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Abstract

Dialogue summarization, one of the most
challenging and intriguing text summarization
tasks, has attracted increasing attention in re-
cent years. Since dialogue possesses dynamic
interaction nature and presumably inconsistent
information flow scattered across multiple ut-
terances by different interlocutors, many re-
searchers address this task by modeling dia-
logue with pre-computed static graph struc-
ture using external linguistic toolkits. How-
ever, such methods heavily depend on the re-
liability of external tools and the static graph
construction is disjoint with the graph represen-
tation learning phase, which could not make
the graph dynamically adapt to the downstream
summarization task. In this paper, we propose
a Static-Dynamic graph-based Dialogue Sum-
marization model (SDDS)*, which fuses prior
knowledge from human expertise and implicit
knowledge from a PLM, and adaptively adjusts
the graph weight, and learns the graph struc-
ture in an end-to-end learning fashion from the
supervision of summarization task. To verify
the effectiveness of SDDS, we conduct exten-
sive experiments on three benchmark datasets
(SAMSum, MediaSum, and DialogSum) and
observe significant improvement over strong
baselines.

1 Introduction

Dialogue summarization, aiming at distilling the
salient information from a dialogue context into
a concise summary, is one of the most chal-
lenging and intriguing tasks in text summariza-
tion (Gurevych and Strube, 2004; Feng et al.,
2021a; Cheng et al., 2023a). It can help people
quickly capture the highlights of a semi-structured
and multi-participant dialogue without reviewing
the complex dialogue context (Feng et al., 2022)
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†Corresponding Author.
*Code available at https://github.com/Hannibal046/
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Figure 1: Traditional summarization methods and exist-
ing dialogue summarization methods can not understand
the dialogue structure comprehensively while our frame-
work could adaptively learn dialogue structure with a
dynamic graph module.

and has many real-world applications (Liu et al.,
2019; Zhang et al., 2021).

Since dialogue is the most fundamental and spe-
cially privileged arena of language (Jurafsky and
Martin, 2000), it possesses dynamic interaction na-
ture and presumably inconsistent information flow
scattered across multiple utterances by different
interlocutors (Li et al., 2022). So the plain doc-
ument summarization methods (Gehrmann et al.,
2018; Zhang et al., 2020a) could not adapt well in
this setting. As shown in Figure 1, the plain text
summarization method takes dialogue as a long se-
quence without modeling its structure thus can not
generate a proper summary.

To address this problem, the existing dialogue
summarization methods mainly focus on modeling
dialogue with pre-computed static graph structure
using external linguistic toolkits such as discourse
parsing (Chen and Yang, 2021; Feng et al., 2021a),
dialogue topic modeling (Chen and Yang, 2020;
Zhao et al., 2020), dialogue state tracking (Zhao
et al., 2021b) and dialogue acts modeling (Goo
and Chen, 2018; Chen and Yang, 2021). Although
static graph structure captures inconsistent informa-
tion flow of dialogue to some extent and achieves
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sufficient improvements across various datasets,
we argue that there exist two fundamental draw-
backs: (1) such methods heavily depend on the re-
liability of external linguistic tools which may not
deliver the accurate output and cause error propa-
gation. For example, the commonly used discourse
parser in dialogue summarization (Chen and Yang,
2021; Feng et al., 2021a) is a trained model from
Shi and Huang (2019), which is optimized for a
dialogue summarization-agnostic online game di-
alogue dataset. This distribution shift may greatly
hurt the generalization ability of the parser (Qian
and Yu, 2019). (2) the static graph construction
is disjoint with the graph representation learning
phase and such a fixed graph could not dynamically
adapt to the downstream summarization task.

In this paper, we propose the Static-Dynamic
graph-based Dialogue Summarization model
(SDDS) which contains two graph modules: (1)
Static Graph Module and (2) Dynamic Graph Mod-
ule. For the static graph module, we consider
four dialogue structures. Except for the commonly
used (1) discourse parsing and (2) keywords co-
occurrence relationship, we propose two novel
structure modeling methods: (3) speaker relation-
ship and (4) utterance position modeling.

Complementary to these four static graphs that
encode human prior into the model, we propose a
dynamic graph module that is constructed from
a pre-trained language model (PLM). The lan-
guage model pre-trained on the massive corpora
captures oceans of knowledge without human an-
notation (Warstadt et al., 2019) and shows strong
capability in modeling the various textual relation-
ships (Lyu et al., 2021; Chen et al., 2021a). Thus,
we propose to use the deep semantic representation
for utterances obtained from the PLM to learn the
various utterance and speaker relationships. By
fusing prior knowledge from human expertise and
implicit knowledge from a PLM with a fine-grained
1× 1 convolution, SDDS could adaptively adjust
the graph weight and learn the graph structure in an
end-to-end learning fashion from the supervision
of summarization task.

Figure 1 shows the overall architecture of the
SDDS model. First, we employ a pre-trained lan-
guage model to encode all the utterances into vec-
tor representations. Next, we construct four static
graphs and propose an early fusion method to com-
bine these static graphs. Then, a dynamic graph
module is used to learn the semantic relationships

using utterance vector representations. Finally, we
propose a fusion mechanism to combine the static
and dynamic graphs into a unified representation
and employ a pre-trained language model to gen-
erate the summary by incorporating the updated
utterance representation of the combined graph. To
verify SDDS, we conduct extensive experiments
on three benchmark datasets. Experimental results
demonstrate that the SDDS achieves substantial im-
provement over strong baselines. We also carefully
examine each key component and gives a detailed
analysis of SDDS for future research.

To sum up, our key contributions are:
• We are the first to take a deep look into the lim-

itation of the current static graph-based methods.
• We propose a novel framework called SDDS

which fuses prior knowledge from human expertise
and implicit knowledge from a PLM, adaptively
adjusts the graph weight, and learns the graph struc-
ture in an end-to-end learning fashion from the
supervision of summarization task.
• Comprehensive experiments conducted on

three benchmark datasets show SDDS achieves sig-
nificant improvement over strong baselines.

2 Related Work

2.1 Dialogue Summarization

Recent research works in dialogue summarization
can be classified into two categories. Since this
research task is a newly proposed task, the first cat-
egory of works focuses on exploring new datasets.
AMI (Carletta and et al., 2005) and ICSI (Janin
and et al., 2003) corpus are meeting summarization
datasets which contain 57 and 137 data samples
respectively. To train the neural-based summariza-
tion model, researchers also propose several large-
scale datasets. SAMSum (Gliwa et al., 2019) is
a large-scale chit-chat summarization dataset with
14,732 training samples, and most of the samples
are two-party dialog with a 2.2 average speaker.
MediaSum (Zhu et al., 2021) is a multi-party dia-
logue summarization dataset collected from news
interviews with 463K data samples and 6.5 aver-
age speakers.

The second category of research works proposes
to incorporate manifold information to help the dia-
logue summarization. Feng et al. (2021a) and Chen
and Yang (2020) propose using a discourse parsing
tool or heuristic structure extraction method to help
the model capture the dialogue structures. These
methods leverage the graph model to capture the di-
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alogue structure and they focus on the algorithm of
passing messages between utterance nodes in their
methods. Feng et al. (2021b) propose to extract the
keyword, topic, and redundancy utterances by us-
ing DialoGPT and incorporate this manifold infor-
mation in the summary generation process. Feng
et al. (2020) propose using large-scale common-
sense knowledge to facilitate dialogue understand-
ing and summary generation. Geng et al. (2022b)
propose three speaker-aware supervised contrastive
learning tasks to recognize the unique format of the
speaker-utterance pair. Ravaut et al. (2022) fuse
several summary candidates to produce a novel ab-
stractive second-stage summary. Li et al. (2022)
propose a novel curriculum-based prompt learning
method with self-training to tackle the insufficient
training data problem. Li et al. (2023) propose to
learn disentangled representation via domain adap-
tation for dialogue summarization tasks.

2.2 Graph Neural Network

Graph is widely used in many structure data mod-
eling tasks: recommendation (Liu et al., 2020;
Jiang et al., 2018; Fan et al., 2019a), social net-
work modeling (Wu et al., 2019a; Fan et al., 2019b;
Yang et al., 2020), and knowledge-graph based
tasks (Jiang and Han, 2020; Wu et al., 2019b). In
the document summarization task, many existing
works (Tan et al., 2017; Wang et al., 2020) employ
the graph model to capture the document structures
and incorporate this structure into abstractive or
extractive summarization. Wei (2012) proposes
a heterogeneous graph consisting of topic, word
and sentence nodes and uses the markov chain
model for the iterative update. Tan et al. (2017)
HSG (Wang et al., 2020) employs a heterogeneous
graph network to model the words and sentences
with in single and multi-documents and then ex-
tracts sentences from document. In the dialogue
summarization field, using a graph network to mod-
eling the dialogue structure is also a common prac-
tice. However, most of the existing works (Feng
et al., 2020, 2021a) use the pre-computed graph
to capture the dialogue structure and focus on the
algorithm of passing messages between utterance
nodes in their methods.

3 Problem Formulation

Given a dialogue context D = {u1, · · · , uLd
}

with Ld utterances and each utterance ui =
{wi,1, · · · , wi,Li

u
} contains Li

u words. We use the

si to denote the speaker of i-th utterance and |S|
to denote the number of speakers. Our goal is to
generate the summary Ŷ = {ŷ1, · · · , ŷLy} which
has Ly words. And we use the difference between
generated summary Ŷ and the ground truth Y as
the training objective.

4 SDDS Model

In this section, we introduce the Static-Dynamic
graph based Dialogue Summarization model
(SDDS). An overview is shown in Figure 2.

4.1 Utterance Encoder
We employ the pre-trained BART (Lewis et al.,
2020) to encode each utterance independently:

{hi,0,hi,1, · · · ,hi,Li
u
} = Enc([CLS], wi,1, · · · , wi,Li

u
),

(1)

where Enc(·) is the encoder module in BART
which outputs the vector representation hi,j of j-th
input word wi,j in i-th utterance. To obtain a vec-
tor representation of each utterance, we extract the
hidden state hi,0 of the input special token [CLS]
as the vector representation ui = hi,0 of i-th utter-
ance. And U = {u1, . . . ,uLd

} are the representa-
tions for all utterances.

4.2 Static Graph Construction
In this section, we first propose 4 heuristic dialogue
structure modeling methods to build the relation-
ships between utterances using a graph network.

1. Discourse Parsing Graph. Since dialogue dis-
course relations can explicitly show the information
flow and interaction between utterance (Feng et al.,
2021a), we employ a discourse parsing toolkit (Shi
and Huang, 2019) to build dependency-based di-
alogue structure which allows relations between
non-adjacent utterances which is applicable for
multi-party conversions. There are 16 discourse
relations in total: comment, clarification-question,
elaboration, acknowledgment, continuation, expla-
nation, conditional, question-answer, alternation,
question-elaboration, result, background, narration,
correction, parallel, and contrast. After obtaining
the discourse parsing result, we use an embedding
matrix to project these discreate relations into vec-
tor representation:

Gs
d(i, j) = Ed (DiscoParse(ui, uj)) , (2)

where Ed ∈ R16,1 denotes the embedding matrix.
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Figure 2: Overview of SDDS.

2. Keywords Co-occurrence Graph. It is intuitive
that when two utterances contain the same key-
word, they may focus on the same topic and they
are semantically correlated. We employ the func-
tion KeyCo-occ to denote the function that calcu-
lates the number of common keywords in two utter-
ances.Then we use an embedding matrix to project
the integer number of keyword co-occurrence to a
vector:

Gs
k(i, j) = Ek (KeyCo-occ(ui, uj)) , (3)

where Ek ∈ RNk,1 denotes the embedding matrix,
and Nk and D denotes the maximum number of
co-occurrence keyword and the hidden size respec-
tively. In this paper, we only use the noun and
entity words as the keyword.
3. Speaker Relation Graph. Since it is essential to
understand the fine-grained interaction between
speakers in dialogue context, in this paper, we
propose a simple yet effective speaker relation-
ship modeling method. We use a sliding window
around each utterance, and count the frequency of
occurrence for each speaker in this sliding window,
and the obtain a speaker interaction frequency ma-
trix Ĝs

s ∈ N|S|,|S|. Intuitively, if an element in Ĝs
s

achieves the relatively high value in both row-wise
and column-wise, that means the speakers of the
row and column have a strong relationship com-
pared to other speakers. For example, in Figure 4,
we can find that speaker C usually talks after A,
which indicates the strong relationship between
two speakers. Thus, to normalize the frequency

of interaction between speakers, we first apply the
row-wise softmax on the interaction frequency ma-
trix Ĝs

s and then apply column-wise softmax on Ĝs
s

independently. Next, we apply the element-wise
product and result in the final speaker relation ma-
trix G̃s

s ∈ R|S|,|S|:

G̃s
s = softmaxr(Ĝs

s)× softmaxc(Ĝs
s), (4)

where softmaxr and softmaxc denotes the row-wise
and column-wise softmax function respectively.
For example, when speaker C usually talks after A,
which indicates the strong relationship between two
speakers, and we can find that the value between
speaker A and C achieves the highest value in the
G̃s
s . Finally, we fill the utterance-level speaker rela-

tion adjacent matrix Gs
s ∈ RLd,Ld using the value

in G̃s
s :

Gs
s(i, j) = G̃s

s(si, sj), (5)

where G̃s
s(si, sj) ∈ R denotes the value in si-th

row and sj column. More details can be found in
the Appendix § A.1.
4. Utterance Position Graph. To capture the posi-
tion information of utterances, we use the relative
distance between utterances as the edge feature of
utterance position graph Gs

p. Similarly, we also
employ an embedding matrix to map the discrete
distance into vector space:

Gs
p(i, j) = Ep (j − i) , (6)

where Gs
p is the adjacent matrix of utterance posi-

tion graph and the value denotes the relative dis-
tance. And Ep ∈ RLd,1 is the embedding matrix.
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4.3 Static-Dynamic Graph Module
4.3.1 Static Graph Fusion
After obtaining adjacent matrixes for static graphs,
to conduct cross-graph fusion and interaction, we
can see these adjacent matrixes as different chan-
nels and use a simple but efficient 1 × 1 convo-
lutional layer to integrate these adjacent matrixes
into a fused relationship representation between
utterances:

Gs = Conv
(
Gs
p ⊕ Gs

s ⊕ Gs
k ⊕ Gs

d

)
, (7)

where ⊕ denotes the concatenation operator of ma-
trixes and Gs ∈ RLd,Ld is the fused relationship
representation.

4.3.2 Dynamic Graph Module
To capture the semantic relationship between ut-
terances based on their deep vector representa-
tion, inspired by the Transformer (Vaswani et al.,
2017), we propose a dynamic graph module that
does not use any pre-computed or heuristic method
to build the connections between nodes. We first
project the utterance vector representations U =
{u1, . . . ,uLd

} into two different vector spaces,
and calculate the relationship as A ∈ RLd,Ld :

Q = UWQ,K = UWK , A =
QK⊤
√
dK

, (8)

where WQ,WK are all trainable parameters. Next,
the relation matrix A can be seen as the adja-
cent matrix for the utterance graph, and this graph
is built dynamically via the multi-head attention
mechanism. Since this graph is built by the at-
tention module with trainable parameters, it can
capture the task-specific relationship between ut-
terances that may not be covered by the heuristic
static graph.

4.3.3 Fusion Module
To integrate the static and dynamic graph, we pro-
pose a fusion method to combine the relation matrix
A of dynamic graph and the adjacent matrix Gs of
the static graph into a unified graph Gu. Similar
with the static graph fusion method, we also em-
ploy a 1×1 convolutional layer to combine the two
matrixes A and Gs as two channel:

Gu = Conv (A⊕ Gs) . (9)

We obtain unified adjacent matrix Gu ∈ RLd,Ld .
To unify the static and dynamic graph structures

into a final utterance representation, we employ a

self-attention layer as shown in Figure 2. We first
project the utterance representation into multiple
vector spaces using multi-head attention which is
same with Equation 8, and then apply the weighted
sum operation using the unified graph Gu as the
attention score:

{g1, . . . ,gLd
} = softmax(Gu)V, (10)

V = UWV (11)

where gi is the graph representation of the i-th
utterance.

4.4 Summary Generator
Finally, to incorporate the graph representation
which captures the dialogue structure information
in the generation process of the summary, we use
dual cross attention (Cheng et al., 2022) mecha-
nism by proposing a graph attention layer on the
top of original self attention layer. We first apply
the self-attention on the masked output summary
embeddings, and then use the output ps to cross-
attend to the token-level dialogue hidden states
{h1,1, · · · ,hLd,Li

u
} produced by the utterance en-

coder (introducued in Equation 1):

pq = MHAtt(ps, {h1,1, · · · ,hLd,Li
u
}), (12)

where MHAtt is the standard multi-head attention
layer and this procedure is the same as the original
BART decoder. After the cross-attention layer, we
apply a multi-head graph attention layer which ag-
gregate useful knowledge from the updated graph
nodes according to the state of each decoding step:

pg = MHAtt(pq, {g1, · · · ,gLd}). (13)

Finally, we apply a fully connected feed-forward
network on pg to predict the distribution over the
vocabulary of the generated summary. And we use
the cross-entropy loss between generated summary
and ground truth summary as the training objective
to optimize all the parameters of SDDS. We use
the parameters in the pre-trained language model
BART to initialize the corresponding parameters in
our Transformer based text encoder (Equation 1)
and summary generator.

5 Experimental Setup

5.1 Dataset and Evaluation
We verify the effectiveness of SDDS on three
benchmark datasets: SAMSum (Gliwa et al.,
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2019), MediaSum-NPR (Zhu et al., 2021)
and DialogSum (Chen et al., 2021b). For
evaluation metrics, following standard prac-
tice in summarization (Zhang et al., 2020a;
Cheng et al., 2023b), we adopt ROUGE (R-
1/2/L) (Lin, 2004), BERTScore (Zhang et al.,
2020b), BARTScore (Yuan et al., 2021) and Mover-
Score (Zhao et al., 2019). More implementation
details, dataset statistics, and evaluation metrics
can be found in Appendix A.2.

5.2 Compared Methods

To verify the effectiveness of SDDS, we com-
pare with the following baselines: S2SA is the
Sequence-to-Sequence framework equipped with
the attention and copy mechanism (See et al.,
2017). Transformer (Vaswani et al., 2017) is
a self-attention-based text generation framework.
BART (Lewis et al., 2020) and UniLM (Bao
and et al., 2020) are large-scale pre-trained lan-
guage models. MV-BART (Chen and Yang,
2020) is a BART-based method that incorporates
topic and stage information to capture the struc-
ture of the dialogue context. FROST (Narayan
et al., 2021) prompts target summaries with entity
chains—ordered sequences of entities mentioned
in the summary. CODS (Wu et al., 2021) propose
a granularity controlled dialogue summarization
method. GPT-Anno (Feng et al., 2021b) uses the
DialoGPT (Zhang and et al., 2020) as an unsuper-
vised dialogue annotator for keyword and topic
information. CONDIGSUM (Liu et al., 2021a)
proposes two topic-aware contrastive learning ob-
jectives to implicitly model the topic change and
handle information scattering. SSAnet (Zhao et al.,
2021a) proposes a heterogeneous semantic slot
graph to enhance the slot features for more cor-
rect summarization. Coref-Attn (Liu et al., 2021b)
proposes to explicitly incorporate coreference infor-
mation. SCL (Geng et al., 2022a) proposes speaker-
aware supervised contrastive learning for better fac-
tual consistency. HITL (Chen et al., 2022) incor-
porates human feedback into the training of sum-
marization model. SummaFusion (Ravaut et al.,
2022) fuses several summary candidates to produce
a second-stage summary.

6 Experimental Result

6.1 Overall Performance

Automatic Evaluation We compare our model
with the baselines listed in Table 1. Our model

Method R-1 R-2 R-L

SAMSum

FROST 51.86 27.67 47.52
SSAnet 51.28 27.15 49.37
CODS 52.65 27.84 50.79
MV-BART 53.42 27.98 49.97
GPT-Anno 53.70 28.79 55.30∗

CONDIGSUM 54.30 29.30 45.20
Coref-Attn 53.93 28.58 50.39
SCL 54.22 29.87 51.35
HITL 53.76 28.04 50.56
SummaFusion 52.76 28.24 43.98

BART 52.96 28.62 54.38
SDDS 54.97† 30.01† 56.27†

DialogSum

Longest-3 24.15 6.25 22.73
TextRank 21.19 6.49 23.91
Transformer 35.91 8.74 33.50
UniLM 47.04 21.13 45.04
GPT-Anno 47.12 20.88 44.56

BART 47.28 21.18 44.83
SDDS 48.02† 21.68† 45.88†

MediaSum-NPR

Longest-3 28.39 11.21 19.90
S2SA 35.86 16.01 24.46
UniLM 41.42 20.73 30.65
GPT-Anno 41.98 21.42 31.56

BART 43.55 21.99 32.03
SDDS 43.91† 22.53† 32.28†

Table 1: Automatic evaluation results. ∗ denotes our
re-evaluated result. † denotes the method is significantly
better than baselines with p-value < 0.05, tested by
bootstrap re-sampling (Koehn, 2004).

performs significantly better than other dialogue
summarization models including the state-of-the-
art model GPT-Anno with improvements of 1.88%,
2.05%, and 0.98% in terms of R-1, R-2, and R-L
on the benchmark dataset SAMSum with p < 0.05.
We also find that SDDS can achieve consistently
better performance than the strong baselines on
other two datasets. This demonstrates that the
static-dynamic graph model can fuse the human
prior knowledge of dialogue structure and learn
the semantic relationship dynamically, which helps
the summarization model understand the dialogue
context better. Although the baseline methods use
the heuristic graph construction method (e.g., using
discourse parsing result) or use the pre-trained lan-
guage model GPT-2 to explore the deep semantic
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information, their performance is still worse than
SDDS which combines the human prior knowl-
edge of dialogue structure and the deep semantic
relationship using the static-dynamic graph. Differ-
ent from the other datasets, MediaSum-NPR has
more speakers (avg. 4.0 speakers) and the dialogue
structure is more complex. From Table 1, we can
find that SDDS achieves better performance. This
demonstrates SDDS can be directly generalized
to the multi-speaker scenario. We also conduct
more fine-grained analysis on SDDS measured by
token-level F-measure. As Figure 3 shows, SDDS
surpasses baselines in almost all word frequencies
and performs especially well for low-frequency
words, which shows the great generalization and
robustness of SDDS.

Since ROUGE can only evaluate token level
syntactical similarity, we also measure the seman-
tic similarity of generated summary and ground
truth on SAMSum by BERTScore (Zhang et al.,
2020b), BARTScore (Yuan et al., 2021) and Mover-
Score (Zhao et al., 2019). Results on Table 2 show
that these model-based scores are consistent with
the ROUGE and human evaluation (detailed be-
low), and verify the superiority of SDDS.

Method BERTScore BARTScore MoverScore

BART 91.67 -1.48 62.27
MV-BART 90.85 -1.86 62.50
GPT-Anno 90.79 -2.19 62.47
SDDS 92.04 -1.37 62.98

Table 2: Semantic similarity evaluation on SAMSum.

Human Evaluation For the human evaluation,
we asked three graduate students with professional
English proficiency to rate the generated summary
according to its fluency and factual coherence on
SAMSum dataset. The rating score ranges from 1
to 3, with 3 being the best. BART achieves 2.55
and 2.31 in terms of fluency and coherence, GPT-
Anno achieves 2.54 and 2.35 and SDDS achieves
2.73 and 2.57. The kappa statistics are 0.53 and
0.46 for fluency and coherence, and that indicates
moderate agreement between annotators. We also
conduct the paired student t-test between SDDS
and GPT-Anno and obtain p < 0.05 for both met-
rics. From this experiment, we find that SDDS
outperforms the baselines in both metrics, which
demonstrates the SDDS can generate fluent sum-
maries with correct facts. A concrete example is
shown in Table 6.

1 2 3 4 [5,10) [10,100)[100,1000)
Frequency

0.30

0.35

0.40

0.45

0.50

0.55

0.60

F1
 s

co
re

SDDS GPA_Anno BART SDDS-SDGraph

Figure 3: F-measure of words by frequency bucket mea-
sured on SAMSum

Efficiency Evaluation Since the construction of
static graphs is non-parametric and can be pre-
computed, the additional training and inference
latency is negligible. The training time for BART
is 2.15 hours and SDDS is 2.89 hours. The in-
ference speed for BART is 6.87 samples/second
and that for SDDS is 6.55. All experiments are
conducted on the same computing platform.

Method R-1 R-2 R-L

SDDS-SDGraph 53.46 28.65 54.78
SDDS-Static 53.68 28.69 55.09
SDDS-Dyna 53.53 28.44 54.85
SDDS w/o Graph 52.91 28.36 54.36
SDDS Simp. Sta. 53.87 29.20 55.51
SDDS 54.97 30.01 56.27

Table 3: Results of ablation study on SAMSum.

6.2 Ablation Study
To prove the effectiveness of each module, we con-
duct ablation studies that gradually remove each
key module in SDDS, and form 5 baseline methods:
(1) SDDS-SDGraph use relational graph convo-
lutional networks (Schlichtkrull and et al, 2018)
to capture high-level hidden features considering
different types of edge, and replace the Static-
Dynamic Graph (SDG) module proposed in our
method; (2) SDDS-Dyna only uses the static graph
and removes the static-dynamic graph fusion mod-
ule; (3) SDDS-Static only uses the dynamic graph
and removes the static-dynamic graph fusion mod-
ule; (4) SDDS w/o Graph does not use any graph
model or dialogue structure information, and the
decoder directly attends to the utterance representa-
tion U (calculated in Equation 1) instead of attend-
ing to graph node representations {g1, · · · ,gLd}
as in SDDS; (5) SDDS Simp. Sta. verifies the
effectiveness of using our proposed 1× 1 convolu-
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tional layer (shown in Equation 7) to fuse the static
graphs, which simply concatenates the adjacent
matrixes as Gs.

The results are shown in Table 3. All abla-
tion models perform worse than SDDS in terms
of R-1/2/L, which demonstrates the preeminence
of SDDS. From the table, we can find that the
graph module contributes the most, which demon-
strates the necessity of incorporating structural in-
formation into the dialogue summarization task.
Although the SDDS-SDGraph uses the expressive
RGCN to incorporate the dialogue structure infor-
mation, it is still 2.34% and 1.94% worse than the
SDDS in terms of R-1 and R-L scores. Since SDDS
Simp. Sta. cannot conduct cross-graph information
fusion, it is 1.56% worse than the SDDS in terms
of R-1.

Method R-1 R-2 R-L

w/o Discourse 54.34 29.59 55.84
w/o Keywords 54.47 29.49 55.76
w/o Speak. Rela. 54.12 29.09 55.47
w/o Utter. Posi. 54.08 29.27 55.59
SDDS 54.97 30.01 56.27

Table 4: Importance of different static graphs.

Method R-1 R-2 R-L

w/ Posi. Emb 54.33 29.13 55.70
w/ Sin. Emb 54.28 29.47 55.69
SDDS 54.97 30.01 56.27

Table 5: Different positional encoding methods.

6.3 On the Different Static Graphs

To evaluate the contribution of each type of static
graph, we ablate each static graph, and the results
are shown in Table 4. We can find that the ut-
terance position information contributes most to
the final performance which demonstrates utter-
ance position can help the model to understand
the structure when summarizing the dialogue. Al-
though the discourse parsing graph is an intuitive
way to model the dialogue structures and has been
widely used in previous dialogue summarization
methods (Chen and Yang, 2021; Feng et al., 2021a),
it only contributes 0.68% R-1 score compared to
the SDDS which is lower than the speaker rela-
tion and utterance position. Compare with the

#1 Matt: Hey! I got my ticket for Dawid Podsiadlo!!! So stoked!
#2 Thomas: Whooaa that’s great!!
#3 Matt: I will see you there then!
#4 Thomas: Yes for sure
#5 Matt: For sure. Who you’re going with?
#6 Thomas: by myself for now.
#7 Matt: I might ask a few more people if they’re coming :)
#8 Thomas: Maria was interested I think. But I am not sure. i will ask

BART Matt got his ticket for Dawid Podsiadlo’s concert. Thomas is going with Maria.
GPT-Anno Matt got a ticket for Dawid Podsiadlo. He will see Thomas and Maria there.
SDDS Matt and Thomas are going to Dawid Podsiadlo.

Reference Matt got a ticket for Dawid Podsiadlo’s concert. Thomas is going, too.

Table 6: Example of the generated summary by SDDS
and other models. Text in red denotes the wrong fact. In
the discourse parsing graph, there is no edge between #7
and #8, while our dynamic graph assigns a high weight
for the edge between #7 and #8 which captures “whether
Maria will go to concert”.

model SDDS-Static which only uses the dynamic
graph module, we can find that the models in Ta-
ble 4 are all better than SDDS-Static. This phe-
nomenon demonstrates the effectiveness of using
pre-computed graph structures since it brings hu-
man prior knowledge into the dialogue model and
future advances in dialogues structure modeling
would further benefit SDDS.

6.4 On the Positional Encoding

In the previous section, we can find that the utter-
ance positional static graph contributes most to the
final performance in Table 4. In this section, we
also compare our positional encoding methods with
two commonly used variants: (1) w/ Posi. Emb:
uses a trainable matrix as the positional embed-
ding of each utterance (Gehring et al., 2017; Lewis
et al., 2020) (2) w/ Sin. Emb: uses the static si-
nusoidal function to form a positional encoding
vector (Vaswani et al., 2017). From Table 5, we
can find that these two methods perform worse than
our proposed SDDS. This phenomenon verifies the
effectiveness of fusing the positional information
into utterance relationships in the static graph.

7 Conclusion

In this paper, we first investigate the limitation of
the current static graph-based dialogue summariza-
tion methods and propose a Static-Dynamic graph-
based Dialogue Summarization method (SDDS). It
contains two modules, a static graph module and
a dynamic graph module. The former injects hu-
man prior into the summarization model and the
latter encodes the implicit knowledge from a pre-
trained language model. By fusing these two kinds
of graphs with a fine-grained 1×1 convolution,
SDDS could adaptively adjust the graph weight and
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learn the graph structure in an end-to-end learning
fashion from the supervision of the summariza-
tion task. To validate the effectiveness of SDDS,
we conduct extensive experiments on three public
dialogue summarization datasets (SAMSum, Me-
diaSum, and DialogSum) and observe significant
improvement over strong baselines. We also care-
fully examine each key component and gives a
detailed analysis of SDDS for future research.

Limitations

We discuss the limitations of SDDS as follows:
(1) Although we propose a general framework

for dialogue summarization by incorporating both
static and dynamic graphs, we only adopt four
static graphs to model the dialogue structure. Since
dialogue structure modeling is still an active re-
search direction, we believe future advances would
further benefit our framework.

(2) Despite the strong performance achieved
by SDDS across three dialogue summarization
datasets, we use a pre-trained language model as
the backbone of our proposed method, as a conse-
quence, we can not go beyond the limitation of the
maximum sequence length of the PLM for the dia-
log summarization scenario like meeting summa-
rization so it remains a future challenge for dialog
summarization in the extremely long format.

Ethical Consideration

The dialogue data would inevitably contain private
information about the interlocutors. We take care-
ful consideration of this problem: (1) all data in our
experiments are publicly available and anonymized
by the original dataset provider. The license for
SAMSum dataset is CC BY-NC-ND 4.0 and for Di-
alogSum MIT License. For MediaSum, it adheres
to only-for-research-purpose guideline from the Na-
tional Public Radio; (2) we do not use online user
data to train our model and we would use an addi-
tional rule-based system to double-check whether
our model output contains harmful and prejudicial
discrimination when we use it for production.
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A Appendix

A.1 Speaker Relation Graph

We use a sliding window around each utterance,
and count the frequency of occurrence for each
speaker in this sliding window. Figure 4 gives an
example to illustrate this method, and we obtain a
speaker interaction frequency matrix Ĝs

s ∈ N|S|,|S|.
Algorithm 1 illustrates this method, and we obtain a
speaker interaction frequency matrix Ĝs

s ∈ N|S|,|S|.

A.2 Implementation Details

We implement our experiments using Py-
torch (Paszke et al., 2019) on an NVIDIA RTX
3090 GPU. The batch size is set to 16, and we use
the gradient accumulation to simulate a large batch
size. We pad or cut input utterances to contain
exactly 200 words, and the maximum decoding
length is set to 100. We initialize BART in our
model with BARTLarge

† which has 16 attention
heads, 1024 hidden size and 12 Transformer layers
for encoder and decoder respectively. In our
graph transformer, we use 4 self-attention layers
with 1024 hidden size and 8 attention head. We
use AdamW optimizer (Loshchilov and Hutter,
2019) as our optimizing algorithm and employ
beam search with size 5 to generate more fluency
summary.

A.3 Dataset Statistics

We list some key statistics of these datasets in
Table 7. From this table, we can find that the
MediaSum-NPR dataset has more speakers, train-
ing samples, and longer dialogue context than the
other datasets. Note that, in DialogSum, there are
three reference summaries for each data sample,
and we use multiple references in the evaluation.

SAMSum MediaSum-NPR DialogSum

# of training samples 14,732 47,370 12,460
# of test samples 819 1,060 500
# of validation samples 818 990 500
Avg. turns of dialogue 9.9 24.2 9.49
Avg. speakers of dialogue 2.2 4.0 2.01
Avg. words of summary 20.3 14.4 22.87

Table 7: Dataset Statistics for three benchmark datasets:
SAMSum, MediaSum-NPR and DialogSum.

A.4 Evaluation Metrics

For evaluation metrics, following existing dialogue
summarization papers (Feng et al., 2021b), we

†https://huggingface.co/facebook/bart-large

adopt ROUGE score (Lin, 2004), which is widely
applied for summarization evaluation (Chen et al.,
2018). The ROUGE metrics compare generated
summary with the reference summary by comput-
ing overlapping lexical units, including ROUGE-1
(unigram), ROUGE-2 (bi-gram), and ROUGE-L
(longest common subsequence). Following exist-
ing dialogue summarization papers (Feng et al.,
2021b), we use py-rouge‡ as the implementation
of ROUGE score. Since only using automatic
evaluation metrics can be misleading (Stent et al.,
2005), we also use the embedding based eval-
uation method and conduct the human evalua-
tion. We employ the BERTScore (Zhang et al.,
2020b), BARTScore (Yuan et al., 2021) and Mover-
Score (Zhao et al., 2019) as the embedding based
evaluation. For human evaluation, three well-
educated annotators are invited to judge 200 ran-
domly sampled summaries. The statistical signifi-
cance of two runs is tested using a two-tailed paired
t-test and is denoted using ▲(or ▼) for strong signif-
icance for α = 0.01.

Algorithm 1 Algorithm of speaker relation con-
struction.
Input: Dialog Context with Ld utterances
Output: Speaker relation Gs

s ∈ RLd,Ld

1: Let Ĝs
s ∈ N|S|,|S| = 0.

2: α(uj) = speaker index of uj
3: for each ui in D
4: for each uj in sliding window of ui
5: Ĝs

s(α(ui), α(uj)) = Ĝs
s(α(ui), α(uj)) +

1
6: G̃s

s = softmaxr(Ĝs
s)× softmaxc(Ĝs

s)
7: for each i in {1, . . . , Ld}
8: for each j in {1, . . . , Ld}
9: Gs

s(i, j) = Ĝs
s(α(ui), α(uj))

10: return Gs
s(i, j)

‡https://pypi.org/project/py-rouge
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Figure 4: An example of speaker relation graph construction.
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