d,H ∈
Rn×L×d̂ and E ∈Rn×L×n where n is the number of
nodes in the observed graphs and d̂ the hidden state
dimensions; A denotes a time-series of node at-
tributes, [XT−L+1; . . . ;XT ] as graph annotations,

where [; ] means concatenation; H and E denote
the hidden states and a time-series adjacency ma-
trix derived from {ET−L+1, . . . , ET }, respectively.
We initialize hidden state H(0) using A(0); we may
pad with extra 0s to allow hidden states that are
larger than the annotation size.

Let H(N) ∈ Rn×(L−2N(K−1))×d̂ be the hidden
state output of the N th ST-Gate, where K denotes
the kernel size of time-directed convolution oper-
ators in the ST-Gate. The final node embedding
output H(out) of TGGNN is calculated as:

H(out) = ϕ({(H(N)∗Γf+bf )⊗ σ(H(N)∗Γg+bg)}W+b)

where Γf , Γg ∈ R(L−2N(K−1))×d̂×d̂ are 1-
dimensional convolution operators for the final
embedding whose kernel size is L − 2N(K − 1)

and bf , bg ∈ Rd̂ are correspondence biases; ⊗
denotes the element-wise multiplication. W ∈
Rd̂×D, b ∈ RD are learnable weights and bias for
a linear transformation and ϕ denotes any of the
activation function suited for the prediction task;
D is the size of predicts (e.g., D = n on link pre-
diction). Since the TGGNN output is computed
from temporal graph structures and node attributes,
it captures the evolution of a dynamic attributed
graph.

C Dataset detail

Figure 7 shows the numbers of nodes and links
for each data set in each time step. In NBA and
AMiner, the numbers of nodes and edge increase,
whereas in Reddit, they are quite stable.

D Additional Experimental Study

D.1 Results for prediction of graph size

Table 3 shows a mean absolute error of baseline
and LSTM on the graph size prediction. LSTM
generally performs better than baseline; whereas,
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Figure 8: Reuse gain on link appearance prediction
(AUC).

baseline performs well when the size of graphs is
relatively stable.

Table 3: Mean absolute error of graph statistics predic-
tion. From left to right, the # of new nodes, the # of
lost nodes, the # of appeared links, the # of disappeared
links and the # of new links, respectively.

NBA Reddit AMiner
Baseline 12/10/122/115/189 43/31/2/10/38 512/-/-/-/5764
LSTM 11/ 8/108/101/180 33/67/3/42/11 618/-/-/-/3266

D.2 New node prediction (cont’d)
Table 4 shows results on the new node prediction
in three datasets. We can see that PROSER works
well on all the datasets.

D.3 Task interdependence analysis (cont’d)
Figures 8–12 show the difference between
AUC/average prediction of independent and reuse
predictions on node loss, link appearance, and link
disappearance predictions, respectively.

These results are similar tendencies to Figures 8–
12, respectively. The results of new node prediction
has also large impact in average precision as same
as AUC. The difference between the results of aver-
age precision and AUC is that the average precision
of LSTM in the link appearance prediction on Red-
dit significantly decreases. This indicates that the
reuse prediction in LSTM for the link appearance
prediction does not work well on Reddit. While,
we can see that the reuse prediction often performs
well in sub-prediction tasks in all datasets.

Figure 13 shows the impact of the number of
iterations on attribute/link on new nodes and at-
tribute prediction on existing nodes. From these
result, these predictions do not improve even if we
increase the number of iterations much.

D.4 Scalability
Figure 14 shows inference times on real graphs. All
methods take less than 10 seconds; TGGNN needs
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Figure 10: Reuse gain on node loss prediction (Average
precision)

slightly larger time than others, while PROSER ef-
ficiently predicts attributes of new nodes. Figure 15
shows the inference time on synthetic graphs gener-
ated by the BA model, varying with the number of
nodes. It is worth noting that the number of nodes
in the experimental studies of prior works is less
than 100,000. The inference time grows linearly
with the number of nodes. All methods we use for
lost and new node prediction are scalable to large
graphs. Contrariwise, predicting link appearances
and disappearances is inherently hard to scale for
all methods, as it requires prediction on all vertex
pairs.

In TGGNN, its architectural hyper parameters
have been optimized on the Reddit dataset and are
then reused for NBA. The time-directed convolu-
tion layers of TGGNN consists of filters whose
kernel size K = 2 (same as STGCN). The number
of aggregate updates by the propagation model is
five, which is the same number of times as the py-
torch implementation of GGNN for bAbI task 156.
ST-Gate is repeated one time. The hidden state’s
size d̂ is the same as attribute dimension.

E Hyper parameters

We describe hyper parameter tuning in each
method. Please see our source codes in detail. In

6https://github.com/chingyaoc/ggnn.pytorch
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Table 4: Results on new node attribute prediction; ‘mean’ indicates the matching similarity; underlined fonts indicate
the best results in independent prediction; bold fonts indicate the best results among both independent and reuse
predictions.

Methods NBA Reddit AMiner
mean median min max mean median min max mean median min max

Random 0.8143±0.00 0.8176±0.00 0.2055±0.00 1.0000±0.00 0.8317±0.00 0.8772±0.00 -0.2507±0.00 0.9947±0.00 0.9974±0.00 0.9983±0.00 0.9565±0.00 0.9998±0.00
FNN 0.7217±0.02 0.7650±0.02 0.2287±0.03 0.9004±0.02 0.7409±0.00 0.7876±0.01 -0.8723±0.01 0.9777±0.00 0.9904±0.00 0.9912±0.00 0.9779±0.00 0.9993±0.00
PointNet 0.6587±0.04 0.7075±0.03 0.2650±0.02 0.8337±0.04 0.6336±0.00 0.6016±0.00 -0.8697±0.00 0.9708±0.00 0.9915±0.00 0.9924±0.00 0.9792±0.00 0.9995±0.00
PROSER 0.8149±0.00 0.8164±0.00 0.2715±0.02 1.0000±0.00 0.8329±0.00 0.8780±0.00 0.0286±0.00 0.9947±0.00 0.9975±0.00 0.9984±0.00 0.9553±0.00 0.9998±0.00
AGATE 0.8280±0.00 0.8416±0.00 0.3775±0.01 0.9829±0.00 0.8513±0.00 0.8904±0.00 -0.0238±0.01 0.9948±0.00 0.9971±0.00 0.9979±0.00 0.9635±0.00 0.9998±0.00
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Figure 11: Reuse gain on link appearance prediction
(Average precision)
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Figure 12: Reuse gain on link disappearance prediction
(Average precision)

(a) attr./link prediction, new
nodes

(b) attribute prediction, exist.
nodes

Figure 13: Impact of reuse iterations.

all experiments, we run the model with 100–1000
training iterations, 10–100 early stopping patience,
1 or 2 batch sizes, and a learning rate of 0.01 with
Adam as the optimizer. For methods on temporal
graphs, we use 3, 3, and 5 as L for NBA, Reddit,
and Aminer, respectively.

For all models, the hidden state’s size is the same
as the node attribute dimension, only for LSTM is
three times the dimension of node attributes. The
output layer is a fully-connected layer for all mod-

els, and its activation function is a softmax for
multi-class classification, a sigmoid for binary clas-
sification, and none for regression.

The architecture and hyper parameters in Dyn-
GEM7, DEAL8, and EvolveGCN9 are the same to
the author’s implementation. The embedding size
of DynGEM is the same as the node attribute di-
mension. Hyper parameters in PointNet generally
follow the setting on original PointNet but we mod-
ify the number of units depending on input and
output sizes. FNN, LSTM, and GCN have a single
layer.

F Selected models of AGATE

We summarize the models that we use for evaluat-
ing AGATE. Tables 5–7 shows models that AGATE
uses in NBA, Reddit, and AMiner. We select mod-
els that achieve the best performance of validation
in each sub-prediction task. Each number is corre-
sponding to the task number in Figure 2. For the
task numbers 1–5, we use LSTM in all datasets.
The missing numbers (e.g., 11 in Table 6) are re-
gardless tasks to the datasets (e.g., attribute predic-
tion in Reddit). Each model has a small number
of parameters because its model architecture is not
complicated.

G Related work (cont’d)

Table 8 outlines a summary of existing methods,
categorized in four groups: (1) static embedding
methods (Tsitsulin et al., 2018), (2) dynamic em-
bedding methods (Goyal et al., 2018, 2020), (3)
static graph neural network methods (Kipf and
Welling, 2017; Li et al., 2016; Velickovic et al.,
2018; Hamilton et al., 2017; Zhang and Chen, 2018;
Hao et al., 2020), and (4) dynamic graph neural
network methods (Li et al., 2019; Xu et al., 2019;
Li et al., 2018; Yu et al., 2018; Sankar et al., 2020;
Pareja et al., 2020; Xu et al., 2021b).

Among existing methods, only
EvolveGCN (Pareja et al., 2020) predicts

7https://github.com/palash1992/DynamicGEM
8https://github.com/working-yuhao/DEAL
9https://github.com/IBM/EvolveGCN
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changes of nodes, links, and node attributes, hence
supports time-evolving attributed graphs, notwith-
standing new node appearances. TGGNN supports
what EvolveGCN supports, yet differs in two
ways. First, EvolveGCN uses graph convolutional
networks (GCNs) (Kipf and Welling, 2017); upon
a significant change in graph structure, GCNs can
neither recognize that a node may have a different
aggregation vector, nor distinguish nodes having
the same vector. EvolveGCN recursively updates
GCN weights using a recurrent neural network
(e.g., GRU and LSTM), yet retains the GCN
shortcomings. Contrariwise, TGGNN learns node
embeddings by aggregating hidden node vectors
within k hops at each time step, while computing
aggregation weights for hidden vectors. Second,
EvolveGCN incorporates node attributes in hidden
vectors at each time step, whereas TGGNN
captures temporal changes in node attributes via
graph annotations handled separately from graph
structure, enhancing attribute prediction accuracy.
In effect, TGGNN handles graph structure and
node attribute changes more effectively than
EvolveGCN.

EvoNet (Wu et al., 2020) and open-world
knowledge-graph (OWKG) completion (Shi and
Weninger, 2018) tackle problems different from
ours. EvoNet generates a future graph without cor-
respondences between nodes at different time steps.
OWKG completion predicts unseen nodes from the
text data of existing ones. Contrariwise, we track
evolving nodes without specifically relying on ad-

ditional text data; to our knowledge, no existing
method supports such a task.

Besides, some methods assume continuous-
time dynamic graphs that are continuously mod-
ified (Rossi et al., 2020; Xu et al., 2020; Kumar
et al., 2019; Nguyen et al., 2018; Bastas et al.,
2019; Trivedi et al., 2019); however, methods for
continuous-time graphs do not support discrete-
time graphs, and vice versa.
Discrete vs Continuous. In this study, we assume
discrete-time dynamic network (DTDN) as time-
evolving graphs, while continuous-time dynamic
network (CTDN) have been actively studied re-
cently (Nguyen et al., 2018; Qu et al., 2020; Dai
et al., 2017; Kumar et al., 2019; Trivedi et al., 2019;
Liu et al., 2022; Wang et al., 2021). CTDNs are
represented by a sequence of temporal graph up-
dates instead of a sequence of temporal graphs.
CTDNs are often used for event-based graphs (e.g.,
e-commerce and message communication) as they
assume each link temporally appears at a given
time instead of persistent existences (e.g., friend re-
lationships). They have different semantics and ap-
plications. For example, current models for CTDNs
do not handle node attribute changes and disappear-
ances of persistent edges, and models for DTDNs
do not directly handle continuous time informa-
tion on edges. Thus, neural network models for
CTDNs do not directly apply to DTDN tasks and
vice versa. It is possible to use CTDN methods
for link appearance tasks on DTDNs after DTDNs
change to CTDNs (with ignoring either temporary
or persistent edges) unless datasets have node at-
tribute changes and disappearances of links. In the
holistic time-evolving attributed graph prediction
problem, graphs have node attribute changes and
disappeared links, so CTDN methods are inappli-
cable to the problem.
Other similar tasks and methods. Tasks such as
graph generation (Leskovec et al., 2005; Wu et al.,
2020; You et al., 2018; Bojchevski et al., 2018) and
completion (Shi and Weninger, 2018) cannot be
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applied in our study, as those problem definitions
are different from our problem; rather than predict-
ing the evolution of a time-evolving graph, they
aim to generate learned dynamic graph topologies
without considering attributes instead of predicting
the future graph, or fill out missing information
in a static graph. Multi-task learning (Tran, 2018)
can be incorporated into AGATE. It is unsure what
time-evolving attributed graph tasks should be ad-
dressed by a single model yet.
Summary. There are numerous studies on time-
evolving attributed graphs, yet no one studies the
holistic time-evolving attributed graph prediction
problem. In addition, there are no studies that in-
vestigate task interdependence. Our work is the
first to holistically predict a future time-evolving
graph including new node appearance and analyze
task interdependence.
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Table 5: Methods used in AGATE of NBA Dataset
Independent prediction

Task number 6 7 8 9 10
11

team
(transfer or not)

team
(which team)

position points age

Method PROSER DEAL TGGNN GCN DynGEM TGGNN GCN Baseline LSTM TGGNN
Reuse prediction

Task number 12
13

14
15

existing new
team

(transfer or not)
team

(which team)
position points age new

Method TGGNN FNN DEAL DynGEM TGGNN GCN Baseline LSTM Baseline LSTM

Table 6: Methods used in AGATE of Reddit Dataset
Independent prediction Reuse prediction

Task number 6 7 8 9 10 12 13 14 15
existing new

Method PROSER DEAL TGGNN LSTM LSTM STGCN TGGNN DEAL LSTM FNN

Table 7: Methods used in AGATE of AMiner Dataset
Independent prediction Reuse prediction

Task number 6 7 13 15
Method PROSER DEAL DEAL FNN

Table 8: A summary of existing works and their characteristics.

methods
graph property inference prediction target

attribute temporal notation transductive inductive attribute appearance
link

disappearance
link

lost
node

new
node

em
be

dd
in

g

VERSE (Tsitsulin et al., 2018) ✘ static G = (V,E) ✔ ✘ ✘ ✔ ✔ ✔ ✘

G2G (Bojchevski and Günnemann, 2018) ✔ static G = (V,E,X) ✔ ✔ ✘ ✔ ✔ ✔ ✘

GraphSAINT (Zeng et al., 2020) ✔ static G = (V,E,X) ✔ ✔ ✘ ✔ ✔ ✔ ✘

DynGEM (Goyal et al., 2018) ✘ dynamic Gt = (Vt, Et) ✔ ✘ ✘ ✔ ✔ ✔ ✘

dyngraph2vec (Goyal et al., 2020) ✘ dynamic Gt = (Vt, Et) ✔ ✘ ✘ ✔ ✔ ✔ ✘

gr
ap

h
ne

ur
al

ne
tw

or
k

GCN (Kipf and Welling, 2017) ✔ static G = (V,E,X) ✔ ✘ ✘ ✔ ✔ ✔ ✘

GGNN (Li et al., 2016) ✔ static G = (V,E,X) ✔ ✔ ✘ ✔ ✔ ✔ ✘

GAT (Velickovic et al., 2018) ✔ static G = (V,E,X) ✔ ✔ ✘ ✔ ✔ ✔ ✘

GraphSAGE (Hamilton et al., 2017) ✔ static G = (V,E,X) ✔ ✔ ✘ ✔ ✔ ✔ ✘

SEAL (Zhang and Chen, 2018) ✔ static G = (V,E,X) ✔ ✘ ✘ ✔ ✘ ✘ ✘

DEAL (Hao et al., 2020) ✔ static G = (V,E,X) ✔ ✔ ✘ ✔ ✘ ✘ ✘

SAPE (Li et al., 2019) ✔ dynamic Gt = (V,Et, Xt) ✔ ✘ ✘ ✘ ✔ ✘ ✘

STAR (Xu et al., 2019) ✔ dynamic Gt = (V,Et, Xt) ✔ ✘ ✔ ✔ ✔ ✔ ✘

DCRNN (Li et al., 2018) ✔ dynamic Gt = (V,E,Xt) ✔ ✘ ✔ ✔ ✔ ✔ ✘

STGCN (Yu et al., 2018) ✔ dynamic Gt = (V,E,Xt) ✔ ✘ ✔ ✔ ✔ ✔ ✘

TRRN (Xu et al., 2021b) ✔ dynamic Gt = (V,Et, Xt) ✔ ✘ ✔ ✔ ✔ ✔ ✘

DySAT (Sankar et al., 2020) ✘ dynamic Gt = (Vt, Et) ✔ ✔ ✘ ✔ ✔ ✔ ✘

DANE (Li et al., 2017) ✔ dynamic Gt = (Vt, Et, Xt) ✔ ✘ ✔ ✘ ✘ ✔ ✘

EvolveGCN (Pareja et al., 2020) ✔ dynamic Gt = (Vt, Et, Xt) ✔ ✔ ✔ ✔ ✔ ✔ ✘

ou
rs

TGGNN ✔ dynamic Gt = (Vt, Et, Xt) ✔ ✔ ✔ ✔ ✔ ✔ ✘

PROSER ✔ dynamic Gt = (Vt, Xt) ✔ ✔ ✔ ✘ ✘ ✘ ✔

AGATE ✔ dynamic Gt = (Vt, Et, Xt) ✔ ✔ ✔ ✔ ✔ ✔ ✔
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� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Not applicable. Left blank.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

13694


