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Abstract

Prior works on joint Information Extraction
(IE) typically model instance (e.g., event trig-
gers, entities, roles, relations) interactions by
representation enhancement, type dependen-
cies scoring, or global decoding. We find that
the previous models generally consider binary
type dependency scoring of a pair of instances,
and leverage local search such as beam search
to approximate global solutions. To better inte-
grate cross-instance interactions, in this work,
we introduce a joint IE framework (CRFIE)
that formulates joint IE as a high-order Condi-
tional Random Field. Specifically, we design
binary factors and ternary factors to directly
model interactions between not only a pair of
instances but also triplets. Then, these factors
are utilized to jointly predict labels of all in-
stances. To address the intractability problem
of exact high-order inference, we incorporate
a high-order neural decoder that is unfolded
from a mean-field variational inference method,
which achieves consistent learning and infer-
ence. The experimental results show that our
approach achieves consistent improvements on
three IE tasks compared with our baseline and
prior work.

1 Introduction

Information extraction (IE) has long been consid-
ered a fundamental challenge for various down-
stream natural language understanding tasks, such
as knowledge graph construction and reading com-
prehension, etc. The goal is to identify and extract
structured information from unstructured natural
language text, such that both users and machines
can easily comprehend the entities, relations, and
events within the text.

Typically, IE consists of a series of different
tasks to recognize entities, connect coreferences,
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extract relations, detect events, and so on. Con-
ventional IE schemes commonly treat different IE
tasks separately, while neglecting cross-instance
(e.g., event triggers, entities, roles, relations) or
cross-task dependencies. Such isolated learning
and inference schemes lead to severely insufficient
knowledge capturing and inefficient model con-
structions. Intuitively, predictions of different IE
instances from the same or different tasks can influ-
ence each other. For example, a relation between
two entities would restrict the types of the entities
(e.g., two entities linked by a PART-WHOLE relation
are more likely to share entity types of the same
nature, as shown in the first example of Figure 1);
types of entities can provide information that is use-
ful to predict their relations or limit the roles they
play in certain events (e.g., the knowledge of event
Life:Die and entity PER can benefit the prediction
of the role Victim, as shown in the second example
of Figure 1 ).

To effectively capture instance or task depen-
dencies, joint IE tries to simultaneously predict
instances of different IE tasks for an input text with
a multitask learning scheme, which attracts lots of
interest and demonstrates significant improvements
over specific-task learning methods. Previous work
of joint IE focuses on three directions: 1) repre-
sentation enrichment by sharing the token encoder
between different IE tasks (Luan et al., 2018), up-
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dating shared span representations according to
local task-specific predictions (Luan et al., 2019a;
Wadden et al., 2019), creating dependency graphs
between instances (Lin et al., 2020; Zhang and Ji,
2021; Van Nguyen et al., 2021), or leveraging ex-
ternal dependency relations such as abstract mean-
ing representation (AMR) and syntactic structures
(Zhang and Ji, 2021; Van Nguyen et al., 2022a); 2)
type dependency scoring by forming type patterns
constraints (Lin et al., 2020), designing type de-
pendency graphs (Van Nguyen et al., 2021), learn-
ing transition matrix of type pairs (Van Nguyen
et al., 2022a), or computing mutual information
(MI) scores of each pair of types (Van Nguyen et al.,
2022b); 3) global decoding by beam search accord-
ing to global features or AMR graphs (Lin et al.,
2020; Zhang and Ji, 2021), or adopting global op-
timization algorithms such as simulated annealing
(Van Nguyen et al., 2022a). Our interest lies in the
second and third directions and we find two main
limitations of prior works. The first one is that they
only score binary dependencies of instance types
(i.e. constraint, transition, or MI scores between a
pair of types). The second one is that their decoders
are based on discrete local search strategies to ap-
proximate global optima, and they often employ
different approximate strategies for inference and
training.

To alleviate aforementioned limitations, we pro-
pose a novel joint IE framework, Information
Extraction as high-order CRF (CRFIE), that ex-
plicitly models label correlations between differ-
ent instances from the same or different tasks,
and utilizes them to calculate a joint distribution
for final instance label predictions. Specifically,
we demonstrate the effectiveness of our proposed
high-order framework on three widely-explored IE
tasks: entity recognition (EntR), relation extrac-
tion (RelE) and event extraction (EventE). We for-
mulate the three tasks as a unified graph prediction
problem, further modeled as a high-order Condi-
tional Random field (CRF) (Ghamrawi and Mc-
Callum, 2005), where variables contain node vari-
ables and edge variables representing trigger/entity
instances and role/relation instances respectively.
The term “high-order” refers to factors connect-
ing two or more correlated variables. Beyond the
unary (first-order) factor, we design not only the
binary (second-order) factor to model the interac-
tions between a pair of edge variables but also the
ternary (third-order) factor to model the interac-

tions between node-edge-node variables. Since the
correlated instances may come from the same or
different tasks, we categorize our high-order fac-
tors into two types: homogeneous factors (homo)
representing correlations between instances of the
same task, and heterogeneous factors (hete) rep-
resenting correlations between instances of differ-
ent tasks. Taking EntR and EventE as an exam-
ple, we calculate binary factor potentials of role-
role pairs (homo), and ternary factor potentials of
trigger-role-entity triplets (hete). We leverage these
scores to predict the labels of all instances jointly.
Since exact high-order inference is analytically in-
tractable, we incorporate a neural decoder that is
unfolded from the approximate Mean-Field Varia-
tional Inference (MFVI) (Xing et al., 2012) method,
which achieves end-to-end training and also con-
sistent inference and learning processes. Note that
MFVI can be seen as a continuous relaxation for
CRF inference (Lê-Huu and Alahari, 2021), which
can often be more effective than discrete optimiza-
tion used in previous work. Experiments on joint
IE tasks show that CRFIE achieves competitive or
better performance compared with previous state-
of-the-art models1.

2 Method

2.1 Overview of Joint IE as Graph Prediction
We investigate three widely-explored IE tasks.
� EntR aims to identify some spans in a sentence
as entities and label their entity types.
� RelE aims to identify relations between some
entity pairs and label their relation types.
� EventE aims to label event types and its trigger
words, identify some entities as event arguments
and label argument roles.

We formulate the three IE tasks as a graph G =
(V,E) prediction task, where V denotes the node
set and E denotes the directed edge set. Each node
v = (a, b, l) ∈ V is a span for a trigger or an entity,
where a and b index the start and end words of
the span, and l ∈ Levent or l ∈ Lentity denotes the
node’s event type or entity type, respectively. Each
edge eij = (i, j, r) ∈ E represents the relationship
from node vi to node vj , and r ∈ Rrole or r ∈
Rrelation represents the edge label which is a role
type when the edge is from a trigger to an entity
(as an argument) or a relation type when the edge
is from one entity to another.

1The code can be found at https://github.com/JZXXX/
High-order-IE.
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Figure 2: An overview of CRFIE. (A) Model architecture. The identification module provides spans as nodes to
the node/edge labeling module. (B) An example factor graph of our node/edge labeling module containing variables
representing three nodes and three edges. Xi indicates the label variable of the i-th node vi and Xij indicates the
label variable of the edge eij from the vi to vj . The node labels can be event types or entity types (i.e., Xi is the
abbreviation of Xntask

i for simplicity and ntask ∈ {event, entity}). The edge labels can be relations or argument
roles (i.e., Xij is the abbreviation of Xetask

ij and etask ∈ {relation, role}). For simpler illustration, we omit edges
of the opposite direction.

Figure 2(A) depicts the overall architecture of
CRFIE. Because joint identification and classifica-
tion need to enumerate all possible spans as nodes
and high-order inference whose complexity is re-
lated to the node number becomes too computa-
tionally expensive in this situation, we follow pre-
vious work (Lin et al., 2020; Zhang and Ji, 2021;
Van Nguyen et al., 2021, 2022a) and adopt the fol-
lowing pipeline: first extracting graph nodes with a
node identification module, and then predicting la-
bels of nodes and edges with a node/edge labeling
module.

The node identification module aims to identify
spans in the input sentence as graph nodes. This
module is not the focus of our work, so we sim-
ply follow previous work (Lample et al., 2016a;
Lin et al., 2020; Zhang and Ji, 2021; Van Nguyen
et al., 2021) to formulate node identification as a
sequence labeling task with a BIO scheme. Specifi-
cally, after getting word features by averaging all
sub-word embeddings extracted from a pre-trained
transformer-based encoder, such as BERT (Devlin
et al., 2018), we use two vanilla linear-chain condi-
tional random field (CRF) (Lafferty et al., 2001) as
decoders to acquire trigger nodes and entity nodes
separately. We follow the conventional joint IE
settings without considering nested spans. More
advanced methods such as Yu et al. (2020); Lou
et al. (2022) can be adopted to identify graph nodes
if span nesting needs to be considered. More de-
tails about the identification module can be found
in Appendix A. The identification module is fixed
during subsequent training of the node/edge label-
ing module.

The node/edge labeling module is designed to
predict (i) an event type for each trigger node and
an entity type for each entity node and (ii) a role
type for each edge between a trigger-entity pair
and a relation type for each edge between an entity-
entity pair. We use a special NULL label to repre-
sent non-existence of an edge. We formulate the
node/edge labeling module as a high-order CRF,
illustrated as a factor graph in Figure 2(B). There
are three kinds of factors: unary factors that reflect
the likelihood of each variable’s label; binary fac-
tors for pairs of edges sharing an endpoint, which
models correlations between edge variables; and
ternary factors for an edge, its head node and its
tail node, which models correlations between re-
lated node and edge variables. The joint probability
over all the variables is proportional to the expo-
nentiated sum of all the score function values of
such factors. Due to the intractability of exact high-
order inference, we use MFVI to approximate it. A
multitask learning scheme is adopted to train our
node/edge labeling module. We describe the scor-
ing functions, high-order inference, and learning
method in the following subsections in detail.

2.2 Unary Scoring

We first obtain each node’s representation z by av-
eraging the representations of all the words within
a span, in which the words’ representations are ob-
tained in the same way as in the identification mod-
ule, but from another pre-trained transformer-based
encoder. Then, the unary scores of the i-th node
labels su-ntask

i ∈ R|Lntask| can be obtained by feed-
ing zi into a two layers task-specific feed-forward
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neural network (FNN):

su-ntask
i =FNNntask(zi), (1)

where Lntask represents a task-specific node label
set, and ntask ∈ {event, entity}.

The unary scores su-etask
ij of an edge eij from vi

to vj can be computed with a decomposed biaffine
function:

su-etask
ij =(FNNetask-s(zi) ◦ FNNetask-e(zj))H

u-etask

where two task-specific FNNs are single-layer,
Hu-etask∈Rdetask×|Retask| is parameters, Retask repre-
sents a task-specific edge label set that includes an
additional NULL label, etask ∈ {relation, role},
and ◦ denotes element-wise product.

2.3 Binary Scoring

We calculate binary correlation scores of each legal
edge pair that share one endpoint. As illustrated in
Figure 2(A), there are three types of binary factors
(Wang et al., 2019b): edge eij and edge eik share
the head node vi, producing sibling (sib); edge ejk
and edge eik share the tail node vk, producing co-
parent (cop); and the tail node vj of edge eij is
the head node of edge ejk, producing grandparent
(gp). For each specific type of binary factor, we
use different single-layer FNNs taking z as input
to calculate a head representation (-s) and a tail
representation (-e) for each node. For gp factor,
we additionally calculate a middle representation
(-mid) for each node.

gtype-s
i =FNNtype-s(zi) gtype-e

i =FNNtype-e(zi)

g
gp-mid
i =FNNgp-mid(zi) type∈{sib, cop, gp}

For a sib pair {eij , eik}, cop pair {eik, ejk} and gp
pair {eij , ejk}, suppose that the first edge has label
rm ∈ R1 and the second edge has label rn ∈ R2,
we formulate binary scores as follows:

sb-sib
ijkmn=

∑d3

a=1
(gsib-s

i ◦gsib-e
j ◦gsib-e

k ◦h1
m◦h2

n)a

s
b-cop
ijkmn=

∑d3

a=1
(g

cop-s
i ◦gcop-s

j ◦gcop-e
k ◦h1

m◦h2
n)a

s
b-gp
ijkmn=

∑d3

a=1
(g

gp-s
i ◦ggp-mid

j ◦ggp-e
k ◦h1

m◦h2
n)a

where h1
m is the embedding of the first edge label

rm and h2
n is the embedding of the second edge

label rn. All g and h are d3-dimensional. For
symmetry, sb-sib

ijkmn ≡ sb-sib
ikjnm and s

b-cop
ijkmn ≡ s

b-cop
jiknm.

In this paper, we consider two types of homoge-
neous binary factors: homo case (i) sib and cop rep-
resenting two argument roles (R1 = R2 = Rrole)
and homo case (ii) sib, cop and gp representing
two relations (R1 = R2 = Rrelation). We also
consider one type of heterogeneous binary fac-
tors: hete case (i) cop and gp where one edge
label is a relation and the other is a role for joint
EventE and RelE (R1 = Rrelation,R2 = Rrole or
R1 = Rrole,R2 = Rrelation).2

2.4 Ternary Scoring

We calculate ternary correlation scores of an edge
and its two endpoints. Similar to binary scoring, we
use two new FNNs to produce representations for
each possible head node and tail node respectively:

gter-s
i = FNNter-s(zi) gter-e

i = FNNter-e(zi)

For an edge with label rm ∈ R, its head node vi
having label lp ∈ Ls and its tail node vj having
label lq∈Le, the ternary score is calculated as:

ster
ijpqm=

∑d4

a=1
(gter-s

i ◦gter-e
j ◦eter-s

p ◦eter-e
q ◦hter

m )a
(2)

where hter
m is the embedding of label rm, eter-s

p is
the embedding of label lp and eter-e

q is the embed-
ding of label lq. g, e and h are all d4-dimensional.
We consider two types of heterogeneous ternary
factors: hete case (ii) the ternary correlations be-
tween an event trigger, an entity, and a role for
joint EventE and EntR (Ls = Levent, R = Rrole

and Le = Lentity ) and hete case (iii) two en-
tities and their relation for joint RelE and EntR
(Ls = Le = Lentity and R = Rrelation).

2.5 High-Order Inference

In contrast to first-order inference which indepen-
dently predicts the value of each variable by maxi-
mizing its unary score, in high-order inference we
jointly predict the values of all the variables to max-
imize the sum of their unary and high-order scores.
However, the exact joint inference on our factor
graph is NP-hard in general. Therefore, we use
Mean-Field Variational Inference (MFVI) (Xing
et al., 2012) for approximate inference. MFVI iter-
atively updates an approximate posterior marginal
distribution Q(X) of each variable X based on

2It is rare that a trigger word serves as an argument mean-
while, and a relation edge and a role edge scarcely share the
same head node, so we do not consider gp in homo case (i)
and sib in hete case (i).
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messages from all the factors connected to it. For
simplicity, we write Qi(l) and Qij(r) to denote
Q(Xi = l) and Q(Xij = r) respectively.

Messages for edge variables aggregated from
binary factors are calculated as:

F
(t)
bi (Xij = rm) =

∑
k ̸=i,j

∑
rn∈R2

α1s
sib
ijkmnQ

(t)
ik (rn) + α2s

cop
ikjmnQ

(t)
kj (rn)

+ α3

(
s

gp
ijkmnQ

(t)
jk (rn) + s

gp
kijmnQ

(t)
ki(rn)

)

where α1, α2, α3 ∈ [0, 1] are hyper-parameters
controlling the scale of messages passed by the
different types of binary factors. These hyper-
parameters are not part of standard MFVI and can
instead be seen as part of the scoring function.

Messages for node variables and edge variables
aggregated from ternary factors are calculated as:

F
(t)
ter (Xij = rm)

=
∑

lp∈Ls

∑

lq∈Le

ster
ijpqmQ

(t)
i (lp)Q

(t)
j (lq)

F
(t)
ter (Xi = lp)

=
∑

lq∈Le

∑

rm∈R
ster
ijpqmQ

(t)
j (lq)Q

(t)
ij (rm)

F
(t)
ter (Xj = lq)

=
∑

lp∈Ls

∑

rm∈R
ster
ijpqmQ

(t)
i (lp)Q

(t)
ij (rm)

The posterior Q(X) is updated based on the mes-
sages as follows:

Q
(t+1)
ij (rm) ∝ exp{su-etask

ijm

+ α4F
(t)
bi (Xij = rm) + α5F

(t)
ter (Xij = rm)}

Q
(t+1)
i (lp) ∝ exp{su-ntask

ip +α6F
(t)
ter (Xi = lp)}

Q
(t+1)
j (lq) ∝ exp{su-ntask

jq +α7F
(t)
ter (Xj = lq)}

where all α ∈ [0, 1] are hyper-parameters control-
ling the scale of different types of messages, su-etask

ijm

is the m-th element of the unary potential su-etask
ij ,

su-ntask
ip is the p-th element of the unary potential
su-ntask
i and su-ntask

jq is the q-th element of su-ntask
j .

There are two ways of iterative MFVI update. In
the synchronous update, we update Q(X) for all
the variables at each step. In asynchronous update,
we alternate between node variables and edge vari-
ables for Q(X) update. We empirically find that
asynchronous update is better than synchronous
update when we use ternary factors in some cases.

The initial distribution Q(0) is set by normaliz-
ing exponentiated unary potentials. After a fixed T
(which is a hyper-parameter) number of iterations,
we obtain the posterior distribution Q(T ). For each
variable, we pick the label with the highest proba-
bility according to Q(T ) as our prediction.

2.6 Multitask Learning
Given a sentence w = (w1, ..., wk), to train mul-
tiple IE tasks with our unified high-order node-
relation prediction framework, we do multi-task
learning with cross-entropy losses as follows:

L =−
∑

i

logP (X̂ntask
i |w)

−
∑

i,j

logP (X̂etask
ij |w)

where X̂ntask
i and X̂etask

ij denote the ground truth
labels of nodes and edges respectively for all the
tasks. The conditional distributions over node la-
bels and edge labels with first-order inference are

P (Xntask
i |w) = (SoftMax(su-ntask

i ))Xntask
i

P (Xetask
ij |w) = (SoftMax(su-etask

ij ))Xetask
ij

and those with high-order inference are:

P (Xntask
i |w) = Q

(T )
i (Xntask

i )

P (Xetask
ij |w) = Q

(T )
ij (Xetask

ij ).

where Q(T ) is computed with T MFVI iterations.
Inspired by Zheng et al. (2015); Wang et al.

(2019b), we unfold the MFVI iteration steps as
recurrent neural network layers parameterized by
unary and high-order scores. As such, we obtain an
end-to-end recurrent neural network for both infer-
ence and training. Doing this has an added benefit
of consistent inference and training, unlike tradi-
tional CRF approaches that may rely on different
approximation methods for inference and training
(see for example Van Nguyen et al. (2022a)).

3 Experiments

Datasets We evaluate our model on the ACE2005
corpus (Walker et al., 2005) which provides en-
tity, relation, and event annotations. Following
Lu et al. (2021); Lin et al. (2020); Wadden et al.
(2019), we conduct experiments on four English
datasets: ACE05-R for EntR and RelE, ACE05-E
for EntR and EventE, and ACE05-E+ and ERE-
EN for all the three tasks, with the same data
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pre-processing and train/dev/test split. There are
7 entity types, 6 relation types, 33 event types,
and 22 argument roles defined in the ACE2005
corpus. ERE-EN dataset is extracted by combin-
ing the data from three datasets for English (i.e.,
LDC2015E29, LDC2015E68, and LDC2015E78)
that are created under Deep Exploration and Filter-
ing of Test (DEFT) program. It includes 7 entity
types, 5 relation types, 38 event types, and 20 ar-
gument roles. Statistics of all datasets we used are
shown in Tabel 1.

Split #Sents #Entities #Relations #Events

ACE05-R
Train 10,051 26,473 4,788 -
Dev 2,424 6,362 1,131 -
Test 2,050 5,476 1,151 -

ACE05-E
Train 17,172 29,006 4,664 4,202
Dev 923 2,451 560 450
Test 832 3,017 636 403

ACE05-E+
Train 19,216 47,525 7,152 4,419
Dev 902 3,422 728 468
Test 676 3,673 802 424

ACE05-CN
Train 6841 29657 7934 2926
Dev 526 2250 596 217
Test 547 2388 672 190

ERE-EN
Train 14736 39501 5054 6208
Dev 1209 3369 408 525
Test 1163 3295 466 551

Table 1: Datasets statistics

Evaluation We use F1 scores to evaluate our
model’s performance as in most previous work
(Lu et al., 2021; Lin et al., 2020; Wadden et al.,
2019; Zhang and Ji, 2021). For the EntR task, an
entity (Ent) is correct if both its type and offsets
match a gold entity. For the RelE task, a relation
(Rel) is correct if both its type and the offsets of
its two related entities match a gold relation. In
addition, a strict relation evaluation (Rel+) requires
that the types of the two related entities are also
correct. A trigger is correctly identified (Trig-I)
if its offsets match a gold trigger. It is correctly
classified (Trig-C) if its corresponding event type
also matches the reference trigger. An argument
is correctly identified (Arg-I) if its offsets match
a gold argument and its corresponding event type
is correct. It is correctly classified (Arg-C) if its
role type also matches the reference argument. All
experimental results of our approach shown in this
paper are the average of three runs with different
random seeds.

Implementation Details For fair comparison
with previous state-of-the-art systems, we use the
BERT-large-cased model (Devlin et al., 2018) or

Ent Tri-I Tri-C Arg-I Arg-C
DYGIE++ (Wadden et al., 2019)† 89.7 - 69.7 53.0 48.8
Zhang et al. (2019)◦ 87.1 73.9 72.0 57.2 52.4
OneIE (Lin et al., 2020)† 90.2 78.2 74.7 59.2 56.8
Text2Event (Lu et al., 2021)∗ - - 71.9 - 53.8
FourIE (Van Nguyen et al., 2021)† 91.3 78.3 75.4 60.7 58
FourIE (Van Nguyen et al., 2021)‡ 91.6 - 74.9 - 58.7
CRFIE baseline† 90.8 77.7 74.8 58.5 56.4
CRFIE homo case (i)† 90.8 77.7 74.6 58.7 57.1
CRFIE hete case (ii)† 90.7 77.7 74.3 59.2 57.2
CRFIE homo case (i) + hete case (ii)† 90.6 77.7 74.3 59.6 57.5
CRFIE baseline‡ 91.5 77.2 73.6 60.8 58.1
CRFIE homo case (i)‡ 91.4 77.2 73.5 61.3 58.8
CRFIE hete case (ii)‡ 91.7 77.2 73.7 61.9 59.4
CRFIE homo case (i) + hete case (ii)‡ 91.5 77.2 73.8 61.9 59.1

FOR REFERENCE

AMRIE (Zhang and Ji, 2021)‡ 92.1 78.1 75 60.9 58.6
GraphIE (Van Nguyen et al., 2022a)‡ 91.4 - 75.1 - 59.4

Table 2: Average F1 on ACE05-E dataset. ◦, ∗,
†, ‡ mean ELMo, T5-large, BERT-large-cased and
RoBERTa-large encoder, respectively. The results of
FourIE (RoBERTa) are from Van Nguyen et al. (2022a).
The results of AMRIE and GraphIE are listed for refer-
ence because they use external resources (AMR graph
and syntactic tree).

RoBERTa model (Liu et al., 2019) as our encoder
for the ACE05-E and ACE05-E+ datasets, and AL-
BERT model (Lan et al., 2019) as the encoder for
the ACE05-R dataset. We train our model with
BertAdam optimizer3. When we use a single kind
of factor, α is set to 1 for the used and set to 0 for
others. When multiple kinds of factors are used, α
of the used are tunable parameters. Detailed hyper-
parameter values are provided in Appendix B.

3.1 Main Results

We take our framework with first-order inference
(i.e., independently predicting the value of each
variable by maximizing its unary score) as CRFIE
baseline. It can be seen that our baseline performs
better than previous work in some cases, which ben-
efits from the biaffine function in calculating unary
scores. We experiment with different combinations
of tasks.

Joint EntR, EventE We compare our approach
under different settings and also with previous work
that did not leverage gold triggers and entities. Ta-
ble 2 shows the experimental results. The cases in
the table (e.g., homo case (i)) are corresponding
to the aforementioned settings in the subsections
2.3 and 2.4. The F1 scores of Tri-I of different
settings are the same because they are produced by
the same node identification module that is fixed to
fairly compare our model in different settings.

3https://github.com/huggingface/transformers
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Ent Rel Rel+
DYGIE++ (Wadden et al., 2019)† 88.6 63.4 -
OneIE (Lin et al., 2020)† 88.8 67.5
Wang and Lu (2020)∆ 89.5 67.6 64.3
PUREs (Zhong and Chen, 2020)∆ 89.7 69.0 65.6
UNIRE (Wang et al., 2021)∆ 90.2 - 66.0
PFN (Yan et al., 2021)∆ 89.0 - 66.8
FourIE (Van Nguyen et al., 2021)† 88.9 68.9 -
UIE (Lu et al., 2022)∗ - - 66.1
CRFIE baseline∆ 89.8 69.9 67.5
CRFIE homo case (ii)∆ 90.2 70.8 68.2
CRFIE hete case (iii)∆ 90.1 70.4 68.3

FOR REFERENCE

GraphIE (Van Nguyen et al., 2022a)‡ 89.3 68.5 -
PUREc (Zhong and Chen, 2020)∆ 90.9 69.4 67.0
PL-Markerre-eval (Ye et al., 2022)∆ 91.3 72.5 70.5

Table 3: Average F1 on ACE05-R dataset. Subscript
of re-eval means re-evaluation (Appendix F) using the
standard evaluation method as other work. ∗, †, ‡ and
∆ mean T5-large, BERT-large-cased, RoBERTa-large
and ALBERT-XXLarg-v1, respectively. PUREs refers
to the PURE model with single-sentence features. The
results of PUREc and PL-Marker are listed for reference
because they use cross-sentence features and are not
directly comparable with other models. The reason for
GraphIE listed for reference is the same as in Tabel 2.

ACE05-E+ Ent Rel Tri-I Tri-C Arg-I Arg-C
OneIE Lin et al. (2020) 89.6 58.6 75.6 72.8 57.3 54.8
Text2Event Lu et al. (2021)∗ - - - 71.8 - 54.4
FourIE (Van Nguyen et al., 2021) 91.1 63.6 76.7 73.3 59.5 57.5
UIE Lu et al. (2022)∗ - - - 73.4 - 54.8
GTEE-DYNPREF Liu et al. (2022) - - - 74.3 - 54.7
CRFIE baseline 90.8 65.3 77.4 74.6 60.0 58.1
CRFIE hete case (i) 90.7 65.1 77.4 74.8 60.3 58.5
CRFIE all 90.9 65.8 77.4 75.5 60.8 58.8

FOR REFERENCE
GraphIE (Van Nguyen et al., 2022a) 91.0 65.4 - 74.8 - 59.9

ERE-EN Ent Rel Tri-I Tri-C Arg-I Arg-C
OneIE Lin et al. (2020) 86.3 52.8 66.0 57.1 43.7 42.1
CRFIE baseline‡ 87.6 54.4 69.9 61.5 45.9 44.2
CRFIE all‡ 87.4 55.1 69.9 61.4 53.5 51.2

FOR REFERENCE
AMRIE (Zhang and Ji, 2021)‡ 87.9 55.2 68 61.4 46.4 45.0

Table 4: Average F1 on ACE05-E+ and ERE-EN
datasets. ∗ means T5-large, ‡ means RoBERTa-large.
Others without mark use BERT-large-cased. The rea-
son for reference is the same as in Table 2. We do not
compare FourIE and GraphIE on ERE-EN dataset be-
cause their splittings of train/dev/test are different from
ours. The results of previous work on ERE-EN are from
Zhang and Ji (2021).

It can be seen that our high-order model per-
forms better than our baseline in most cases for
EventE, which directly shows the benefit of high-
order factors. Compared to previous SOTA, our
model performs uncompetitive on Tri-I, because
we focus on the interactions of node/edge labeling,
and we did not tune the hyper-parameters of the
node identification module while just keeping them
the same as Lin et al. (2020). Even with an unsatis-

factory identification module, the results of Arg-C
which is the most difficult sub-task in EventE show
that CRFIE achieves consistent improvement. It
is worth noting that CRFIE with learned depen-
dencies can achieve comparable performance with
those models (Zhang and Ji, 2021; Van Nguyen
et al., 2022a) leveraging external syntactic or se-
mantic dependencies. It is surprising that when we
use both binary factors (homo case (i) )and ternary
factors (hete case (ii)) in the RoBERTa setting, the
performance slightly drops. The reason may be
that messages from different types of factors may
conflict with each other, such that training becomes
more difficult. We also experiment in the case
where gold triggers and entities are given, results
are shown in Appendix C.

Joint EntR and RelE Table 3 shows our exper-
imental results on the ACE05-R dataset. We can
find that CRFIE performs better than most previ-
ous work and our baseline both on EntR and RelE,
which demonstrates the advantage of high-order
inference. Similar to joint EntR and EventE, our
high-order model with the combination of all fac-
tors cannot achieve further improvement, so we do
not show the result of this setting.

Joint EntR, EventE and RelE Table 4 shows the
experimental results on the ACE05-E+ and ERE-
EN datasets. On ACE05-E+, we show the result
of hete case (i) because this setting is not included
in the above experiments. CRFIE all means that
we use all kinds of binary and ternary factors that
have performed benefits in ablation experiments.
We can find that CRFIE achieves consistent im-
provement in EventE and RelE. Due to the space
limitation, more ablations and experimental results
can be found in Appendix D.

3.2 Analysis
High-Order Scoring We study two variants of
our high-order scoring. Share means that we reuse
the label representations in unary scoring for high-
order scoring instead of using new label represen-
tations. W/o node reps means that we calculate
high-order scores without taking node representa-
tions into account, such that the high-order scores
are only dependent on the labels regardless of the
underlying text spans that constituent the nodes and
edges. Table 5 shows the comparison results with
ternary factors on the ACE05-R dataset. We can
find that the performance of the two variants both
drops.
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Ent Rel Rel+
Ours hete (+ter) 90.1 70.4 68.3
Share 90.0 69.7 67.5
W/o node reps 90.1 70.0 67.7

Table 5: Comparison of the results of different high-
order scoring methods on ACE05-R dataset.

Ent Tri-I Tri-C Arg-I Arg-C
Asyn (BERT) 90.9 77.7 74.3 59.2 57.2
Syn (BERT) 90.7 77.7 74.8 59.2 56.9
Asyn (RoBERTa) 91.7 77.2 73.7 61.9 59.4
Syn (RoBERTa) 91.7 77.2 73.7 61.3 58.8

Table 6: Comparison of the results of synchronous and
asynchronous updating strategies when we use ternary
factor on ACE05-E dataset.

baseline +sib +ter +sib+ter
Train 119.3 119.2 118.4 107.6
Test 91.2 85.1 81.4 77.2

Table 7: Comparisons of speed (sentences/second)
among the baseline and high-order models.

Message Passing of Ternary Factors From the
message passing process involving ternary factors
in Sec. 2.5, we can see that messages passed to
an edge come only from its two endpoints, but a
node gets messages from all possible edges con-
nected to it, which causes asymmetry messages
from ternary factors, we try synchronous and asyn-
chronous updating strategies as described in Sec
2.5. For asynchronous updating, we firstly update
edge posteriors using node posteriors for the reason
that the initial node posteriors are more accurate.
Table 6 shows the comparison results of the two
updating strategies on the ACE05-E dataset. We
can find that asynchronous update has an advantage
over synchronous update on Arg-C but harms or
keeps the performance on Tri-C.

Complexity and Speed of High-order Inference
The computational complexity of our high-order
inference is O(n3|R|2 + n|L|) when we consider
binary factors and O(n2|R||L|2) when we consider
ternary factors, while our first-order model has
a computational complexity of O(n2|R| + n|L|),
where n is the node number. We measure the empir-
ical training speed and inference speed on an A100
server (Table 7). We can find that our high-order
models are only slightly slower than the baseline
despite the difference in computational complexity,
which is because we implement our models with

full GPU parallelization.

Visualization of Correlation Score We take re-
lation extraction as an example to visualize the
ternary score calculated by Eq. 2 between entity-
relation-entity triplets. For better understanding,
we show examples of selected entity types and rela-
tion types. From Fig. 4, we can find that the corre-
lation scores can reflect some prior knowledge. For
example, ‘PER-SOC’ relation exists between two
‘PER’ entities, ‘PART-WHOLE’ relation is more
likely to exist between entities with the same types.

Error Correction Analysis and Case Study We
provide quantitative error correction analysis in Ap-
pendix E. Figure 3 shows examples where our high-
order approach revises wrong predictions made
based on the initial unary scores (i.e., the first-
order baseline), along with our analyses of how
high-order factors achieve the revision.

4 Related Work

Information Extraction Classical IE models are
typically task-specific (Lample et al., 2016b; Yu
et al., 2020; Zeng et al., 2014; Wang et al., 2019a).
Recent efforts develop joint methods for multiple
IE tasks (Miwa and Sasaki, 2014; Zheng et al.,
2017; Nguyen and Nguyen, 2019; Zhang et al.,
2019; Wang and Lu, 2020) or general architectures
for universal IE (Paolini et al., 2021; Lu et al., 2022;
Lou et al., 2023). Graph-based joint IE methods
formulate multiple IE tasks as a graph prediction
task and aim to capture dependencies between dif-
ferent instances or tasks. Lots of previous works
leverage encoder sharing or graph convolutional
networks (GCNs) on instance dependency graphs
to enrich instance representations (Wadden et al.,
2019; Fu et al., 2019; Van Nguyen et al., 2021,
2022a,b). This work is more relevant to some re-
cent works that take efforts on type interactions and
global inference. Lin et al. (2020) manually designs
global features as constraints and leverages beam
search to find approximated global optima. Based
on the method of Lin et al. (2020), Van Nguyen
et al. (2021) further incorporates AMR graphs as
external dependencies. The work of Van Nguyen
et al. (2022a) is more similar to ours in that they
adopt a CRF to model type dependencies, but they
learn a transition matrix that only scores binary
dependencies. Besides, they employ Noise Con-
trastive Estimation (NCE) (Mikolov et al., 2013) to
perform approximate training and Simulated An-
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Sentence & Analysis Baseline High-order
#1: As well as previously (v1) holding senior positions at Barclays 
Bank (v2), BZW (v3) and Kleinwort Benson (v4), McCarthy was 
formerly a top civil servant at the Department of Trade and Industry. 

Analysis: Sibling factor helps our high-order model find the BZW 
which is tied for Barclays Bank to be an argument of event 
Personnel:End-Position triggered by word previously.

#2: The crowd (v1) filled (v2) the street (v3) leading to the Kazimiya 
mosque in the northeast of Baghdad and carried banners in the 
green color of Islam, calling for good government. 

Analysis: An entity with PER type has less possibility to play 
an Artifact role. Ternary factor leverages messages passed by node 
label distributions to refine the edge label which in turn gives the 
message to refine node labels. 

#3: For the most part the marches went off peacefully, but in New 
York (v1) a small group (v2) of protesters were arrested after they 
refused to go home (v3) at the end of their rally, police sources said.


Analysis: There is less possibility that a PER entity has PHYS 
relation with GPE entity and FAC entity at the same time. Sibling 
and ternary factors help our high-order model in this situation.

v2
ORG

Personnel:End-Position

ORG

v1 v4

Entity

Entity

ORG

Personnel:End-Position
ORG

v1

v2

v4

Entity

Entity

ORG
v3Entity

Movement: Transport
v2

v3v1

Artifact Destination

PER FAC

Conflict: Demonstrate
v2

v3v1

Entity Place

PER FAC

v1

v2

v3

PER

FAC

GPEPHYS

PHYS

v1v2
PER GPE

PHYS

Figure 3: Examples showing how our high-order approach improves the graph prediction using different high-order
factors. We only display a partial information graph for clearer illustration.

?
PER PHYS ?
PER PER-SOC

FAC
PART- 

WHOLE
?GPE

LOC
ORG

FAC GPE LOC ORG PER

PER: Person    LOC: Location          GPE: Geo-political entity

FAC: Facility    ORG: Organization    PHYS: Physical contains


Figure 4: Ternary scores between entity-relation-entity
triplets.

nealing Search to perform approximate inference.
Different from their work, we model both binary
and ternary dependencies and leverage MFVI to
achieve consistent training and inference.

High-order Methods Previous high-order meth-
ods most focus on instance interactions in train-
ing process to get more expressive representations,
such as sharing representations (Sun et al., 2019;
Luan et al., 2019b) or using sequence-to-sequence
architecture (Ma et al., 2022; Paolini et al., 2021;
Lu et al., 2021). There are some high-order in-
ference methods that are related to us on different
NLP tasks. On dependency parsing, Wang and Tu
(2020) considered three types of second-order parts
of semantic dependencies and approximate decod-
ing with mean-field variational inference or loopy
belief propagation. Jia et al. (2022) considered
interactions between two arguments of the same
predicate on semantic role labeling task. However,
due to the complexity, they only did high-order

inference on edge existence prediction while leav-
ing label prediction in first-order, and they did not
involve heterogeneous factors. In another line of re-
search, Wang and Pan (2020, 2021) integrate logic
rules and neural network to leverage prior knowl-
edge to help relation extraction and event extraction
tasks. But they cannot achieve end-to-end training
and inference.

5 Conclusion

In this paper, we propose a novel framework that
leverages high-order interactions across different
instances and different IE tasks in both training and
inference processes. We formulate IE tasks as a
unified graph prediction problem, further modeled
as a high-order CRF. Our framework consists of
an identification module to identify spans as graph
nodes and a node/edge labeling module with high-
order modeling and inference to jointly label all
nodes and edges.

Limitations

The limitation is that we separate node identifica-
tion and node/edge labeling processes. Because
joint node identification and label classification
should enumerate all possible spans in a sentence,
which is too computationally expensive. Most pre-
vious works also separate the two processes. But
an obvious disadvantage of such a pipeline scheme
is the error propagation problem. We take joint
node identification and label classification with
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high-order inference as future work.
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A Details on Identification Module

A multi-layer perceptron (MLP) takes word repre-
sentations H = [h1, ...,hn] as input and outputs
an emission score ui for each word. With a learn-
able transition score matrix A, a labeled sequence
y = (y1, ..., yn) can be scored as s(y, H) =∑n

i=1(ui)yi +Ayi−1,yi .

Inference We use the Viterbi algorithm (Forney,
1973) to obtain the sequence that has the highest
score: ŷ = argmaxy s(y, H). Then we select the
spans whose inter-words are labeled as B-X and
I-X in the optimal output sequence as predicted
node set.

Learning We maximize the probability of the
target sequence to learn the identification module.

P (y∗|w) =
exp(s(y∗, H))∑
y′ exp(s(y′, H))

=
1

Z exp(s(y∗, H))

where y∗ is the target sequence and Z is the par-
tition function. We can use the forward-backward
algorithm (Dugad and Desai, 1996) to calculate Z .

Of note, we did not consider nested spans in this
work, which can easily be adopted to our frame-
work using similar methods as in Yu et al. (2020);
Lou et al. (2022) to identify graph nodes if span
nesting.

B Hyper-parameters

For the hidden sizes of unary FNNs and most
optimizer parameters, we use the default hyper-
parameters following (Lin et al., 2020). The hid-
den sizes of FNNs in high-order scoring are tuned
between {150, 300}. The iteration step T of MFVI
is tuned between {1, 2, 3}, and it is set to 1 or 2 in
different settings. We choose the hyper-parameters
according to the performance of the development
set after 80 epoch runs. The main hyper-parameters
are listed in Table 8.

C Experimental results on ACE05-E
given gold entities and triggers

Table 9 shows the experimental results on ACE05-
E given gold entities and triggers. We can find
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Setting Value

Unary scoring
FNN(entity) 150
FNN(trigger) 600
FNN(relation) 150
FNN(role) 600

Binary scoring
FNN(head) 150
FNN(tail) 150
FNN(mid) 150

Ternary scoring
FNN(head) 150
FNN(tail) 150

Other setting
batch size 10
dropout rate 0.4
learning rate of Pretrained LM encoder 1e-5
lr decay of Pretrained LM encoder 1e-5
learning rate of other modules 1e-3
lr decay of other modules 1e-3
warm-up epochs 5
total epochs 80
gradient clipping 5.0

Table 8: Summary of hyper-parameters

Ent Tri-C Arg-I Arg-C
CRFIE baseline 96.0 93.1 70.7 68.3
CRFIE homo (+sib) 96.0 93.6 72.0 69.2
CRFIE hete (+ter) 95.9 94.1 71.7 69.2
CRFIE homo+hete (+sib+ter) 96.0 93.6 72.3 69.4

Table 9: Average F1 on ACE05-E dataset. The gold
triggers and entities are given.

Ent Tri-I Tri-C Arg-I Arg-C
CRFIE baseline 90.8 77.7 74.8 58.5 56.4
CRFIE homo (+sib) 90.6 77.7 74.5 59.1 57.1
CRFIE homo (+sib+cop) 90.8 77.7 74.6 58.7 57.1
CRFIE hete (+ter) 90.7 77.7 74.3 59.2 57.2
CRFIE homo+hete (+sib+ter) 90.6 77.7 74.3 59.6 57.5

Table 10: Average F1 on ACE05-E dataset with en-
coders of BERT-large-cased

that without the error of the identification mod-
ule, the performance gap between our baseline and
high-order models further increases, and using both
sibling factors and ternary factors improves further.

D Ablation Study

We show the experimental results of different factor
combinations on Table 10, Table 11 and Table 12.

On Table 12, role-sib represents sib of role pairs,
rel-sib represents sib of relation pairs, and r+r-sib
represents sib of both role pairs and relation pairs.
The hete (+cop), hete (+gp), hete (+cop+gp) are
in hete case (i).

E Error Correction Analysis

We take joint EntR and RelE as an example to show
the number of error corrections of our high-order

NULL
ORG-AFF

ART PH
YS

GEN
-AFF

PE
R-S

OC

PA
RT-

WHOLE

Predicted label

NULL

ORG-AFF

ART

PHYS

GEN-AFF

PER-SOC

PART-WHOLE

Tr
ue

 la
be

l

0 58 30 79 12 17 45

60 289 0 1 4 1 4

67 1 81 2 0 0 0

107 1 2 164 3 0 1

30 6 0 7 55 0 6

17 2 0 0 0 58 0

52 2 0 5 2 0 121

(a) Our baseline

NULL
PH

YS
ORG-AFF

PE
R-S

OC

ART PA
RT-

WHOLE

GEN
-AFF

Predicted label

NULL

PHYS

ORG-AFF

PER-SOC

ART

PART-WHOLE

GEN-AFF

Tr
ue

 la
be

l
0 -12 -2 1 -4 -1 -1

5 -2 -1 0 -1 0 -1

1 0 0 0 0 0 -1

1 0 0 -1 0 0 0

-3 -1 -1 0 5 0 0

0 -1 0 0 0 2 -1

-3 1 1 0 0 1 0

(b) Error correction matrix

Figure 5: Confusion matrix of the relation types. (a)
The relation numbers of our baseline model on predicted
entities. (b) The correction numbers of our high-order
model relative to the baseline model. We do not have
statistics on Null-Null.

Ent Rel Rel+
CRFIE baseline 89.8 69.9 67.5
CRFIE homo (+sib) 90.0 70.8 68.1
CRFIE homo (+cop) 90.1 70.1 68.0
CRFIE homo (+gp) 90.2 70.0 67.7
CRFIE homo (+sib+cop) 90.2 70.8 68.2
CRFIE hete (+ter) 90.1 70.4 68.3

Table 11: Average F1 on ACE05-R dataset with encoder
of ALBERT-XXLarg-v1

model compared to our baseline model in terms of
relation types. From Fig. 5, we can find that our
high-order model corrects the errors of our baseline
model in relation types (the numbers are expected
to be positive in the diagonal and to be negative
otherwise).
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Ent Rel Tri-I Tri-C Arg-I Arg-C
CRFIE baseline 90.8 65.3 77.4 74.6 60.0 58.1
CRFIE homo (role-sib) 90.8 65.1 77.4 74.6 60.3 58.4
CRFIE homo (rel-sib) 91.0 65.6 77.4 74.8 60.1 58.5
CRFIE homo (r+r-sib) 90.9 65.4 77.4 74.8 60.1 58.3
CRFIE hete (+cop) 90.7 65.9 77.4 74.6 60.3 58.2
CRFIE hete (+gp) 90.7 65.8 77.4 75.1 60.8 59.0
CRFIE hete (+cop+gp) 90.7 65.1 77.4 74.8 60.3 58.5
CRFIE homo case (i)

+ homo case (ii) 90.9 65.4 77.4 74.8 60.1 58.3

Table 12: Average F1 on ACE05-E+ dataset. All models
use BERT-large-cased encoder.

F Re-evaluation of PL-Marker

For the relation extraction task, some corpus have
symmetric relations, meaning the ordering of the
two entities does not matter (e.g., ‘PER-SOC’ in
ACE2005). A symmetric relation is only annotated
in one direction in the annotation data. PL-Marker
counts a symmetric relation twice both for predic-
tion number and gold number, but other work only
counts once for the prediction and gold numbers.
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